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Abstract: Microarray technology has developed rapidly in recent years, producing a large number of 
ultra-high dimensional gene expression data. However, due to the huge sample size and dimension 
proportion of gene expression data, it is very challenging work to screen important genes from gene 
expression data. For small samples of high-dimensional biomedical data, this paper proposes a two-
stage feature selection framework combining Wrapper, embedding and filtering to avoid the curse of 
dimensionality. The proposed framework uses weighted gene co-expression network (WGCNA), 
random forest and minimal redundancy maximal relevance (mRMR) for first stage feature selection. 
In the second stage, a new gene selection method based on the improved binary Salp Swarm Algorithm 
is proposed, which combines machine learning methods to adaptively select feature subsets suitable 
for classification algorithms. Finally, the classification accuracy is evaluated using six methods: 
lightGBM, RF, SVM, XGBoost, MLP and KNN. To verify the performance of the framework and the 
effectiveness of the proposed algorithm, the number of genes selected and the classification accuracy 
was compared with the other five intelligent optimization algorithms. The results show that the 
proposed framework achieves an accuracy equal to or higher than other advanced intelligent 
algorithms on 10 datasets, and achieves an accuracy of over 97.6% on all 10 datasets. This shows that 
the method proposed in this paper can solve the feature selection problem related to high-dimensional 
data, and the proposed framework has no data set limitation, and it can be applied to other fields 
involving feature selection. 

Keywords: high-dimensional data; feature selection; swarm intelligence optimization algorithm; 
gene expression data; cancer classification  
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1. Introduction 

Because the incidence rate and mortality rate of cancer are very high, it has been widely a concern 
all over the world, so diagnosing cancer has become a very difficult task [1]. Cancer is also a common 
research object in bioinformatics research. In cancer diseases, there are many features with different 
information, which can be used to distinguish the tissue or organ source of cancer distribution 
according to these features [2]. The rapid development of microarray technology in recent years has 
produced a large amount of ultra-high-dimensional gene expression data. Therefore, the use of gene 
expression data for cancer diagnosis has great advantages. However, due to the huge sample size and 
dimension ratio of gene expression data, small sample size and high gene dimension, it is a very 
challenging task to screen key genes from gene expression data. And due to the curse of 
dimensionality [3], irrelevant and redundant genes will increase the difficulty of model training and 
will also have adverse effects on the accuracy of the model. 

The premise of cancer treatment is an accurate diagnosis. With the extensive development of 
machine learning and artificial intelligence, machine learning classification methods have occupied a 
certain position in the field of cancer diagnosis. In recent years, more and more researchers [4] use 
machine learning algorithms for cancer diagnosis. And for classification problems, feature reduction 
also plays a very important role, which is very effective in preventing overfitting, reducing 
computational complexity, and reducing model interpretability [5].  

Feature selection can be roughly divided into three categories: filtering, Wrapper and embedding, 
which aims to solve high-dimensional problems. The wrapper [6] method is to simplify the data 
through the feature selection algorithm, and then construct a feature subset to train the classification 
algorithm, and the feature selection fitness value is the performance of the classification algorithm. 
The filter [7] method first calculates the correlation between the features in the dataset and the target 
variable, and filters the data by comparing the magnitude of the correlation. The embedding [8] 
introduces a regularization term in the loss function of the classification method to constrain the model, 
and selects features according to the performance of the classification method. 

Researchers have proposed many feature selection methods based on gene expression data to 
achieve robust feature selection and accurate cancer diagnosis [9]. L. Sun et al. [10] proposed a 
neighborhood rough set-based feature selection method for cancer classification of gene expression 
data using an uncertainty measure based on neighborhood entropy. A. Kumar et al. [11] in their paper 
constructed an integrated active learning approach to achieve simplification of gene expression data 
using a fuzzy rough set approach. This method can improve the classification accuracy with limited 
samples in the training dataset. J. Lee et al. [12] proposed a new multivariate feature ranking method 
to improve the quality of gene selection and ultimately the accuracy of microarray data classification. 
They embedded the formal definition of relevance into the Markov blanket (MB) to create a new 
feature ranking method. X. Zheng and C. Zhang [13] proposed a model based on latent representation 
learning, which treats each gene as a feature and performs feature selection by computing the intra-
association between samples of gene expression data and the relationship between features, i.e., in the 
latent representation space, rather than by comparing the importance of features in the dataset. L. Li et 
al. [14] Proposed a stable machine learning recursive feature elimination (StabML-RFE) strategy. They 
employed eight different machine learning methods and sequentially removed the least important 
features with recursive feature elimination (RFE). Then, each feature is sorted, and the top ranked 
features are selected to form the best feature subset, and a stability measure is established to evaluate 
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the robustness of different feature selection techniques. The selected biomarkers are also verified by 
different methods. 

In recent years, swarm intelligence optimization algorithms have shown to be very powerful in 
feature selection because of their simplicity and global search capability. A. K. Shukla et al. [2] 
proposed a novel hybrid wrapper algorithm TLBO-GSA incorporating features of teaching-learning-
based optimization (TLBO) and Gravitational Search Algorithm (GSA). This method first selects 
relevant genes from the gene expression dataset using mRMR and then selects informative genes from 
approximate data generated by mRMR using the proposed method. H. Wang et al. [15] proposed a new 
multidimensional population-based bacterial colony optimization method, referred to as BCO-MDP, 
for feature selection for classification. C. Shen and K. Zhang [16] constructed a two-stage feature 
selection framework based on the gray wolf optimization algorithm. In the first stage, an integer 
optimization problem was constructed by first training the parameters of a multilayer perceptron based 
on the group lasso regularization term using a modified gray wolf optimization algorithm for the initial 
screening of features and determination of the number of hidden layer layers; in the second stage, the 
multilayer perceptron was run again using the results of the stage to construct a discrete optimization 
problem for feature selection. C. Qu et al. [17] implemented a Harris Hawk optimization algorithm 
based on variable neighborhood learning for feature selection of gene expression data. It is also a two-
stage framework that first performs one stage of feature selection using F-score to compress the feature 
space. Then the second phase of feature selection is performed using the Harris Hawk optimization 
algorithm based on variable neighborhood learning. A. Dabba et al. [18] used an improved Moth-flame 
optimization algorithm to combine the Moth-flame optimization algorithm with mutual information 
maximization to achieve feature selection of gene expression data. L. Sun et al. [19] constructed a 
feature selection algorithm combining an ant colony optimization algorithm with RelieF to achieve 
feature selection for tumor classification problems. Uzma et al. [20] constructed a two-stage gene 
selection method, aggregating three filtering methods in the first stage, and then using a genetic 
algorithm in the second stage in combination with an unsupervised autoencoder-based method to 
implement the gene selection problem for the subsequent classification task. 

From the above introduction, we can see that some intelligent algorithms have been used to 
build cancer diagnosis frameworks, but these frameworks have some defects worthy of improvement, 
such as falling into local optimization. Since the minimization of the selected genes is not considered, 
the maximum fitness evaluation value and parameters are required to be adjusted, so the 
classification results are not ideal. And due to the traditional fitness function to select genes, the 
performance of the classifier cannot be maximized with a small subset of features. In this study, a 
cancer classification framework based on a small number of possible genes was established in order 
to accurately classify the gene expression data of cancer. The proposed framework used a two-stage 
feature selection method for optimal gene selection and machine learning classification. The 
accuracy of the algorithm and the number of selected features are combined as a fitness evaluation 
to accurately determine whether it is cancer.  

The overall goal of this paper is to propose a feature selection framework for the feature selection 
problem of high-dimensional data. This framework can achieve high classification accuracy with fewer 
feature subsets. Specifically, this paper uses two-stage feature selection technology to achieve the 
classification of gene expression data. Since the dimension of the data is too large, the purpose of the 
first stage is to remove irrelevant and redundant features while retaining as many relevant features as 
possible. Because different feature selection algorithms have different advantages and disadvantages. 
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mRMR is a filtering feature selection algorithm. The filtering feature selection method measures the 
importance of features through relevant statistics, but because the process of feature selection is 
independent of the learner, the selected feature subset may not obtain good classification accuracy. RF 
feature selection is an embedded feature selection algorithm. In the embedded feature selection, the 
feature selection algorithm itself is embedded in the learning algorithm as a component, and some 
machine learning algorithms or models are used for training to obtain the weight coefficients of each 
feature (between 0 and 1). These weight coefficients often represent the contribution or importance of 
features to the model, but the adjustment of parameters has a great impact on the method. WGCNA is 
a system biology method, which is used to describe the correlation pattern between genes and can be 
used to find highly correlated gene sets. Therefore, in the first stage, we select the combination of these 
three methods to select the gene subset with rich information. The purpose of the second stage feature 
selection is to use as few features as possible to achieve higher classification accuracy, so this paper 
adopts the improved binary Salp Swarm Algorithm (SSA) [21] for feature selection in the second stage. 
Among the wrapper-based algorithms, the SSA has superior global search capability and faster 
convergence speed, and the main advantages of SSA are less computational effort and fewer control 
parameters compared to the existing optimization algorithms, namely, Particle Swarm Optimization 
(PSO) [22], Grey Wolf Optimizer (GWO) [23], Whale Optimization Algorithm (WOA) [24], and Sine 
Cosine Algorithm (SCA) [25]. 

The rest of this paper is organized as follows. The second section is the method, which introduces 
the feature selection algorithm and classification method used in this paper; the third section is the 
proposed method, which introduces the proposed improved SSA and binary feature selection; the 
fourth section is the empirical study, which introduces the details and parameter settings of the 
empirical part of this paper; the fifth section is the results and discussion, which analyzes the results 
of the experiments in this paper and compares them with advanced methods. The sixth section is the 
conclusion, a summary of the work of this paper, and future research directions. 

2. Methods 

2.1. Weighted gene co-expression network  

Weighted gene co-expression network analysis (WGCNA) [26,27] is a systems biology approach 
used to describe the association patterns of different genes, aiming to find co-expressed gene modules 
and to explore the association between gene networks and phenotypes of interest, as well as the core 
genes in the network. WGCNA uses the information of thousands or nearly 10,000 genes with the 
greatest variation or all genes to identify gene sets of interest, and perform significant association 
analysis with phenotypes. The first is to make full use of the information, and the second is to convert 
the association between thousands of genes and phenotypes into associations between several gene 
sets and phenotypes, eliminating the problem of multiple hypothesis testing and correction. 

From the methodological point of view, WGCNA is divided into two parts: expression clustering 
analysis and phenotype association, which mainly include several steps of correlation coefficient 
calculation between genes, co-expression network construction, gene module identification, and 
module-trait association. 

Step 1: Use Pearson’s correlation coefficient to calculate the correlation coefficient between any 
two genes and construct the co-expression similarity matrix 𝑆௜௝, 
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𝑆௜௝ = ห𝑐𝑜𝑟൫𝑥௜, 𝑥௝൯ห         (1) 

where 𝑥௜ and 𝑥௝ are the 𝑖-th and 𝑗-th genes. 
Step 2: Construct the adjacency matrix 𝑎௜௝, construct the scale-free network, and determine the 

power index 𝛽. Based on the adjacency matrix, construct the topological overlap matrix (TOM matrix), 
and the TOM matrix uses 𝑤௜௝ to represent the connectivity of the connected nodes 𝑎௜௝ = 𝑆௜௝ఉ          (2) 

𝑤௜௝ = ௟೔ೕା௔೔ೕ௠௜௡൛௞೔,௞ೕൟାଵି௔೔ೕ         (3) 

where 𝑙௜௝ = ∑ 𝑎௜௨௨ 𝑎௨௝ and 𝑘௜ = ∑ 𝑎௜௨௨ , 𝑢 is the total number of genes analyzed for co-expression. 
Step 3: The topological overlap is transformed into a dissimilarity matrix using 1 − 𝑤௜௝ . 

Hierarchical clustering trees are constructed, gene modules are generated using dynamic shearing, and 
genes with similar expression patterns are clustered within the same branch to determine gene modules.  

Step 4: Modules are associated with external phenotypic information of interest to find modules 
with high phenotypic correlation, and the genes within the modules are the selected genes. 

2.2. Random Forest 

Random Forest is an algorithm proposed by Leo Breiman (2001) where the model uses a 
collection of decision trees to perform various tasks (training, classification, and prediction of samples). 
The random forest can also filter features by evaluating the importance of each feature in the model, 
which is an embedded feature selection algorithm. 

1) 𝑘  variables are randomly selected from the collected data set for a total of 𝑚  variables 
(where 𝑘 is less than or equal to 𝑚 ), and then a decision tree is built based on these 𝑘 variables. 

2) Repeating the above process 𝑛 times to construct 𝑛 different decision trees. 
3) Then for each decision tree the outcome is predicted using random variables and all predicted 

outcomes are recorded, resulting in 𝑛 outcomes from 𝑛 decision trees. 
4) The number of votes obtained for each prediction result is calculated, i.e., the prediction result 

with the highest number of votes is taken as the final prediction result of the random forest algorithm. 
Random forest feature selection means that the feature variables in the random forest are sorted 

in descending order according to VI (Variable Importance), and then you find your own will to select 
the desired number of features. 

2.3. Max-Relevance and Min-Redundancy 

Maximum Correlation Minimum Redundancy (mRMR) is a filtered feature selection method 
proposed by H. Peng et al. [28], which can use mutual information, correlation or distance similarity 
scores to select features. The principle is very simple, which is to find the set of features in the original 
set of features that are most correlated with the final output target variable, but the features are least 
correlated with each other. 
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Max-Relevance: 𝑚𝑎𝑥 𝐷 (𝑆, 𝑐), 𝐷 = ଵ|ௌ| ∑ 𝐼(𝑥௜; 𝑐)௫೔∈ௌ        (4) 

Min-Redundancy: 𝑚𝑖𝑛 𝑅 (𝑆), 𝑅 = ଵ|ௌ|మ ∑ 𝐼൫𝑥௜; 𝑥௝൯௫೔,௫ೕ∈ௌ        (5) 

The mRMR score is: 𝑚𝑎𝑥 𝛷 (𝐷, 𝑅), 𝛷 = 𝐷 − 𝑅        (6) 

where 𝐼(𝑥௜; 𝑐) and 𝐼൫𝑥௜; 𝑥௝൯ are the mutual information between features and categories, features 

and features, respectively, and 𝑆 is the subset of features ሼ𝑥௜ሽ. 

2.4. Salp Swarm Algorithm 

The Salps population is divided into two groups: leaders and followers. The leader is the Salps at 
the front of the food chain, while the rest of the Salps are considered followers. As these names imply, 
the leader leads the population and the followers follow each other (direct or indirect leaders). 

Population initialization: 𝑋௝௜ = 𝑟𝑎𝑛𝑑(𝑁, 𝐷) × (𝑢𝑏(𝑗) − 𝑙𝑏(𝑗)) + 𝑙𝑏(𝑗)      (7) 

Initialize the location of the salps 𝑋௝௜(𝑖 = 1,2, ⋯ , 𝑁, 𝑗 = 1,2, ⋯ , 𝐷). 

The leader’s position update formula is: 

𝑥௝௜ = ቊ𝐹௝ + 𝑐ଵ((𝑢𝑏௝ − 𝑙𝑏௝))𝑐ଶ + 𝑙𝑏௝  𝑐ଷ ≥ 0.5𝐹௝ − 𝑐ଵ((𝑢𝑏௝ − 𝑙𝑏௝))𝑐ଶ + 𝑙𝑏௝  𝑐ଷ < 0.5      (8) 

Where 𝑥௝௜ is the leader position in the 𝑗-th dimension. Choose the first salp as the leader. Where 𝐹௝ 

is the position of the food source in the 𝑗-th dimension, 𝑢𝑏௝ is the upper bound of the 𝑗-th dimension, 𝑙𝑏௝ is the lower bound of the 𝑗-th dimension, and 𝑐ଵ, 𝑐ଶ, 𝑐ଷ are random numbers. 𝑐ଵ is the most important parameter in SSA because it balances exploration and exploitation, and 
is defined as follows. 

𝑐ଵ = 𝑧𝑒ି(ర೗ಽ )మ          (9) 

where 𝑙 is the current iteration and 𝐿 is the maximum number of iterations. 
The formula for updating the position of followers is: 

 𝑥௝௜ = ଵଶ (𝑥௝௜ + 𝑥௝௜ିଵ)        (10) 
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Where 𝑖 ≥ 2, 𝑥 denotes the position of the 𝑖-th follower in the 𝑗-th dimension. 

2.5. Classification methods 

LightGBM (Light Gradient Boosting Machine) is a framework for implementing the GBDT 
algorithm, which uses weak classifiers to iteratively train to obtain the optimal model, supports 
efficient parallel training, has faster training speed, better accuracy, and is less prone to overfitting. 
LightGBM is efficient and fast in processing large-scale data sets. 

SVM (Support Vector Machine) is a generalized linear classifier that minimizes the empirical 
error and maximizes the geometric edge area at the same time. SVM maps the vectors into a higher 
dimensional space with a maximum interval hyperplane and separates the hyperplanes to maximize 
the distance between the two parallel hyperplanes. SVM has many unique advantages in dealing with 
small sample, nonlinear and high-dimensional pattern recognition problems. 

XGBoost (eXtreme Gradient Boosting), also called extreme gradient boosting tree, is an 
implementation of the boosting algorithm that focuses on reducing bias, i.e., reducing the error of the 
model. Therefore, it uses multiple base learners, each of which is relatively simple, to avoid overfitting. 
XGBoost is suitable for structured data, and it is fast and effective in processing large-scale data sets. 

MLP (Multi-Layer perceptron) is the basic algorithm of Deep Neural Networks (DNN), which 
can have multiple hidden layers in the middle except for the input and output layers, and the simplest 
MLP contains only one hidden layer, i.e., a three-layer structure. MLP has good fault tolerance and 
strong self-adaptive and self-learning functions. 

KNN uses the training data to partition the feature vector space and uses the result of the partition 
as the final algorithmic model. For any 𝑛 dimensional input vector, corresponding to a point in the 
feature space, respectively, the output is the category label or a predicted value corresponding to that 
feature vector. The prediction of labels only depends on the labels of several samples closest to the 
unknown samples. KNN algorithm is suitable for classification of data sets with unbalanced samples. 

3. Proposed methods 

3.1. Improved Salp Swarm Algorithm 

Instead of random number generation by the original algorithm, chaotic mapping can generate 
chaotic numbers between 0 and 1. Chaotic sequences can often achieve better results than randomly 
generated random numbers during operations such as population initialization, selection, crossover, 
and mutation. In this paper, the PWLCM chaotic mapping is used to initialize the position of the Salps 
population. The formula is: 𝑋௝௜ = 𝑙𝑏௜ + (𝑢𝑏௜ − 𝑙𝑏௜)𝑦௝௜        (11) 

𝑋(𝑡 + 1) = 𝐹௣(𝑋(𝑡)) = ൞𝑋(𝑡)/𝑝 ,   0 < 𝑋(𝑡) < 𝑝(𝑋(𝑡) − 𝑝)/(0.5 − 𝑝) ,   𝑝 < 𝑋(𝑡) < 0.5(1 − 𝑋(𝑡) − 𝑝)/(0.5 − 𝑝) ,   0.5 < 𝑋(𝑡) < 1 − 𝑝(1 − 𝑋(𝑡))/𝑝,   1 − 𝑝 < 𝑋(𝑡) < 1 − 𝑝   (12) 

Where 𝑝 ∈ (0, 0.5). 
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The leader’s position update formula is: 

𝑥௝௜ = ቊ𝐹௝ + 𝑐ଵ((𝑢𝑏௝ − 𝑙𝑏௝))𝑐ଶ + 𝑙𝑏௝ 𝑐ଷ ≥ 0.5𝐹௝ − 𝑐ଵ((𝑢𝑏௝ − 𝑙𝑏௝))𝑐ଶ + 𝑙𝑏௝ 𝑐ଷ < 0.5      (13) 

In the original method, the first Salps is selected as the leader, but only the first one is easy to 
fall into the local optimum, so this paper selects the first third of Salps as the leader. 

The follower’s position update formula is based on Newton’s laws of motion: 𝑉௧ = 𝑉଴ + 𝑎𝑡         (14) 𝑥 = 𝑉଴𝑡 + ଵଶ 𝑎𝑡ଶ         (15) 

𝑎 = ௏೑೔೙ೌ೗ି௏బ௧           (16) 

𝑉௙௜௡௔௟ = ௫ೕ೔షభି௫ೕ೔௧          (17) 

which also gets 𝑥௝௜ = ଵଶ (𝑥௝௜ − 𝑥௝௜ିଵ)        (18) 

This paper updates the formula with Eq (18) as a follower. The specific steps are shown in 
Algorithm 1. 

Algorithm 1: Improved Salp Swarm Algorithm 
 Inputs: training set, test set, population size, the maximum number of iterations 
 Initialization: 
01: The PWLCM chaotic mapping according to Eqs (11) and (12) initializes the position matrix A 

of the Salps  
 Optimization Process: 
02: When iter < Tmax_iter  
03 The value of the Salps fitness function is calculated according to Eq (19) 
04: Ranking of fitness function values 
05: If the optimal fitness value < the location of the food 
06: Assign the position of the optimal fitness function value to the food position 
07: Generate 𝑐ଵ according to Eq (9), randomly generate 𝑐ଶ, 𝑐ଷ 
08: The first one-third of the Salps updates the leaders’ position according to Eq (13) 
09: The back of the Salps updates the followers’ position according to Eq (18) 
10: Iter = iter + 1 
 Output: Optimal Salps position 

3.2. Binary feature selection 

The basic principle of feature selection in the SSA is to use an improved binary SSA to find an 
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optimal binary encode, each bit in the encode corresponds to a feature, if the 𝑖-th position is “1”, the 

corresponding feature is selected and the feature will appear in the classifier if it is “0”, it means that 
the corresponding feature is not selected and the feature will not appear in the classifier. The basic 
steps are: 

Step 1: Encoding. Using the binary encoding method, the value of each position of the binary 
code, “0” means the feature is not selected and “1” means the feature is selected.  

Step 2: Initial population generation. 𝑁  initial matrices are randomly generated to form the 
initial population, and the number of populations is generally set to 50 to 100. 

Step 3: The fitness function. The fitness function indicates the superiority or inferiority of an 
individual or solution. 

Step 4: The update strategy of the population is determined by the fitness function value, and the 
next iteration is performed to continue the search for the optimal fitness function value.  

Step 5: If the set number of iterations is reached, the best subset of genes is returned and used as 
the basis for feature selection, and the algorithm ends. Otherwise, go back to Step 4 to continue the 
next generation of iterations. The specific steps are shown in Figure 1. 

C’

Initialize salp population A, initialize binary 
coding matrix C and generate random number 

b between 0 and 1

Judge the relationship between A[I,j] and B. If A[i,j] is 
greater than B, the corresponding position in matrix C 
becomes 1; otherwise, the corresponding position of 

matrix C becomes 0

0 1 0 1 …… 00 1
1 1 0 1 …… 00 1
0 1 0 1 …… 00 1

0 1 1 0 …… 11 1

…
…

1 0 0 1 …… 11 0
0 1 0 1 …… 00 0
1 0 0 1 …… 01 1

0 0 1 0 …… 11 1

…
…

C

0.31 0.56 0.21 0.67 …… 0.340.35 0.89

0.74 0.84 0.69 0.38 …… 0.280.42 0.60

0.37 0.54 0.29 0.71 …… 0.440.49 0.51

0.42 0.52 0.78 0.39 …… 0.630.82 0.72

…
…

A

D

Generate random number e between 0 
and 1 and update binary matrix D

t<Tmax

The fitness value F is calculated with the selected features 
in matrix D, and the fitness values are sorted. If the fitness 

value is less than the food, the location of the food is 
updated

Update the position of leaders and 
followers according to the formula

t=t+1

Output the selected features

Yes

N0

 

Figure 1. ISSA feature selection. 
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3.3. Function of fitness 

For the intelligent algorithm feature selection problem, the construction of the fitness function is 
very important and mainly considers two aspects: first, the number of genes, i.e., the proportion of 
selected features to the total number of features. The fewer the selected features, the smaller the fitness 
value; and the second is the classification accuracy. So the fitness function is shown in Eq (19), which 
is mainly based on the classification ability and the number of features of the machine learning method. 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝜔 ∗ (1 − 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦) + (1 − 𝜔)(ிே)      (19) 

Where 𝜔 is a constant between 0 ∼ 1, 𝐹 is the number of features selected in each iteration, 𝑁 is 
the total number of features, and 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 is the accuracy of the classification algorithm. 

4. Empirical research 

This section presents a two-stage feature selection framework to achieve more accurate cancer 
classification, and compares it with some feature selection algorithms based on intelligent 
optimization algorithms, which have been advanced in recent years. The overall framework of this 
paper is shown in Figure 2, which can be simply summarized as the following four steps: 

Step 1: Preprocessing of gene expression datasets 
In this paper, the 10 public datasets are pre-processed by first removing outlier points and 

duplicate values and then normalizing the datasets. 
Step 2: First stage feature selection 
In order to effectively filter out highly redundant and irrelevant genes, this paper adopts a more 

effective combination - the combination of three feature selection algorithms to identify key genes, 
including filtering and embedding, and the method to identify whether there is a common expression 
pattern between samples, which are mRMR, RF importance feature selection and WGCNA. The first 𝑁  features of the three feature selection algorithms are merged to eliminate redundant and 
unimportant genes. 

Step 3: Second stage feature selection 
In this paper, an improved SSA is used to further compress the feature subsets. Firstly, the gene 

subset obtained in Step 2 was binary coded, and then the accuracy of the classification algorithm and 
the number of selected features were combined as the fitness function to enter the iteration and search 
for the optimal subset. 

Step 4: Classifier 
In this paper, six base classifiers, namely LightGBM, RF, SVM, XGBoost, MLP, and KNN, are 

used to classify by the feature subset selected in Step 3. 
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Step3:Second stage feature selection

Take the union of TopN1、TopN2and TopN3 

The features are converted into binary input to the improved SSA

Output the feature selection result

Step4:Basic classifier classification

LightGBM RF SVM Xgboost MLP KNN

Output classification results

step1: Preprocessing of gene expression datasets

Gene expressiondatasets

Eliminate repeated features and outliers

Step2:First stage feature selection

MRMR feature selection

TopN1

WGCNA feature selection RF feature selection

TopN2 TopN3

 

Figure 2. Overall flowchart of two-stage feature selection for cancer classification. 

4.1. Datasets 

To verify the effectiveness and extensiveness of the proposed framework, 10 cancer gene 
expression datasets [29] are used in this paper, among which 5 datasets are binary classification data 
and 5 datasets are multi-label classification data, as shown in Table 1, which shows some basic 
information of the datasets, including the number of genes, the number of samples and the number of 
categories. In the subsequent experiments, 80% of the samples in each dataset are selected for training 
in this paper, and the remaining samples are used as the test set. 
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Table 1. Datasets. 

Dataset Instances Genes Classes 

Breast 97 24,481 2 
CNS 60 7129 2 
Colon 60 2000 2 
Leukemia_3c 72 7129 3 
Leukemia_4c 72 7129 4 
Leukemia 72 7129 2 
Lung 181 12,600 5 
MLL 72 12,582 3 
Ovarian 253 15,154 2 
SRBCT 83 2308 4 

4.2. Data preprocessing 

In order to overcome the influence of dimension on the results and ensure the effectiveness of the 
analysis results, the data is preprocessed. First, by calculating the mean and variance of each feature, 
the genes that are all 0 are eliminated; Then detect outliers through sample clustering. As shown in 
Figure 3, take the red line as the dividing line, and the samples above the red line as outliers, and 
eliminate these samples; Finally, the max-min normalization processing is carried out on the data. 

 

Figure 3. Sample Clustering tree of Breast dataset. 
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4.3. Experimental setup 

Considering the efficiency and computational complexity, the population number of the 
proposed ISSA method is set to 100, the number of iterations is 200, and the weight in the fitness 
function is 0.99. To avoid unfair comparisons, the population size settings and iterations of other 
algorithms are kept consistent with the ISSA algorithm. The parameter settings used in this algorithm 
are shown in Table 2. 

Table 2. Parameter setting. 

S.No Parameters Value 
1 Population Size 100 
2 Number of generations 200 
3 w in the fitness function 0.99 
4 c1 and c2 (0, 1) 
5 c3 (0, 2] 
6 Inertia weight in PSO 0.6 
7 The SCA of a 2 

4.4. Comparison algorithm 

The performance of the proposed algorithm is tested on 10 gene expression datasets to evaluate 
the effectiveness of the proposed algorithm. In the part of feature selection, it is compared with PSO, 
GWO, SCA, WOA and SSA, and six classification algorithms are used. In order to further evaluate 
the performance of the proposed method, it is also compared with the advanced methods in the 
literature, as shown in Table 3. 

Table 3. Comparison method. 

Key Method name Reference
TLBOGSA Teaching learning-based algorithm and gravitational search algorithm  [2] 
IGWO-MLP A two-stage improved gray wolf optimization and multilayer perceptron [16] 
RFACO ReliefF and Ant Colony Optimization Algorithm [19] 
EAK Ensemble of three filter methods and Autoencoder-based k-means clustering [20] 
FADNE Neighborhood entropy-based uncertainty measures  [10] 
ATLBO Adaptive inertia weight teaching-learning-based optimization algorithm  [30] 
MOGT Via multi-objective graph theoretic-based method [31] 
AC-MOFOA Adaptive chaotic multi-objective forest optimization algorithm [32] 
GWO-TRIZ Gray Wolf Optimizer enhanced with TRIZ-inspired operators [33] 
IG-MBKH Information gain (IG) and an improved binary krill herd  [34] 

4.5. Evaluation indicators 

In this paper, accuracy, precision, recall, and F1-score are used as the evaluation metrics of the 
classifier. The formula is as follows: 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ்௉ା்ே்௉ା்ேାி௉ାிே        (20) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = ்௉்௉ାி௉         (21) 

𝑟𝑒𝑐𝑎𝑙𝑙 = ்௉்௉ାிே          (22) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = ଶ்௉ଶ்௉ାி௉ାிே         (23) 

where 𝑇𝑃, 𝑇𝑁, 𝐹𝑃, 𝐹𝑁 are true positive, true negative, false positive, and false negative, respectively. 

5. Results and discussion 

5.1. The first stage feature selection 

WGCNA obtained the dissimilarity matrix by TOM matrix and then obtained the final gene 
module based on hierarchical clustering with the dynamic cut method. Figure 4 shows the 
correlation between different modules and categories of gene expression datasets obtained in the 
WGCNA method. Only the Breast and CNS datasets are listed in this paper, and the results of the 
rest of the datasets are in the appendix. For each dataset, the modules with a high correlation with 
the category and small p-value are selected in this paper, and the genes inside these modules are 
analyzed for gene enrichment to extract the most important key genes for further feature selection. 
The upper values in each module are correlations, the values in parentheses represent p-values, the 
red modules indicate positive correlations and the blue modules indicate negative correlations. In 
general, genes within modules of the same color have a high degree of similarity, while genes in 
gray modules indicate genes that cannot be assigned to any module. The paper selects genes with 
greater relevance within the modules by performing gene enrichment analysis on the genes within 
each module, and finally, the Breast dataset selected 6 modules among all modules, and those 
modules were removed due to the weak relevance of other modules to the category, and a total of 76 
genes were selected in all columns of the 6 modules; similarly, the CNS dataset selected 6 modules 
out of all modules and extracted a total of 87 features; the Colon dataset selected 2 modules out of 
all modules and extracted 96 features; the Leukemia_3c dataset selected 5 modules and extracted 86 
features; the Leukemia_4c dataset selected 4 modules and extracted 119 features; the Leukemia 
dataset selected 5 modules and extracted 91 features; the Lung dataset selected 4 modules and 
extracted 137 features; the MLL dataset selected 6 modules and extracted 289 features; the Ovarian 
dataset selected 3 modules and extracted 89 features; and the SRBCT dataset selected 2 modules 
and extracted 28 features. 
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Figure 4. Correlation of modules with categories in Breast and CNS datasets WGCNA. 

In the feature selection based on the random forest method, there is a certain randomness in the 
importance ranking of the features obtained from the random forest. Therefore, in this paper, we first 
run the random forest 10 times repeatedly and use the Gini index of the model with the best accuracy 
as the criterion for importance ranking. Then repeat the ten-fold cross-validation five times and draw 
the error rate curve, and take the number of features corresponding to the position with a lower error 
rate as the number of features to be extracted; then extract the corresponding number of features 
according to the feature importance ranking result. As shown in Figure 5, only CNS and Leukemia_3c 
datasets are listed, the rest are in the appendix, and the red line is the corresponding characteristic 
number when the lowest point occurs for the first time. As can be seen from Figure 5, Breast selected 
the top 170 features in terms of feature importance; CNS selected 55 features; Colon selected 30 
features; Leukemia_3c, Leukemia_4c, and Leukemia selected 70, 170, and 140 features, respectively; 
Lung, MLL, Ovarian, and SRBCT 80, 150, 180 and 60 features were selected for Lung, MLL, Ovarian, 
and SRBCT, respectively. 
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Figure 5. Error rate curve of RF. 

In mRMR score-based feature selection, the maximum correlation between features is calculated 
first, then the minimum redundancy between features is calculated, and the mRMR score of each 
feature can be obtained by the maximum correlation minus the minimum redundancy, and finally, the 
mRMR score is ranked, and the corresponding number of features can be selected according to the 
ranking result. In this paper, when the number of features is less than 5000, 50 features are selected; 
when the number of features is less than 10,000, 80 features are selected; when the number of features 
is more than 10,000, 100 features are selected, and this is the criterion for the number of features 
selected by mRMR. In Table 4, this paper summarizes the number of features selected by the three 
feature selection methods and the final number of features after taking the concatenation of the three 
methods, which are the initial number of features for the next step of feature selection. Tables 5 and 6 
are the classification results of all features with all features and separate feature selection methods.This 
paper lists two classification methods, LightGBM and XGBoost, and the results of the other four 
methods are in the appendix. 

Table 4. Number of features selected by each feature selection method. 

Dataset all WGCNA RF mRMR Union 
Breast 24,481 76 170 100 325 
CNS 7129 87 55 80 216 
Colon 2000 96 30 50 148 
Leukemia_3c 7129 86 70 80 182 
Leukemia_4c 7129 119 170 80 336 
Leukemia 7129 91 140 80 241 
Lung 12,600 137 80 100 283 
MLL 12,582 289 170 100 489 
Ovarian 15,154 89 170 100 300 
SRBCT 2308 28 60 50 104 
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Table 5. Classification accuracy of LightGBM method. 

Dataset All WGCNA RF mRMR Union 
Breast 0.58 0.63 0.84 0.84 0.79 
CNS 0.58 0.42 0.92 0.67 0.58 
Colon 0.77 0.62 0.92 0.92 0.77 
Leukemia_3c 0.80 0.80 0.93 0.87 0.93 
Leukemia_4c 0.8 0.73 0.87 0.93 0.87 
Leukemia 0.8 0.87 0.87 0.93 0.93 
Lung 0.83 0.90 0.93 0.93 0.98 
MLL 0.79 0.93 0.86 0.93 0.86 
Ovarian 0.98 0.76 0.96 0.98 0.96 
SRBCT 0.94 0.94 0.94 0.94 0.94 

Table 6. Classification accuracy of XGBoost method. 

Dataset All WGCNA  RF  mRMR  Union 
Breast 0.63 0.69 0.84 0.68 0.74 
CNS 0.58 0.50  0.83 0.75 0.58 
Colon 0.85 0.85 0.92 0.85 0.62 
Leukemia_3c 0.87 0.73 0.93 0.87 0.87 
Leukemia_4c 0.73 0.73 0.87 0.93 0.87 
Leukemia 0.8 0.8 0.80  0.93 0.93 
Lung 0.85 0.95 0.95 0.90  0.98 
MLL 0.71 0.86 0.93 0.86 0.86 
Ovarian 0.9 0.73 0.92 0.98 0.96 
SRBCT 0.88 0.81 0.88 0.88 0.94 

5.2. The second stage feature selection 

To reduce the number of selected genes, achieve further improvement in classification 
accuracy and a further reduction in computational effort, this paper performs the next step of feature 
selection based on an improved binary SSA, where the input dimension of the method is the 
concatenation of the final number of features selected by the three feature selection algorithms in 
the previous section. The features are first binary coded, with 0 indicating that this feature is not 
selected and 1 indicating that this feature is selected. Since the features selected by the intelligent 
algorithm will vary from one classifier to another, to verify the effectiveness of the method proposed 
in this paper, each classifier is repeatedly run 10 times, and each evaluation index at the end is the 
average of the 10 times. As shown in Table 7, six classification methods, namely LightGBM, RF, 
SVM, XGBoost, MLP, and KNN, are used in this paper to classify the features selected by ISSA, 
and the classification results are evaluated using four evaluation metrics. Compared with Tables 5 
and 6, the method proposed in this paper achieves high classification accuracy with fewer features 
on 10 public datasets, and achieves good performance on datasets with far fewer samples than the 
number of features. 
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Table 7. Classification results after ISSA. 

Dataset Performance LightGBM RF SVM XGBoost MLP KNN 
Breast Acc 0.990  0.938 0.897 0.975  0.980 1.000 
 precision 0.990  0.943 0.910 0.975  0.980 1.000 
 recall 0.990  0.938 0.897 0.975  0.980 1.000 
 f1-score 0.990  0.940 0.895 0.975  0.980 1.000 
CNS Acc 0.992  0.936 0.944 0.992  0.992 0.985 
 precision 0.993  0.942 0.949 0.993  0.992 0.986 
 recall 0.992  0.936 0.944 0.992  0.992 0.985 
 f1-score 0.992  0.928 0.937 0.991  0.990 0.985 
Colon Acc 0.976  0.952 0.968 0.920  0.968 0.968 
 precision 0.980  0.961 0.973 0.994  0.974 0.972 
 recall 0.976  0.952 0.968 0.992  0.968 0.968 
 f1-score 0.977  0.954 0.968 0.993  0.969 0.968 
Leukemia_3c Acc 1.000  0.993 1.000 0.965  0.986 1.000 
 precision 1.000  0.995 1.000 0.979  0.988 1.000 
 recall 1.000  0.993 1.000 0.965  0.986 1.000 
 f1-score 1.000  0.993 1.000 0.969  0.986 1.000 
Leukemia_4c Acc 1.000  0.967 0.972 0.993  0.958 0.979 
 precision 1.000  0.962 0.978 0.994  0.969 0.970 
 recall 1.000  0.967 0.972 0.993  0.958 0.979 
 f1-score 1.000  0.961 0.971 0.993  0.958 0.973 
Leukemia Acc 1.000  0.993 1.000 1.000  1.000 1.000 
 precision 1.000  0.994 1.000 1.000  1.000 1.000 
 recall 1.000  0.993 1.000 1.000  1.000 1.000 
 f1-score 1.000  0.993 1.000 1.000  1.000 1.000 
Lung Acc 0.992  0.959 0.982 0.994  0.981 0.986 
 precision 0.992  0.962 0.983 0.995  0.983 0.987 
 recall 0.992  0.960 0.981 0.994  0.981 0.986 
 f1-score 0.990  0.955 0.976 0.993  0.979 0.985 
MLL Acc 1.000  1.000 1.000 1.000  1.000 1.000 
 precision 1.000  1.000 1.000 1.000  1.000 1.000 
 recall 1.000  1.000 1.000 1.000  1.000 1.000 
 f1-score 1.000  1.000 1.000 1.000  1.000 1.000 
Ovarian Acc 1.000  1.000 0.998 1.000  1.000 0.990 
 precision 1.000  1.000 0.998 1.000  1.000 0.990 
 recall 1.000  1.000 0.998 1.000  1.000 0.990 
 f1-score 1.000  1.000 0.998 1.000  1.000 0.990 
SRBCT Acc 1.000  1.000 1.000 1.000  1.000 1.000 
 precision 1.000  1.000 1.000 1.000  1.000 1.000 
 recall 1.000  1.000 1.000 1.000  1.000 1.000 
 f1-score 1.000  1.000 1.000 1.000  1.000 1.000 
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In order to verify the validity of the features we selected, we selected features that appeared more 
than five times in ten results, divided the samples in these features into the Colon Cancer patient group 
and the normal group, compared their differences, and performed Mann-Whitney test. The results are 
shown in Figure 6, in which only 10 features are listed, which “*”: p < 0.05; “**”: p < 0.01; “***”: p 
< 0.001; “****”: p < 0.0001. 

 

Figure 6. Gene expression profiles of a subset of selected features of colon cancer. 

5.3. Comparative analysis 

In recent years, using the wrapper method to improve the quality of feature subsets has become a 
research hotspot. In this paper, on 10 gene expression public data sets, the method proposed in this 
paper is compared with the current advanced methods, namely PSO, GWO, WOA, SCA and the 
original SSA. As shown in Tables 8 and 9, Table 8 is the classification result after constructing the 
fitness function feature selection based on the accuracy of LightGBM, and shows the mean and 
variance of the results of ten runs. It can be seen that better or similar results have been achieved on 
ISSA. Similar results. Similarly, Table 9 is the MLP (the results of the other four methods are in the 
appendix). To be fair, experiments are performed based on WGCNA, mRMR and RF feature selection. 

Table 8. Classification results of different intelligent algorithms on LightGBM. 

Dataset Performance PSO GWO WOA SCA SSA ISSA 
Breast Mean 0.936 0.93 0.947 0.984 0.958 0.99 
 Var ± 0.0049 ± 0.0046 ± 0.0020 ± 0.0031 ± 0.0031 ± 0.0004
CNS Mean 0.926 0.968 0.934 0.984 0.975 0.992 
 Var ± 0.0039 ± 0.0017 ± 0.0044 ± 0.0011 ± 0.0032 ± 0.0006
Colon Mean 0.939 0.915 0.953 0.946 0.954 0.976 
 Var ± 0.0048 ± 0.0030 ± 0.0029 ± 0.0039 ± 0.0041 ± 0.0015
Leukemia_3c Mean 1 1 0.993 1 0.986 1 
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Dataset Performance PSO GWO WOA SCA SSA ISSA 
Leukemia_3c Var 0 0 ± 0.0005 0 ± 0.0009 0 
Leukemia_4c Mean 0.993 1 0.98 0.986 0.993 1 
 Var ± 0.0005 0 ± 0.0020 ± 0.0009 ± 0.0005 0 
Leukemia Mean 1 1 1 0.9993 1 1 
 Var 0 0 0 ± 0.0005 0 0 
Lung Mean 0.992 0.967 0.983 0.988 0.976 0.992 
 Var ± 0.0001 ± 0.0009 ± 0.0002 ± 0.0004 ± 0.0004 ± 0.0001
MLL Mean 1 0.972 1 1 0.986 1 
 Var 0 ± 0.0013 0 0 ± 0.0009 0 
Ovarian Mean 1 0.974 1 0.998 1 1 
 Var 0 ± 0.0010 0 ± 0.00004 0 0 
SRBCT Mean 1 0.964 1 1 1 1 
 Var 0 ± 0.0018 0 0 0 0 

Table 9. Classification results of different intelligent algorithms on MLP. 

Dataset Performance PSO GWO WOA SCA SSA ISSA 
Breast Mean 0.92 0.92 0.957 0.903 0.925 0.98 
 Var ± 0.0076 ± 0.0059 ± 0.0025 ± 0.0055 ± 0.0040 ± 0.0007
CNS Mean 0.901 0.934 0.917 0.935 0.959 0.992 
 Var ± 0.0060 ± 0.0044 ± 0.0109 ± 0.0058 ± 0.0035 ± 0.0006
Colon Mean 0.916 0.961 0.937 0.922 0.906 0.968 
 Var ± 0.0030 ± 0.0029 ± 0.0050 ± 0.0052 ± 0.0009 ± 0.0017
Leukemia_3c Mean 0.979 0.979 0.986 0.993 0.986 0.986 
 Var ± 0.0011 ± 0.0011 ± 0.0009 ± 0.0005 ± 0.0009 ± 0.0009
Leukemia_4c Mean 0.952 0.926 0.935 0.953 0.934 0.958 
 Var ± 0.0041 ± 0.0023 ± 0.0058 ± 0.0029 ± 0.0058 ± 0.0013
Leukemia Mean 1 0.993 1 1 0.986 1 
 Var 0 0.0005 0 0 ± 0.0009 0 
Lung Mean 0.961 0.953 0.97 0.975 0.973 0.981 
 Var ± 0.0007 ± 0.0010 ± 0.0011 ± 0.0008 ± 0.0005 ± 0.0005
MLL Mean 1 0.951 1 1 1 1 
 Var 0 ± 0.0005 0 0 0 0 
Ovarian Mean 0.996 0.994 0.99 0.998 0.992 1 
 Var ± 0.00007 ± 0.0002 ± 0.0004 ± 0.00005 ± 0.0002 0 
SRBCT Mean 0.994 1 1 1 1 1 
 Var ± 0.0004 0 0 0 0 0 

Figure 7 is the grouping box graph of Lung data set (the graphs of the other nine data sets are in 
the appendix). The abscissa is six classification methods, each classification method is a group, and 
each group is the box graph of the results of ten runs of six intelligent optimization algorithms. From 
the graph, it can be seen that the median and quartiles of ISSA are above other methods. 
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Figure 7. Boxplot comparison of different classification methods and different intelligent 
optimization algorithms for Lung dataset. 

Figure 8 shows the number of features selected by the six intelligent optimization algorithms used 
in this paper for comparison on 10 datasets. This article uses six classification methods, each of which 
is run ten times, so the number of features in the figure is the average of 60 results. As can be seen 
from the figure, the number of features selected by ISSA is the least. 

 

Figure 8. The average number of features selected by different intelligent optimization 
algorithms on ten datasets. 

Table 10 shows the comparison between the framework proposed in this paper and the advanced 
research in recent years. The last line in the table is the work done in this paper, and the one with the 
highest accuracy among the six methods is selected. The top 10 rows are the performance of other 
papers on the dataset, and the first column is the abbreviation of the methods proposed by other papers. 
For specific methods, please refer to Table 3. “-” indicates that the paper did not use this dataset. In 
the 10 datasets, this paper has achieved equal or better accuracy, and the classification accuracy has 
reached more than 97.6% in all datasets, so the framework proposed in this paper has very important 
research significance. 
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Table 10. Comparison with other papers. 

Methods Breast CNS Colon Leukemia_3c Leukemia_4c Leukemia Lung MLL Ovarian SRBCT

TLBOGSA - - 94.78 - - - 90.72 - - 98.57 

IGWO-MLP - - - - - - 95.64 - - 99.14 

RFACO - - 94 - - 95.8 99.5 - - - 

EAK - 84.62 84.62 - - - 99.46 - - - 

FADNE -  83.8 - - 92.9 98.8 - - 93.6 

ATLBO 92.53  91.57 - - 92.71 90.78 - - 96.04 

MOGT -  88.73 - - 90.18 91.76 - - 82.82 

AC-MOFOA 86.53  97.66 - - 93.97 - - 90.72 

GWO-TRIZ - 97.38 94.13 99.86 98.84 100 97.52 99.9 100 100 

IG-MBKH - 90.34 96.47 99.44 - 100 96.12 99.72 100 100 

Proposed 100 99.2 97.6 100 100 100 99.4 100 100 100 

6. Conclusions 

The internal relationship of cancer gene expression data sets makes cancer diagnosis full of 
challenges, so feature selection technology plays an important role in reducing the dimension of data 
and deleting irrelevant and redundant features. And because different feature selection algorithms have 
different advantages and disadvantages, combining different types of feature selection algorithms is a 
promising technique for solving feature selection problems. The two-stage framework for gene 
selection proposed in this paper combines embedding, filtering and wrapper to identify the optimal 
feature subset. This algorithm can significantly reduce the size of features while maintaining high-
performance indicators. ISSA considers three factors: one is to use PWLCM chaotic mapping to 
increase the diversity of the initial population; second, it changes the number of leaders’ choices to 
avoid falling into local optimization; the third is to improve the follower’s update formula, which can 
search the optimal location faster, that is, to find the optimal subset. In the experiment, 10 high-
dimensional benchmark datasets were used to test the performance of the method. These benchmark 
datasets are different in the number of genes, samples and categories, which is good enough to evaluate 
the generalization ability of the method.  

At present, feature selection is a hot issue. New algorithms and new theories are all trying to solve 
the problem of feature selection. Feature selection by swarm intelligence optimization algorithm can 
help machine learning technology use the most important features, which improves the performance 
of learning algorithm, that is, learning speed or classification accuracy. The swarm intelligence 
algorithm has become more and more perfect in theory and has been proved to be a good method for 
solving practical optimization problems. The randomness of the algorithm can promote the diversity 
of solutions, avoid falling into local optimal solutions, and make it converge to a global optimal 
solution more quickly. However, since the algorithm is a random search algorithm, the solution of the 
problem and the analysis of the performance of the algorithm can only be proved by numerical 
experiment analysis, and the theoretical derivation is still insufficient. Therefore, swarm intelligence 
algorithm is an important direction of computer research and development, and will have a broad 
prospect in most science and engineering. In our further work, it is mixed with other intelligent 
algorithms to enhance its search ability, and other advanced machine learning algorithms are used in 
the classification part. 
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Appendix 

Figures A1 and A2 show WGCNA results. Figure A3 shows the random forest results of the other 
eight datasets. Tables A1−A4 show the classification results of WGCNA, RF and mRMR feature 
selection. Tables A5−A8 show the accuracy of different intelligent algorithms in four other 
classification methods. Figures A4−A11 show the box diagram comparison of different classification 
methods and different intelligent optimization algorithms for the other eight data sets. 
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Figure A1. Correlation of modules with categories in Colon, Leukemia_3c, Leukemia_4c, 
and Leukemia datasets WGCNA. 
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Figure A2. Correlation of modules with categories in Lung, MLL, Ovarian and SRBCT 
datasets WGCNA. 
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Figure A3. Error rate and number of features of random forest method for ten-fold cross-validation. 
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Table A1. Classification accuracy of RF method. 

Dataset All WGCNA  RF  mRMR  Union 
Breast 0.63 0.64 0.53 0.79 0.89 
CNS 0.58 0.58 0.92 0.75 0.83 
Colon 0.85 0.85 0.77 0.85 0.77 
Leukemia_3c 0.8 0.67 0.93 0.93 0.87 
Leukemia_4c 0.67 0.67 0.8 0.87 0.80  
Leukemia 0.87 0.93 0.87 0.93 0.93 
Lung 0.85 0.95 0.90  0.95 0.93 
MLL 0.93 0.86 0.93 0.93 0.93 
Ovarian 0.96 0.73 0.96 0.96 0.98 
SRBCT 0.94 0.94 0.94 1.00  1.00  

Table A2. Classification accuracy of SVM method. 

Dataset All WGCNA  RF  mRMR  Union 
Breast 0.47 0.69 0.84 0.58 0.53 
CNS 0.58 0.58 0.75 0.58 0.67 
Colon 0.92 0.77 0.92 0.85 0.77 
Leukemia_3c 0.73 0.73 0.93 0.87 0.93 
Leukemia_4c 0.53 0.73 0.73 0.93 0.93 
Leukemia 0.73 0.93 0.87 0.93 0.93 
Lung 0.83 0.83 0.88 0.93 0.88 
MLL 0.79 0.86 0.93 0.93 0.93 
Ovarian 0.98 0.78 1.00  0.98 0.98 
SRBCT 0.94 0.88 0.94 0.94 1.00  

Table A3. Classification accuracy of MLP method. 

Dataset All WGCNA  RF  mRMR  Union 
Breast 0.58 0.64 0.84 0.79 0.84 
CNS 0.58 0.58 0.67 0.75 0.58 
Colon 0.92 0.92 0.85 0.92 0.77 
Leukemia_3c 0.8 0.87 0.93 0.80  0.93 
Leukemia_4c 0.67 0.73 0.67 0.93 0.93 
Leukemia 0.8 0.8 0.80  0.93 0.87 
Lung 0.90  0.80  0.85 0.93 0.88 
MLL 0.79 0.93 0.93 0.71 0.93 
Ovarian 0.88 0.73 1.00  0.98 0.98 
SRBCT 0.94 0.88 0.94 1.00  1.00  
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Table A4. Classification accuracy of KNN method. 

Dataset All WGCNA  RF  mRMR  Union 
Breast 0.58 0.63 0.84 0.84 0.79 
CNS 0.58 0.42 0.92 0.67 0.58 
Colon 0.77 0.62 0.92 0.92 0.77 
Leukemia_3c 0.80  0.80  0.93 0.87 0.93 
Leukemia_4c 0.8 0.73 0.87 0.47 0.93 
Leukemia 0.58 0.87 0.87 0.93 0.93 
Lung 0.83 0.90  0.93 0.93 0.98 
MLL 0.79 0.93 0.86 0.93 0.86 
Ovarian 0.98 0.67 0.62 0.96 0.96 
SRBCT 0.94 0.94 0.94 0.94 0.94 

Table A5. Classification results of different intelligent algorithms on RF. 

Dataset Performance PSO GWO WOA SCA SSA ISSA 
Breast Mean 0.842 0.847 0.862 0.809 0.852 0.938 
 Var ± 0.0044 ± 0.0062 ± 0.0044 ± 0.0081 ± 0.060 ± 0.0007
CNS Mean 0.774 0.841 0.9 0.809 0.86 0.936 
 Var ± 0.0188 ± 0.0040 ± 0.0106 ± 0.0049 ± 0.0110 ± 0.0011
Colon Mean 0.894 0.884 0.914 0.915 0.862 0.952 
 Var ± 0.0039 ± 0.0054 ± 0.0018 ± 0.0030 ± 0.0090 ± 0.0017
Leukemia_3c Mean 0.966 0.987 0.979 0.993 0.953 0.993 
 Var ± 0.0022 ± 0.0017 ± 0.0011 ± 0.0005 ± 0.0038 ± 0.0005
Leukemia_4c Mean 0.927 0.933 0.899 0.91 0.913 0.967 
 Var ± 0.0032 ± 0.0028 ± 0.0071 ± 0.0038 ± 0.0038 ± 0.0012
Leukemia Mean 0.972 0.993 0.986 0.986 0.986 0.993 
 Var ± 0.0013 ± 0.0011 ± 0.0009 ± 0.0009 ± 0.0009 ± 0.0005
Lung Mean 0.992 0.967 0.983 0.988 0.976 0.992 
 Var ± 0.0015 ± 0.0012 ± 0.00113 ± 0.0010 ± 0.0006 ± 0.0004
MLL Mean 1 0.979 0.986 0.986 0.993 1 
 Var 0 ± 0.0022 ± 0.0009 ± 0.0009 ± 0.0005 0 
Ovarian Mean 0.988 0.992 0.996 0.996 0.986 1 
 Var ± 0.0004 ± 0.0004 ± 0.00007 ± 0.00007 ± 0.0004 0 
SRBCT Mean 1 0.988 0.994 1 0.994 1 
 Var 0 ± 0.0006 ± 0.0004 0 ± 0.0004 0 

Table A6. Classification results of different intelligent algorithms on SVM. 

Dataset Performance PSO GWO WOA SCA SSA ISSA 
Breast Mean 0.793 0.815 0.846 0.851 0.783 0.897 
 Var ± 0.0081 ± 0.0029 ± 0.0049 ± 0.0023 ± 0.0058 ± 0.0018 
CNS Mean 0.9 0.817 0.817 0.901 0.876 0.944 

Continued on next page
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Dataset Performance PSO GWO WOA SCA SSA ISSA 
CNS Var ± 0.0076 ± 0.0089 ± 0.0169 ± 0.0060 ± 0.0142 ± 0.0015 
Colon Mean 0.899 0.93 0.878 0.93 0.921 0.968 
 Var ± 0.0038 ± 0.0058 ± 0.0040 ± 0.0058 ± 0.0080 ± 0.0017 
Leukemia_3c Mean 1 1 1 1 0.979 1 
 Var 0 0 0 0 ± 0.0011 0 
Leukemia_4c Mean 0.966 0.901 0.94 0.966 0.913 0.972 
 Var ± 0.0042 ± 0.0040 ± 0.0033 ± 0.0042 ± 0.0059 ± 0.0013 
Leukemia Mean 0.986 1 0.973 0.993 0.988 1 
 Var ± 0.0009 0 ± 0.0042 ± 0.0005 ± 0.0007 0 
Lung Mean 0.973 0.95 0.982 0.986 0.971 0.982 
 Var ± 0.0005 ± 0.0006 ± 0.0006 ± 0.0004 ± 0.0008 ± 0.0006 
MLL Mean 1 0.993 1 1 1 1 
 Var 0 ± 0.0009 0 0 0 0 
Ovarian Mean 0.996 0.98 1 0.988 0.989 0.998 
 Var ± 0.0002 ± 0.0002 0 ± 0.0014 ± 0.0006 ± 0.00004
SRBCT Mean 1 0.982 1 1 1 1 
 Var 0 ± 0.0008 0 0 0 0 

Table A7. Classification results of different intelligent algorithms on XGBoost. 

Dataset Performance PSO GWO WOA SCA SSA ISSA 
Breast Mean 0.968 0.942 0.942 0.959 0.931 0.975 
 Var ± 0.0021 ± 0.0041 ± 0.0076 ± 0.0011 ± 0.0045 ± 0.0007 
CNS Mean 0.967 0.951 0.951 0.941 0.943 0.992 
 Var ± 0.0034 ± 0.0064 ± 0.0034 ± 0.0095 ± 0.0062 ± 0.0006 
Colon Mean 0.953 0.969 0.923 0.924 0.915 0.992 
 Var ± 0.0029 ± 0.0055 ± 0.0064 ± 0.0050 ± 0.0030 ± 0.0006 
Leukemia_3c Mean 0.986 0.985 0.993 1 0.96 0.986 
 Var ± 0.0009 ± 0.0010 ± 0.0005 0 ± 0.0051 ± 0.0009 
Leukemia_4c Mean 0.946 1 0.972 0.993 0.993 0.993 
 Var ± 0.0098 0 ± 0.0013 ± 0.0005 ± 0.0005 ± 0.0005 
Leukemia Mean 1 1 1 1 1 1 
 Var 0 0 0 0 0 0 
Lung Mean 0.992 0.942 0.967 0.984 0.977 0.994 
 Var ± 0.0001 ± 0.0012 ± 0.0004 ± 0.0004 ± 0.0004 ± 0.00009
MLL Mean 0.993 0.951 1 1 0.993 1 
 Var ± 0.0005 ± 0.0022 0 0 ± 0.0005 0 
Ovarian Mean 1 0.98 1 1 1 1 
 Var 0 ± 0.0006 0 0 0 0 
SRBCT Mean 1 0.927 1 1 1 1 
 Var 0 ± 0.0058 0 0 0 0 
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Table A8. Classification results of different intelligent algorithms on KNN. 

Dataset Performance PSO GWO WOA SCA SSA ISSA 
Breast Mean 0.979 0.947 0.969 0.793 0.985 1 
 Var ± 0.0014 ± 0.0032 ± 0.0014 ± 0.0028 ± 0.0006 0 
CNS Mean 0.901 0.943 0.95 0.942 0.968 0.985 
 Var ± 0.0060 ± 0.0032 ± 0.0051 ± 0.0048 ± 0.0017 ± 0.0011
Colon Mean 0.968 0.938 0.976 0.848 0.93 0.968 
 Var ± 0.0017 ± 0.0036 ± 0.0015 ± 0.0052 ± 0.0031 ± 0.0017
Leukemia_3c Mean 1 1 1 1 1 1 
 Var 0 0 0 0 0 0 
Leukemia_4c Mean 0.945 0.946 0.96 0.973 0.947 0.979 
 Var ± 0.0017 ± 0.0047 ± 0.0031 ± 0.0022 ± 0.0036 ± 0.0017
Leukemia Mean 0.993 1 1 0.972 1 1 
 Var ± 0.0005 0 0 ± 0.0013 0 0 
Lung Mean 0.967 0.94 0.974 0.927 0.981 0.986 
 Var ± 0.0011 ± 0.0015 ± 0.0005 ± 0.0012 ± 0.0004 ± 0.0004
MLL Mean 0.993 0.965 1 1 1 1 
 Var ± 0.0022 ± 0.0035 0 0 0 0 
Ovarian Mean 0.996 0.98 0.998 0.984 0.987 0.99 
 Var ± 0.00009 ± 0.0004 ± 0.00005 ± 0.0005 ± 0.0005 ± 0.0001
SRBCT Mean 1 0.994 1 0.994 1 1 
 Var 0 ± 0.0004 0 ± 0.0004 0 0 

 

Figure A4. Boxplot comparison of different classification methods and different intelligent 
optimization algorithms for Breast dataset. 
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Figure A5. Boxplot comparison of different classification methods and different intelligent 
optimization algorithms for CNS dataset. 

 

Figure A6. Boxplot comparison of different classification methods and different intelligent 
optimization algorithms for Colon dataset. 

 

Figure A7. Boxplot comparison of different classification methods and different intelligent 
optimization algorithms for Leukemia_3c dataset. 
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Figure A8. Boxplot comparison of different classification methods and different intelligent 
optimization algorithms for Leukemia_4c dataset. 

 

Figure A9. Boxplot comparison of different classification methods and different intelligent 
optimization algorithms for Leukemia dataset. 

 

Figure A10. Boxplot comparison of different classification methods and different 
intelligent optimization algorithms for MLL dataset. 
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Figure A11. Boxplot comparison of different classification methods and different 
intelligent optimization algorithms for Ovarian dataset. 

 

Figure A12. Boxplot comparison of different classification methods and different 
intelligent optimization algorithms for SRBCT dataset. 
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