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Abstract: Disease prediction by using a variety of healthcare data to assist doctors in disease diagnosis
is becoming a more and more important research topic recently. This paper proposes a disease predic-
tion model that fuses multiple types of encoded representations of Chinese electronic health records
(EHRs). The model framework utilizes a multi-head self-attention mechanism, which combines textual
and numerical features to enhance text representations. The BiLSTM-CRF and TextCNN models are
used, respectively, to extract entities and then obtain the embedding representations of them. The rep-
resentations of text and entities in it are combined together for formulating representations of EHRs.
The experimental results on EHRs data collected from a Three Grade Class B Hospital General in
Gansu Province, China, show that our model achieved an F1 score of 91.92%, which outperforms the
previous baseline methods.
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1. Introduction

Medical and health care has a bearing on the health of hundreds of millions of people and is a
basic livelihood issue for people around the world. Specifically in China, the most populous country
in the world, the total amount of medical resources is not abundant enough, resulting in an unbalanced
supply and demand of medical services. According to information released by the National Health
Commission of China, by the end of 2020, China had only 2.9 doctors per 1000 people, which means
that there is only one doctor for every 300 people. To solve these problems, disease prediction has
received increasing attention from academia and industry. While image-based [1] disease prediction
has been well studied, research on text-based disease prediction [2] is still difficult due to the difficulty
of understanding the Chinese language itself and obtaining a real and reliable clinical corpus.

Since the National Health and Family Planning Commission of China issued the “Basic Specifica-
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tions for Electronic Health Records (Trial),” many hospitals have accumulated a lot of electronic health
records (EHRs). EHRs are detailed records of medical activities by medical personnel, mostly written
by doctors, including structured data (lab tests, vital signs, etc.) and unstructured data (chief com-
plaints, current illness history, etc.). With the development and popularity of EHRs, more and more
scholars are interested in disease prediction. Existing work has focused on graph-based [3] methods
and classification-based [4] methods for disease prediction from EHRs. Graph-based methods focus on
the relationships between symptoms and diseases for disease prediction. Classification-based methods
mainly extract features from EHRs and predict disease for patients. Early research is mainly based on
manually designed rules and traditional machine learning methods. The rule-based method has a high
accuracy rate, but the construction of the rules requires the participation of personnel in the medical
field, which is time-consuming and labor-intensive. Traditional machine learning methods, such as
Support Vector Machine (SVM) [5] and Random Forest [6], can avoid this problem, but it is difficult to
express deeper semantic information of EHRs. With the development of deep learning, its application
in disease prediction [7, 8] has significantly improved the performance. However, the existing methods
mainly focus on a single type of structured medical data [9] but ignore the differences and connections
between varied types of medical data [10]. Such as gender information in EHRs, may be insufficient
for these texts to use the same encoder for representation. Furthermore, the information of entities in
disease prediction is often ignored. In order to solve the above problems, we propose a novel disease
prediction model with multi-type data, and the overall structure is shown in Figure 1.

Figure 1. Schematic diagram for predicting diseases.

The contributions of this paper are as follows:

1) Entity information is integrated with text information to better obtain the representation of EHRs.

2) A multi-type data fusion model is proposed, which focuses on different ways to represent in-
formation respectively and improves obviously the accuracy of prediction and the interpretability of
feature representations.

3) Evaluation of real EHRs from a Three Grade Class B General Hospital in Gansu Province,
China, shows that the multi-type data fusion model outperforms previous disease prediction methods
with EHRs.
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2. Related work

Disease prediction is to use computer-related technology to extract features from EHRs and predict
disease. Early research was mainly based on rules and knowledge reasoning expert systems [11]. Such
methods are simple and easy to understand, but they require a lot of experts in the medical field to
construct rules and are not flexible enough. With the continuous development of machine learning
technology, more and more researchers apply these technologies for disease prediction. Palaniappand
et al. [12] proposed a method for predicting heart disease using Naive Bayes and Decision Tree, which
developed into a heart disease prediction system. Ananthakrishnan et al. [13] used logistic regression
to diagnose Crohn’s disease and ulcerative colitis. Drriseitl et al. [14] compared the algorithmic
performances of K-nearest Neighbor, SVM and logistic regression in the diagnosis of skin diseases,
and they found that SVM showed better performance.

With the development of deep learning in NLP tasks, there are many ways to use deep learning
methods for disease prediction. Yang et al. [15] proposed a Convolutional Neural Network (CNN)
model to obtain textual information in EHRs and perform disease prediction. An et al. [16] obtained
different features of EHRs based on the BiLSTM model and fused different types of features to predict
cardiovascular disease. Wang et al. [17] proposed a prediction method based on BiLSTM and CNN to
model characters and words in EHRs, respectively. Du et al. [18] utilized a multigraph structural LSTM
model and considered the Spatio-temporal characteristics to predict foodborne diseases. Rasmy et al.
[19] utilized the CovRNN model to learn the representations of patients with COVID-19 and make
relevant predictions, such as mortality and hospital stay. Sha and Wang [20] proposed a hierarchical
GRU-based model to predict clinical outcomes based on the medical code of the patient’s previous
visits. With the proposed pre-training models of ELMO [21], OpenAI GPT [22] and BERT [23],
significant improvements have been achieved in various NLP tasks, which have also been applied
in the medical field. Zhang et al. [24] proposed a BERT based model with an enhanced layer to
encode EHRs for auxiliary diagnosis in obstetrics. BioBERT [25] is a pre-trained model that was
trained on general and biomedical domain corpora. Mugisha et al. [26] utilized BioBERT to obtain
representations in EHRs and make predictions of pneumonia diseases. These research methods have
improved the accuracy of disease prediction to a certain extent, but there are still some shortcomings.
On the one hand, the disease prediction models based on traditional machine learning are often limited
by the shortcomings of feature engineering and the algorithm itself, and they are heavily dependent on
manual rules, leading to the failure of generalization of the models. On the other hand, these methods
are mainly modeled by a single type of data information, and few of them pay enough attention to
different data types.

3. Methods

In this paper, we propose a multi-type data fusion model based on EHRs, and the model struc-
ture is shown in Figure 2. The model can be divided into two parts: text representation and entity
representation. The text representation module introduces BERT to get the encoded representation of
the textual information; the encoding of the numerical information is achieved by one-hot and max-
minimum normalization methods. Then, the textual and numerical encodings are sent to a multi-head
self-attention layer, using the numerical information to enhance the text information and get a better
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text representation. The entity information is extracted by using the developed and relatively mature
entity recognition technology. The pre-trained model BERT is used for encoding the characters of en-
tities. Then, TextCNN is used for extracting features and obtaining entity representations. Finally, the
two types of information are fused to get the final representation of the patient and make predictions
about the disease.

Figure 2. The overall framework of the model for learning the representation of EHRs.

3.1. Text representation

The information contained in the EHRs text can be divided into structured and unstructured data.
Unstructured data refers to textual information, while structured data refers to the information of de-
mographics and physical examinations in this study, which are significant for disease prediction. For
example, an older patient is more likely to have a cerebral infarction. It is considerable to convert
structured data into numerical information for better representations. The specific situation is shown
in Table 1.

Table 1. Numerical processing method for structured data.

Initial description Gender:Female; Age:67; Marital Status:Married; Family History:None;
T:36.8 °C; P:62 beats/min; R:18 beats/min; Bp:140/90 mmHg

Numerical information (0,67,1,0,36.8,62,18,140,90)

Patient demographics include age, gender, marital status, family history and more. Only adult
patients are concerned in this study, and their ages are split into 5 groups: (18, 25), (25, 45), (45, 65),
(65, 89), (89,). The patient’s physical examination includes blood pressure (BP), heartbeat (R), pulse
(P), body temperature (T), etc. The physical examination is encoded by max-min normalization. The
demographic information is spliced to obtain the numerical representation of patients as Znum.
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Text information in the EHRs includes the chief complaint, history of present illness, etc. Using
appropriate algorithms to extract features from EHRs texts can better help patients with disease predic-
tion. Due to the sparseness of Chinese EHRs, traditional methods, such as Doc2vec, can not accurately
obtain the text representation of Chinese EHRs. However, a pre-training model based on transfer learn-
ing can achieve better results after fine-tuning in small scale samples after pre-training in large data
sets. Therefore, we utilize the pre-trained language model BERT to obtain textual representations of
EHRs. The input text sequence is as follows:

[CLS] Chinese Electronic Health Record [SEP]

where, [CLS] indicates the start tag of the text, and [SEP] indicates the separator tag of the text. After
the EHR is fed into the BERT model, the last layer of [CLS] is used to represent the entire EHR C. To
better integrate numerical and textual information to obtain better text representations, we introduces
the multi-head self-attention to enhance the textual representations of EHRs:

Q = K = V = Wcconcat(Znum,C), (3.1)

Attention(Q,K,V) = so f tmax(
QKT

√
dk

)V, (3.2)

Ztext =concat(head1, head2, . . . , headh)Wo

where headi = Attention(QWQ
i ,KWK

i ,VWV
i ),

(3.3)

where Wi
Q, Wi

K , Wi
V , Wc, Wo are trainable parameters, and Ztext is the final representation after en-

hancing of numerical information in the EHRs text.

3.2. BiLSTM-CRF model

Through the analysis of EHRs, we found that entity type information (symptoms, medicine, etc.) is
important for disease prediction. For example, the symptoms of “coughing” may increase the risk of
bronchitis. Therefore, it is a great necessity of introducing relatively mature named entity recognition
technology to extract entity information from EHRs. The BiLSTM-CRF model we use can easily ex-
tract entity information, which can obtain contextual information more comprehensively and learn the
relationship between contexts easily, and convert the extracted context information into corresponding
labels for each Chinese character. The architecture of the BiLSTM-CRF model is illustrated in Fig-
ure 3. In the model, the BIO (Begin, Inside, Outside) tagging scheme is used. First, the Skip-Gram
[27] algorithm is introduced to train character embedding in EHRs. The sentence is represented as
a sequence of characters vector Q = (q1,q2,...,qn), where n is the length of the EHRs. Secondly, the
embeddings (q1,q2,...,qn) are given as input to the BiLSTM layer. In the BiLSTM layer and at step t,
the output state of the forward LSTM is the hidden vector

−→
ht , and the output state of the other back-

ward LSTM is hidden vectors
←−
ht . These two distinct networks use different parameters, and then the

representation of a character ht = [
−→
ht ;
←−
ht] is obtained by concatenating its forward and backward the

hidden vector. Next, a full connection layer is used to map the hidden state vector (h1,h2,...,hn) ∈ Rn×m

to k dimensions, where k is the number of labels in the label set. As a result, the sentence features are
extracted that are represented as a matrix P = (p1, p2, ..., pn) ∈ Rn×k. Finally, the parameters of the CRF
layer are represented by a matrix A, and Ai j denotes the score of the transition from the i-th label to the

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13732–13746.



13737

Figure 3. The architecture of BiLSTM-CRF model.

j-th label. Considering a sequence of labels y = (y1, y2, ..., yn), the formula for calculating the score of
the tag sequence is as follows.

score(x, y) =

n∑
i=1

Pi, yi +

n+1∑
j=1

Ay j−1,y j (3.4)

The score of the whole sequence is equal to the sum of the scores of all words within the sentence,
which is determined by the output matrix P of BiLSTM layer and the transition matrix A of the CRF
layer. Then, a softmax function is used to yield the conditional probability of the path by normalizing
the above score over all possible tag paths y′.

P(y | x) =
escore(x,y)∑k

y′=1 escore(x,y′)
(3.5)

During the training phase, the goal of this model is to maximize the log-probability of the correct tag
sequence. In the prediction process, the score corresponding to each candidate sequence is calculated
according to the trained parameters, and the optimal path is calculated using the Viterbi algorithm with
dynamic programming as the core.

argmaxy′ score(x, y′) (3.6)

3.3. Entity representation

For input sequence S = {x1,x2,...,xn} of the EHR, xi represents i-th character in the EHR. Inputting
the sequence into the BERT model to obtain the representation of each character,

H = [h1, h2, ..., hn] = BERT ([x1, x2, ..., xn]). (3.7)

Suppose that vectors hi to h j are the final hidden state vectors from BERT for symptom entity esyi
; we

apply the average operation to obtain a vector representation for each of the entities. This process can
be mathematically formalized as:

esyi =
1

j − i + 1

j∑
t=i

ht. (3.8)
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We get the symptom entity embeddings Esy = [esy1 , esy2 , ..., esyn], and in the same way, we get the
medicine and abnormal inspection result entity embeddings: Emed = [emed1

, emed2
, ..., emedn

], Eabn =

[eabn1 , eabn2 , ..., eabnn]. We separately performed convolution operations on the entity information of
symptom, medicine and abnormal inspection results to extract various types of entity features. The
convolution operation is carried out between convolution kernel w and symptom entity embedding in
the ith window esyi:i+h−1 in the symptom entity Esy and obtained feature csyi :

csyi = f (esyi:i+h−1 · w + b), (3.9)

where the size of the convolution kernel is w ∈ Rh×d, h is the height of the convolution kernel, and d is
the dimension of the character embedding in BERT. b ∈ R is a bias term, and f is a non-linear function.

This filter is applied to each possible window of features in the event matrix {esy1:h
, esy2:h+1

, ..., esyn−h+1:n
}

to produce a feature map csy = [csy1 , csy2 , ..., csyn−h+1]. Then, max pooling is applied over the feature
map, and the average c′sy = max {csy} is taken. In the same way, we convolved medicine and abnormal
inspection results information to obtain the medicine and abnormal inspection results representation
c′med, c′abn. The symptom, medicine and abnormal inspection results representation are spliced to
obtain the final representation of the patient entity:

Zentity = concat(c′sy; c′med; c′abn). (3.10)

3.4. Feature fusion and disease prediction

By splicing the representation of text and entity information, the final representation of EHR is
denoted as Zpatient = concat(Ztext; Zentity), where the size of this vector is the sum of the components
dtext + dentity. The EHR representation Zpatient is sent to the fully connected layer, and the probability of
each type of disease is calculated by the softmax activation function. The formula is

y = so f tmax(w · Zpatient + b) (3.11)

where y denotes the prediction probability distribution of K disease classes (K = 9). yi indicates the
probability that the input EHR is related to the i-th disease.

In this paper, the cross-entropy loss function is used to train the model with the goal of minimizing
the Loss:

Loss = −
∑

T∈Corpus

∑K

i=1
yi(T ) log(yi(T )) (3.12)

where T is the input EHR, Corpus denotes training sample set and K is the number of classes.

4. Experiments

4.1. Dataset and evaluation criteria

Large-scale Chinese EHRs datasets with entity information are not always readily accessible. To
facilitate research on Chinese EHRs, we collected a large raw dataset in a Three Grade Class B Hos-
pital General in Gansu Province, China, which contained 61,233 EHRs. We select 8 kinds of diseases,
including cerebral infarction (CI), vertebrobasilar insufficiency (VBI), coronary atherosclerotic heart
disease (CAHD), cholecystitis, bronchitis, degenerative spondylitis, intestinal obstruction, type 2 dia-
betic peripheral neuropathy (T2DM), and select some other diseases as the Chinese Electronic Health

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13732–13746.



13739

Record dataset (CEHR). Before the experiments of our study, the following preprocessing was carried
out on the CEHR text:

1) De-privacy: Delete the patient’s personal private information from CEHRs, such as: ‘name’,
‘place of birth’, ‘occupation’ and other private information.

2) Selecting the required CEHRs: Chinese EHRs contain a large number of missing values. There-
fore, those with unfilled personal information and less than 200 words will be removed.

3) Label entity information: We refer to a large number of annotation specifications [28, 29] to label
entity information. The CEHR corpus contains 3 types of entities: symptom (Sym), medicine (Med),
and abnormal inspection result (Abn). Sym: Symptom refers to the subjective feelings described by
the patient or the objective facts observed by the outside world, such as dizziness. Med: Medicine
refers to the name of the medicine used in the process of treatment, excluding dosage, method of
administration, etc. such as aspirin. Abn: Abnormal inspection result refers to abnormal changes and
abnormal examination results that occur in patients through examination procedures or as observed by
doctors, such as lung marking increase.

After the above processing, we selected 8290 CEHRs as experimental data, and further splitted
the CEHRs by 70, 10 and 20% as training, validation, and test sets, respectively. Table 2 shows the
distribution of CEHRs, in descending order of data volume. The statistics of the entity information for
our experiments are shown in Table 3.

Table 2. Number of training, validation and test sets for each disease in CEHR.

Disease Training set Test set Validation set
CI 700 200 100
VBI 700 200 100
CAHD 700 200 100
bronchitis 700 200 100
degenerative spondylitis 700 200 100
T2DM 700 200 100
other diseases 700 200 100
cholecystitis 511 146 73
intestinal obstruction 392 112 56

Table 3. Statistical table of entity information in CEHR.

Disease Avg number Max number Min number
CI 16.83 23 9
VBI 13.71 20 8
CAHD 15.16 27 7
bronchitis 17.47 29 6
degenerative spondylitis 12.18 14 5
T2DM 16.38 32 8
other diseases 16.08 33 6
cholecystitis 18.94 30 9
intestinal obstruction 16.16 27 8
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The goal of this paper is to get the EHR features and use them for disease prediction. Using eval-
uation metrics for classification tasks to assess the quality of disease prediction, such as Accuracy,
Precision, Recall and F1-score, these are defined as follows:

Accuracy =
T P + T N

T P + T N + FP + FN
(4.1)

Recall =
T P

T P + FN
(4.2)

Precision =
T P

T P + FP
(4.3)

F1 − score =
2 × Precision × Recall

Precision + Recall
(4.4)

where TP indicates the number of positive samples that were predicted as positive, FP indicates the
number of negative samples that were predicted as positive and FN indicates the number of positive
samples that were predicted to be negative. TN indicates the number of negative samples that were
predicted as negative.

4.2. Implementation details

In order to protect the patient privacy and data denoising, EHRs in this paper are preprocessed in
various ways, such as privacy removing, data cleaning, entity labeling and disease standardizing. The
version of the BERT model is BERT-base-Chinese, the main super-parameter is the size of hidden
layer, which we set at 768, the Transformer blocks are 12, the number of attention heads is 12, and
maximum input length is 512. In the convolutional module, the heights of the filters are 2, 3 and 4.
During the training, we applied the learning rate of 5e-5 and the dropout rate of 0.5, and the batch size
is 32.

4.3. Baseline models

We conducted experiments to compare the performance of our model with other disease prediction
models.

SVM [5]: PKUSEG is a tool for word segmentation of Chinese EHRs. Then, the TF-IDF algorithm
is used for extracting key information to obtain the representation of Chinese EHRs and then use SVM
for disease prediction.

CNN [15]: CNN is used for obtaining features from Chinese EHRs, and then the probability of the
patient’s disease can be computed by sending features to fully connected layers.

BiLSTM: The model utilizes BiLSTM to extract features and feed them into fully connected acti-
vation layers for disease prediction.

RCNN [30]: The model utilizes RCNN to obtain the textual features of EHRs, and then sends them
into fully connected layers and activation layers for disease prediction.

BERT [23]: The model uses the pre-trained model BERT to extract the features of Chinese EHRs
for disease prediction tasks.
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4.4. Overall experimental results

We compared overall performance of our proposed model with baseline models on a test set of
CEHR datasets. Table 4 shows the experimental results of baseline models and our proposed model.

Table 4. The comparison of each model for disease prediction results.

Method Accuracy (%) Precision (%) Recall (%) F1-score (%)
SVM 89.06 87.39 86.91 87.15
CNN 89.55 88.44 87.55 87.99
BiLSTM 89.39 88.53 86.97 87.74
RCNN 89.76 89.04 87.51 88.27
BERT 91.68 90.83 89.26 90.04
Our-model 94.66 93.62 90.28 91.92

As shown in Table 4, we can see that our method is more effective than other methods, and the
F1-score reaches 91.92%. The methods in Table 4 can be divided into traditional machine learning
and deep learning methods. SVM, as a traditional machine learning model, cannot deeply learn the
complex feature representation of EHRs. The BERT model only obtains the text information of the
EHRs, while ignoring the entity and numerical information, which leads our model to improve the F1-
score of the mainstream BERT model by 1.88%. It means that entity information is very important for
both patient representation and disease prediction. The experimental results show that the multi-type
data fusion model can fully obtain the features of Chinese EHRs, and it is effective and feasible to
conduct disease prediction based on this model.

Table 5. Experimental results of different models on each disease.

Disease SVM CNN BiLSTM RCNN BERT Our model
CI 82.26 82.91 82.94 83.38 86.41 88.78
VBI 82.45 83.19 83.83 86.27 87.18 88.43
CAHD 89.72 90.74 90.43 90.88 92.03 93.83
bronchitis 89.79 89.87 90.17 90.59 93.48 95.15
degenerative spondylitis 89.91 90.14 89.81 90.41 90.22 91.53
T2DM 90.37 90.91 89.85 89.49 91.48 93.43
other diseases 84.27 86.23 85.17 85.94 88.54 89.96
cholecystitis 88.69 89.72 88.75 88.35 90.91 93.52
intestinal obstruction 86.89 88.23 88.72 89.14 90.18 92.68

As shown in Table 5, 8 kinds of disease and other diseases are in descending order of data volume
(the number of each disease is shown in Table 2). We list the F1-score corresponding to each disease.
Our model has the highest F1-score in all 8 kinds of diseases and other diseases, indicating that we can
effectively represent patients in these 8 kinds of diseases and other diseases. In terms of the diseases
with fewer quantities of data, our model shows a significant performance improvement compared to
other baseline models, such as cholecystitis, and intestinal obstruction, which improved by 2.61%

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13732–13746.



13742

to 2.5%. For VBI and degenerative spondylitis, our model has less improvement, 1.25 and 1.31%,
respectively. The main reason is that due to the small number of entities in these two diseases, the
model cannot learn the features of entity information well.

5. Discussion and analysis

5.1. Experiment of different types of data

Table 6. Results with different type information.

Method Precision (%) Recall (%) F1-score (%)
T + E + N 93.62 90.28 91.92
T + E 92.18 90.18 91.17
T + N 91.69 89.06 90.36
E + N 91.19 90.47 90.83

To verify the importance and role of different types of information on CEHR representation and to
better understand the behavior of the proposed fusion model, we employ an ablation study and conduct
extensive experiments on different models. T, E and N represent textual information, entity information
and numerical information, respectively. As shown in Table 6, using T + E + N, the model achieved
91.92% F1-score in the test set, which is 1.09, 1.56 and 0.75% higher than of the models without
textual, entity and numerical information, indicating that different types of information have an impact
on disease prediction. Among them, entity information has the greatest impact on the model, which
shows that entity information plays a key role in our model. By fusing multiple types of data, the
performance of the model is improved, and at the same time, the model is more explanatory.

5.2. Experiment of different NER models

In order to choose a better entity acquisition method, we compared the CRF and BiLSTM-CRF
models, and the results are shown in Figure 4.

Figure 4. Comparison of CRF and
BiLSTM-CRF models.

Figure 5. F1-score under dif-
ferent head numbers
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We performed a comparison of the CRF and BiLSTM-CRF models for the identification of entity
information in CEHRs. The Precisions for the two models are 88.57 and 89.24%. The Recalls for the
two models are 87.54 and 88.76%. The F1-scores for the two models are 88.05 and 89.01%. We find
that the BiLSTM-CRF model outperforms the CRF model. So, the BiLSTM-CRF model is selected as
the entity extraction model in CEHRs.

5.3. Experiment of head number of multi-attention

Multi-head attention was adopted to fuse textual information and numerical information. As shown
in Figure 5, when the number of heads of the multi-head attention is 8, the model achieves the best
performance, with an F1-score of 91.92%. As the number of heads increases, the performance of the
model gets better, but the number of heads should not be set too large, as otherwise F1-score will
decrease. When the number of heads reached 12, the F1-score decreased by 0.31%, because excessive
attention would introduce noise and reduce the performance of the model.

5.4. Experiment of language model effect

Table 7. Experimental effect of BERT model.

Model Precision (%) Recall (%) F1-score (%)
Word2vec+Doc2vec 89.15 88.36 88.75
Our-model 93.62 90.28 91.92

The purpose of this experiment is to study whether the EHRs representation adopted in the BERT
model is better than the traditional Word2vec and Doc2vec in effect. As shown in Table 7, the effect of
using BERT as text and entity embedding is better than Word2vec and Doc2vec embeddings, and the
F1-score of the BERT model is 3.17% better than that of the Word2vec+Doc2vec combined model.
The reason is that the training method of the BERT model based on character vectors can alleviate the
problem of polysemy to a certain extent.

6. Conclusions

This paper proposes a disease prediction method based on a multi-type data fusion mechanism for
EHRs. The model uses multi-head self-attention to fuse numerical features into textual information
and enhance text representation. Using the TextCNN model to formulate entity representation, the
representations of text and entities in it are mixed together to obtain the final representation of the EHR.
This method solves the problems of unreasonable representation and difficulty in feature extraction
when various data of EHRs exist. The experimental results show that the multi-type data fusion model
can effectively learn the feature representation of EHRs and achieve disease prediction. In future work,
we will try to incorporate more information, such as time series data, external knowledge bases, etc.,
to further improve the quality and efficiency of disease prediction.
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