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Abstract: In this paper, the formation control problem of PDE-based multi-agent systems (MASs) is 
discussed. Firstly, the MASs are developed on a one-dimensional chain topology based on the polar 
coordinate system, and the dynamics of MASs is simulated using the spatial-varying coefficient wave 
equation. Secondly, a boundary control scheme is proposed by combining PDE-backstepping 
technique and the Volterra integral transformation. The well-posedness of kernel function is proved by 
using the iterative and inductive methods. Then, the stability of the closed-loop system is proved by 
using Lyapunov direct method. Finally, the PDE model is discretized using the finite difference method, 
and the distributed cooperative control protocol is obtained, in which the followers only need to know 
the location information of themselves and their neighbors. With this control protocol, leaders drive 
the MAS to stabilize in the desired formation. Both theoretical analysis and numerical simulation prove 
that the proposed control scheme is effective. 
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1. Introduction 

In recent years, as the development of complex systems theory and its wide application in the 
fields of transportation systems, UAVs, satellites, vehicles and control engineering, the cooperative 
control of MASs has been extensively researched [1–3]. Consensus control and formation control are 
the primary issues studied in cooperative control. Consensus control emphasizes multiple agents 
converging to the same target state [4–7], while formation control is the design of a cooperative control 
scheme to move the agents to multiple target states, which in turn form the desired formation. Hence, 
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formation control technology is widely applied to radar, navigation, aerial photography, military 
exercises, and other fields [8,9]. 

In formation studies, the majority of MASs are modeled by ordinary differential equations (ODEs) 
based on graph theoretic Laplace consistent action [10–14]. However, when the number of agents 
approaches infinity, it is difficult to achieve the control goal using ODEs modeling. In addition, since 
the Laplace operator in PDEs has the same consistent action as the Laplace consistent control law, 
more and more scholars have applied the continuum model based on PDEs to describe MASs with 
interactions in recent years [15–18]. In [19], the dynamics of a MAS described by a Burgers-type PDE 
was considered and an extended Luenberger state observer was designed. It is also combined with 
motion planning and stability feedback control to enable the MASs to perform the desired formation 
in finite time. In [20], the MAS was modeled by the reaction-advection-diffusion equation, and the 
control laws of the agents were designed along with the PDE-backstepping method, which stabilizes 
the agents in the desired formation under a fixed communication topology. In [21], a modeling, analysis 
and control design approach for large MASs deployed in three-dimensional space was presented. 
Based on two reaction-convection-diffusion two-dimensional PDEs, the issue of stabilizing PDEs by 
boundary control on a disk was innovatively solved using a new explicit backstepping kernel 
containing a Poisson kernel. In [22], the MASs in finite time were deployed into planar formation 
profiles along predefined spatio-temporal paths with use of formal power series, appropriate 
summation and generalized sequence transformations. 

The commonly adopted control methods for formation control problems of the MASs are the 
leader-follower method [23], the behavior-based method [24], and the virtual leader method [25]. In 
this paper, the leader-follower method will be used, in which followers only need to know the relative 
position information of itself and its neighbors, and leaders hold the global information and drive 
followers to the position of the desired formation in combination with the controller, so that the MASs 
stabilizes in the desired formation [26]. There are two main types of desired formations, static and 
time-varying formations. Static formation refers to the formation of agents in a fixed formation under 
the action of a control law [27]. In particular, time-varying formation means that the agents form a 
specified formation and move along a certain trajectory [28]. The static formation deployment issue 
under the grid-grid two-dimensional cylindrical surface topology in polar coordinates was studied in 
[29]. In addition, the formation of MASs under arbitrarily large boundary input delays was 
innovatively investigated in [30]. The leader agents were affected by input delays caused by 
communication, measurement, and actuator constraints, so the authors designed boundary control laws 
to compensate for them and to drive all agents into the desired formation. In [31], the time-varying 
formation control for MASs was discussed. The PDE-backstepping technique was applied to design 
the boundary controller and observer, which transform it into a leader-driven model using only local 
information, thus converging the MASs to the desired time-varying formation. In [32], a large-scale 
MASs formation tracking control based on wave equations was studied. Employing the leader-
following model, a control algorithm was developed and the robustness of the control law to velocity 
measurement disturbances was discussed. 

The main idea of dealing with the formation control problem for large-scale MASs modeled by 
PEDs is that [33]: 1) The discrete agents are modeled as a continuum and the MASs dynamic equation 
are established based on PDEs; 2) The control is designed based on PDEs; 3) The PDE system and 
controller are discretized to realize the revivification from PDEs to the agents themselves. 
Theoretically, provided the number of agents is large enough, then this approach is independent of the 
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number of agents and the communication structure. 
In this paper, the wave equation with spatial-varying coefficient is adopted to describe the MASs 

and the formation control problem of MASs in polar coordinates is discussed. A boundary controller 
is proposed by combining the PDE-backstepping technique, Lyapunov stability theory and state 
feedback control. The Lyapunov direct method is employed to prove the stability of the closed-loop 
system. In the closed-loop system, the first leader arrives directly at the desired position, the followers 
only need to know the position information of themselves and their neighbors, and the second leader 
drives the MASs to stabilize in the desired formation under the action of this control law. The main 
contributions of this paper are as follows: 1) The PDEs framework considered in this paper is a second-
order hyperbolic equation with spatial-varying coefficient. The parameters of the reaction term are a 
space-dependent function that describe more general and extensive formations of MASs. 2) A 
collaborative control law for the second leader at the boundary is designed by selecting the appropriate 
target system using the PDE-backstepping technique. 3) The existence uniqueness of the kernel 
function is analyzed using the variable substitution method and the iterative method, which further 
shows that the closed-loop system satisfies the well-posedness. 

2. System description 

Notations:  s
  and  ss

  mean the first and second order derivatives of    in terms of the 

variable s , i.e.,    s
s     ,    2 2

ss
s     . Similarly, for the variable t ,    t

t     , 

   2 2

tt
t     . 

 

Figure 1. Chain communication topology. 

A chain communication structure with M  nodes is considered, which is shown in Figure 1. The 
label k  denotes the node, which is the position of the k th agent. The agents at the ends of the chain 
structure are leader agents, labeled 1 and M, and the others are follower agents, labeled k  , 
 2,..., 1k M  . From [20], it is clear that the Laplace operator in PDEs has the same consensus 

action as the Laplace consensus control laws in ODEs. Therefore, the number of agents can be 
represented as continuous variables and view the cluster of agents as a continuum. When M   , 
The discrete chain topology approximates  1 2,s G G , i.e., kk s s  . Let  ,z s t x iy   denote 

the position coordinates of the agent s . 
In this paper, a leader-follower MAS is studied based on wave equation with spatial-varying 
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coefficient, whose dynamics are described as follows 

      , ,ttz s t z s z s t     (1) 

where , with the boundary conditions 

,ଵܩሺݖ  ሻݐ ൌ ܳଵሺݐሻ, ,ଶܩሺݖ ሻݐ ൌ ܳଶሺݐሻ ൅  ሻ (2)ݐሺ߁

and the initial conditions 

        0 1, 0 , , 0tz s z s z s z s    (3) 

In the above equations, s  and t  are the independent spatial and time variables, respectively. 
 ,z s t   represents the position of agents, and        1 2

0 1 2 1 1 2, , ,z s H G G z s L G G   . 

  ,s s s
ss

z s t s z
z z

s s


      is the Laplace operator,  s   is a spatial-varying bounded complex 

function, and ߚሺݏሻݖሺݏ, ሻ  serves to describe the different formations. ݐ     1 2, 0,Q t Q t C    are 

complex functions, which designate the dynamic trajectories that agents should follow. Moreover, 

1s G  is the position of the first leader. During the formation changing process, it arrives directly at 

the desired position and sends information to its neighbors unidirectionally. At the same time, the 
control force  t   on the second leader 2s G   is applied to communicate bilaterally with its 

neighbors and drive the MAS to stabilize in the desired formation. 
Similarly to (1), the desired formation of the MAS is described as 

      , ,d d d
ttz s t z s z s t     (4) 

with the boundary conditions 

        1 1 2 2, , ,d dz G t Q t z G t Q t    (5) 

and the initial conditions 

        0 1, 0 , , 0d d d d
tz s z s z s z s    (6) 

where        1 2
0 1 2 1 1 2, , ,d dz s H G G z s L G G  . 

Definition 1. Introducing the space       1 1
1 2 1 2 1, : , ; 0LH G G y H G G y G    ,   

   1 2
1 2 1 2, ,H G G L G G  and the domain   2

1 2, :s R G s G      . The 2L -norm and 1H -

norm are defined by   2

2
1

1 2
2

,
G

L G
z z s t sds  ,     2 2

1
1 1

1 2
2 2

, ,
G G

sH G G
z z s t sds z s t sds   . 

It is important to note that for positive function  s  , the MAS (1)–(3) may be open-loop 

unstable. In this case, the agents will not spontaneously move to the desired position. Therefore, it is 
essential to design a leader-driven state feedback boundary controller. 
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3. Boundary controller design and stability analysis 

Firstly, the error variable of the system is defined as      , , ,dq s t z s t z s t   . Then the 

following error system is obtained 

 

     
       
       

1 2

0 1

, ,

, 0, ,

,0 , ,0

tt

t

q s t q s q s t

q G t q G t t t

q s q s q s q s

  


    
  

  (7) 

The primary method applied for the control design in this paper is the PDE-backstepping method. 
The main idea is to first design a Volterra transformation that enables to transform the q-system (7) 
into a suitable stable target system (g-system). Then substituting the g-system into the Volterra 
transformation, the PDEs with respect to kernel functions are obtained. To proceed, using the variable 
substitution method and the iterative method, the existence and the uniqueness of the solution of the 
PDEs is proved, and then derive the boundary control law. Finally, by the exponential stability of the 
g-system and the invertibility of the Volterra transform, the stability of the closed-loop system q-system 
is guaranteed. The clearer control design process chart is presented in Figures 2 and 3, respectively. 

 

Figure 2. Conversion among systems. 

 

Figure 3. Boundary controller design process. 
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Define the following Volterra integral transformation 

        
1

, , , ,
s

G
g s t q s t F s q t d       (8) 

where  ,F s   is a kernel function defined on  . The kernel function  ,F s   will be suitably 

selected later to realize converting the unstable q-system (7) into the following target system (g-system) 
by using the defined Volterra integral transformation (8). 

 

     
   
       

1 2

0 1

, ,

, 0, , 0

,0 , ,0

tt

t

g s t g c s g s t

g G t g G t

g s g s g s g s

  


 
  

  (9) 

where  c s  satisfies   2L
c c s c   for any  1 2,s G G . ,c c  are positive constants [34]. With 

simple computation, it is easy to obtain the boundary control 

ሻݐሺߔ  ൌ ,ଶܩሺݍ ሻݐ ൌ ׬ ,ଶܩሺܨ ,ߙሺݍሻߙ ߙሻ݀ݐ
ீమ
ீభ

  (10) 

In the remainder of this section, the PDEs satisfied by the kernel  ,F s   are derived, and the 

existence and uniqueness of the kernel  ,F s 
 
are analyzed. 

3.1. PDE for the kernel 

To start with, we compute  ,sg s t  ,  ,ssg s t   and  ,ttg s t   respectively based on the 

transformation (8). Substituting (8) into (9), one gets 

            
1

, , , , , ,
s

s s sG
g s t q s t F s s q s t F s q t d        (11) 

                   
1

,
, , , , , , , , ,

s

ss ss s s ssG

dF s s
g s t q s t F s s q s t F s s q s t q s t F s q t d

ds
         (12) 

where 
     ,

, ,s

dF s s
F s s F s s

ds   . Calculating the second time derivative of  ,g s t , one yields 

 

               

         

           
1

1
1 1 1 1

1

2

, 1
, , , , , ,

,
, , , ,

, ,
, , ,

tt ss s

s

s

G

F s s
g s t q s t s F s s q s t F s s q s t

s s

F s G
F s G q G t F s G q G t

G

F s F s
F s F s q t d










 
     

 

             


    


 
     

 


 (13) 
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Considering            , , , ,s
ss

g
g c s g s t g s t s t c s g s t

s
     , and combining (8), (9), (11), 

(12) with (13), one obtains 

 

               

           

           

1

1 1

1
1 1

1

2

,
, , , , ,

, ,
, , , ,

, ,
, , 0

s s

s s
ssG

dF s s
F s s F s s s c s q s t F s G q G t

ds

F s G F s
F s G q G t F s F s

G s

F s F s
c s F s q t d



 






 

 
    

 

 
     

 
  

      
  


       



  (14) 

Hence, the following Eqs (15)–(18) hold 

 
         ,

, , 0s

dF s s
F s s F s s s c s

ds         (15) 

  1, 0F s G    (16) 

    1
1

1

,
, 0

F s G
F s G

G     (17) 

                2

, , ,
, , , 0s

ss

F s F s F s
F s F s c s F s

s




  
    

 
           (18) 

To simplify the expression, define   , ( )s     and      a s s c s  . Then, from (15)–

(18), the following equations are derived 

 

   

 

   
1

2

1, 0

1
,

2

s
ss

s

G

F F F
F F c s F

s
F s G

F s s a d


  

 

 

        




  
 

  (19) 

Next, the well-posedness of (19) will be proved by using the variable substitution method and 
the iterative method, and then the boundary control law is obtained. 

3.2. Existence and uniqueness of kernel function 

3.2.1. The existence of kernel function 

To prove the existence of the kernel function  ,F s  , a PDE equivalent to the system (19) is 

derived. Firstly, the functional transformation    , ,F s w s
s

   is introduced, and the variables 

replacement are defined 

 ,s s         (20) 
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which is equivalent to 

 ,
2 2

s
    

    (21) 

Further, define function  ,     relevant to variables   and   as 

  , ,
2 2

w
          
 

  (22) 

Meanwhile, let    
1

21

2 G
a d


       . Next, based on    , ,F s w s

s

   , the first and 

second order derivatives of the variables s  and   are obtained, respectively. 

 
2

2

1 1

2

3 1 1

4

1 1

2

1 1 1

4

s s

ss s ss

F w w
s s s

F w w w
s s s s s

F w w
s s

F w w w
s s s

 

  

 

  

 


  
 


   




   


   



    

 (23) 

In addition, the derivative relationship between w  and   can be calculated from (22) 

 
2

2

s

ss

w

w

w

w

 

  

  

   

  
     
   
     

 (24) 

Substituting (24) into (23), and combining (21) with (22), the left-hand side of (18) can be 
rewritten as 

 
 22 2 2

4
4s

ss

F F F
F F

s s s


 
  

   
       


  (25) 

Furthermore, one obtains 

          1 ,c s F c s w b
s s

                  (26) 

where  1 ,
2 2

b c
              
   

. Thereby, in light of (25) and (26), (19) with respect to the 
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kernel  ,F s   is converted to 

 
 

 122 2

4
4 ,b

  
 

    


  (27) 

when , 0    , one has 

    ,0 , ,
2 2 2 2

w F
              
   

  (28) 

and when 12 , 0G     , one has 

    1 1 12 ,0 , 0G w G G        (29) 

Synthesis of (27)–(29), the PDEs equivalent to (19) is given 

 

 
   
 1

4 ,

,0

2 ,0 0

b

g

G

  

 



  

 
  

  (30) 

where  
 

 122 2

4
, ,b b

   
 

 


. Next, integrating (30), first from 0 to   for variable  , and 

then from 12G   to   for variable  , then  ,   is obtained 

          
1

1 2 0

1
, 2 , ,

4 G
g G b d d

 


          


         (31) 

Combining the above analysis, it is concluded that (31) has a solution. Further, according to the 
variable and function substitution (20)–(22), one yields that (31) is equivalent to (19) satisfied by 
the kernel function. Thus, the PDEs (19) satisfied by the kernel function has a solution. In the next 
step, we will focus on the uniqueness of the PDEs (19). 

3.2.2. The uniqueness of kernel function 

In the following, the iterative method is applied to prove that the PDEs (19) has a unique solution. 

Firstly, the function 0  is defined as 

      0
1, 2G          (32) 

and set the following recursive formula, for  

      
1

1

2 0

1
, , ,

4
n

G
b d d

 


       


      (33) 

Then, one obtains 
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        0
1 1 2, 2 2 2

L L
G G G                     (34) 

Next, let 22
L

N G   , we assume that the following equation holds for some  

    
,

!

n

n nNP
n

 
 


    (35) 

Given the recursive formula (33), 1n  satisfies the following relationship 

 

   

 

     

1

1

1

2 0

2 0

1

2 1

1
, ,

4

4 !

2 1 !

n n

L G

n
nL

G

n
nL

b d d

b NP
d d

n
b NP

G G
n

 



 



     

   

 















  

 

  


 

    (36) 

Therefore, it can be shown that (35) holds for a given constant P , and 
 2 1

2
L

G G b
P


 . Then, 

combining (36) with it, one obtains the solution of (31) as 

    
0

, ,n

n

   




    (37) 

which is a continuous function. From (31), it follows that if b  is a continuous function, then
Therefore, the following conclusion is drawn. 
Theorem 1. Let  Then (19) has a unique solution 

 
By making 2s G  in (8), and combining the boundary conditions in (7) and (9), the control 

law  t  of the q-system as is derived as 

      2

1
2 , ,

G

G
t F G Q t d       (38) 

and the control law  t  of the MAS (1)–(3) is 

         2

1
2 , , ,

G d

G
t F G z t z t d        (39) 

This completes the formation control design for the MAS. Next we will pay attention to the 
stability of MAS under the action of the formation control. Before that, it is necessary to analyze the 
equivalence of the original system q-system and the target system g-system. Then, it further shows that 
the stability of the original system q-system is ensured by proving that the target system g-system is 
stable. 
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3.3. Conversion Between q-system and g-system 

Define the following map [35] 

 
       

     

1 2 1 2
1 2 1 2 1 2 1 2

1 2 1 2 1 2

: , , , ,

, , ,

L LH G G L G G H G G L G G

q q q q y y

   

 
 (40) 

where 1 2,y y  are respectively defined as 

        
1

1 1 1, , ,
S

G
y s q s t F s q t d       (41) 

        
1

2 2 2, , ,
S

G
y s q s t F s q t d       (42) 

The defined map is linear and continuous, thus there exists a constant 1 0K  , such that 

    1 2 1 21 2 1 1 2, ,
H L H L

q q K q q
 

    (43) 

The map   maps solutions     , tq t q t  of (44) to solutions          , : ,t ty t y t q t q t   

of (45). 

 
         

       2

1
1 2 2

,
, , ,

, 0, , , ,

s
tt ss

G

G

q s t
q s t q s t s q s t

s

q G t q G t F G q t d



  


  


   

  (44) 

 
         

   1 2

,
, , ,

, 0, , 0

s
tt ss

y s t
y s t y s t c s y s t

s
y G t y G t


  


  

  (45) 

The map 1  that convert q-system into g-system is reversible, and the inverse transformation is 

        
1

, , , ,
s

G
q s t y s t J s y t d       (46) 

Similar to the integral transformation (8), the kernel functions  ,J s    in (46) can be 

computed. The existence of  ,J s    can be shown by a method similar to that in Section 3.2. 

Therefore, the inverse map exists 

 
       

     

1 1 2 1 2
1 2 1 2 1 2 1 2

1
1 2 1 2 1 2

: , , , ,

, , ,

L LH G G L G G H G G L G G

y y y y q q





   

 
  (47) 

Furthermore, there exists a constant 2 0K   such that 

     1 21 2

1
1 2 2 1 2, ,

H LH L
y y K y y


    (48) 
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Consequently, the norm of the q-system is equivalent to the norm of the g-system. Therefore, it is 
only to prove the stability of the g-system (9), which can guarantee the stability of the q-system (7). 

4. Stability analysis 

This section will discuss the stability of g-system (9). The candidate Lyapunov function is chosen 
as 

      1 2t t t      (49) 

where 

   2 2 2
1

1 1 1

2 2 2s tt g g g      (50) 

    2

1

* *
2 2

G

t tG
t gg g g sds


     (51) 

with 0 1   being a constant. To prove the stability of g-system, the following lemma is firstly 
presented. 
Lemma 1. The upper and lower bounds of the candidate Lyapunov function  t  are  1 1 t 

 
and 

 2 1 t  , respectively. This means that 

      1 1 2 1t t t       (52) 

where 1  and 2  are two positive constants, whose definition will be given later. 

Proof. Applying Young’s inequality to  2 t , one gets 

   2 2 2

1 1 1

2 2* * 1
2

12 2 2

G G G

t t tG G G
t gg g g sds g sds g sds

 


         (53) 

where 1 0   is a constant. Let  0 1 1max ,C    , and one gets    2 0 1t C t   . Therefore, it 

is satisfied that 0 1C   by choosing   small enough, and then 

          0 1 0 11 1C t t C t        (54) 

Define 1 0 2 01 , 1C C     , then      1 1 2 1t t t       holds. 

This completes the proof of Lemma 1. Following, the time derivatives for  1 t  and  2 t  

are caculated, respectively. 
Firstly, taking the derivative of  1 t  along time, one has 

        2 2 2

1 1 1

* * * * * *
1

1 1 1

2 2 2

G G G

s st s st t tt t tt t tG G G
t g g g g sds g g g g sds gg g g sds          (55) 
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To proceed, integrating the first term by parts and substituting the target system (9) into the second 
term of the above equation, one gets 

 

       

   

2 2 2

1 1 1

2 2

1 1

* * * * * *
1

*
* * * * *

1 1 1

2 2 2

1 1

2 2

G G G

ss t ss t s t s t t tG G G

G G
s s

t ss t t t ss t tG G

t g g g g sds g g g g ds gg g g sds

g g
g g g c s g g sds g g g c s g g sds

s s

       

           
  

  

 



 (56) 

Then, it is simplified to obtain that 

      2 2

1 1

* *
1

1 1
1 1

2 2

G G

t tG G
t c s g g sds c s gg sds             (57) 

By utilizing Young’s inequality yields 

      2 2

1 1

2 2
1 1 1

G G

tG G
t c s g sds c s g sds             (58) 

Taking the time derivative of  2 t  and substituting (9) into  2 t , one has 

    2 2

1 1

* * 2
2 2

G G

tt tt tG G
t gg g g sds g sds

       (59) 

Performing integration by parts on the second term, one obtains 

 

   

 

2 2

1 1

2

1

*
* 2 2

2

* * 2

1

2

1

2

G G
s

ss tG G

G
s

ssG

g
t gg g c s g sds g sds

s

g
g g g c s g sds

s


 

     
 
    
 

 





 (60) 

Then, simplifying it, one gets 

    2 2 2

1 1 1

2 2 2
2

G G G

s tG G G
t g sds c s g sds g sds          (61) 

The time derivative of (49) yields      1 2t t t       . Combining (58) with (61), one 

obtains 

        2 2 2

1 1 1

2 2 21 1 1
G G G

s tG G G
t g sds c s g sds c s g sds                    (62) 

Based on the assumptions of  c s  and  d s , it holds that 

    3t t     (63) 

where     3 min 2 , 2 1 2, 2 1 0c c           is a constant.  
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Finally, according to (52) and (63),  t  is further expressed as 

    t t     (64) 

where 3 2 0    . 

Through the above analysis, the following lemma for the g-system is obtained. 
Lemma 2. There exist constants 1 0      and  3 0K   , such that for any initial condition 

  1 2
0 1, Lg g H L   , the g-system (9) with the boundary compatibility  0 1 0g G   ,  1 1 0g G   , 

 0 2 0g G   and  1 2 0g G    is exponentially stable and its solution satisfies 

     1
1 21 2 3 0 1, , , ,
LL

t
t H LH L

g t g t K e g g


    (65) 

Proof. Multiplying te   on both sides of (64), one has 

    t tt e t e      (66) 

The above equation is equivalent to 

    0td
t e

dt
   (67) 

Then, integrating (67) with respect to t  from 0 to t , one gets 

    0tt e     (68) 

Thus, (65) holds. 
This completes the proof of Lemma 2. 
Based on equivalence between the q-system and the g-system in Section 3.3, it is concluded that 

the q-system is also exponentially stable. Detailed conclusion is stated as follows. 
Theorem 2. There exists a unique solution of the closed-loop system (7) with the control (38) and 
the initial condition   1 2

0 1, Lq q H L   satisfying the compatibility condition 

      2

1
0 2 2 0, ,

G

G
q G F G q t d      (69) 

Moreover, there exists positive constants 2  and 4K , such that the q-system (7) is exponentially 

stable and its solution satisfies 

     2
1 21 2 4 0 1, , , ,
LL

t
t H LH L

q t q t K e q q


     (70) 

Together with the above analysis, it is obtained that the MASs (1)–(3) are stable under the action 
of the boundary control law (39). 

Remark 1. The differences and advantages of using PDEs to model multi-agent systems versus 
ODEs modeling focus on two main points. Firstly, if the ODEs are used for modeling, each agent 
corresponds to one ODE. As the number of agents increases, the number of ODEs also increases. 
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Therefore, when MASs have a large number of nodes, it is difficult to add control inputs to each agent. 
While PDEs can model large-scale MASs based on a continuum model perspective. Secondly, the 
dynamics of the agent actually has spatio-temporal distribution characteristics. PDEs can not only 
describe the temporal characteristics, but also simulate the spatial characteristics. Thus, the PDEs-
based approach has the advantage of large-scale evolution of MASs compared with the ODEs model. 

Remark 2. It is worth noting that the modeling of MASs using the PDE framework must focus 
on the well-posedness problem of the closed-loop system (i.e., the existence of uniqueness of the 
system solution). In this paper, the considered MASs satisfies the well-posedness as a prerequisite for 
its control design. Compared with the ODE model, the PDE model involves spatial and temporal 
variables and is more difficult to analyze for well-posedness. In this paper, the problem of the well-
posedness of MASs is properly handled and solved by using the variable substitution method and the 
iterative method, and the existence of uniqueness of the closed-loop system solution is guaranteed. 

5. Simulation 

To verify the effectiveness of the proposed distributed control law, 31  agents are simulated on a 
chain topology. We consider the space step as    2 1 1s G G M    . Thus, each agent on the chain 

topology can be represented as  1 1ks G k s    , 1,2, ,k M  . The positions of the first leader, 

second leader, and followers are denoted as 1z , Mz  and , 2, , 1kz k M  , respectively. Next, the 

PDE model (1) is discretized using the finite difference approximation method, which yields the 
control laws of leaders and followers. 

The control law of the first leader is 

 1 1
dz z  (71) 

The control laws for followers are 

  
 

 1 1 1 1
2

2 1
, 2, , 1

2
k k k k k

k k
k

z z z z z
z t k z k M

s ss
     

    


   (72) 

Using Simpson’s numerical integration rule, the second leader’s control law is obtained as 

    
1

1

M
d d d

M M k k k k M M M M
k

z z a F z z a F z z




      (73) 

where ka  is the Simpson coefficients, and according to Simpson’s rule of numerical integration, ka  

is 

 

, 1,
3

4
, 2,4, , 1

3
2

, 3,5, , 2
3

k

s
k M

s
a k M

s
k M

 


  


  





  (74) 
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in which M  must be chosen as an odd number according to Simpson’s rule. 

 

Figure 4. Controller Kernel function. (a) Real part of the controller Kernel function; (b) 
Image part of the controller Kernel function. 

 

Figure 5. Agents formation snapshots. Purple indicates the desired formation. Red 
represents the first leader, blue represents followers, and green represents the second leader. 
(a) 0.4st  ; (b) 2st  ; (c) 3.6st  ; (d) 4st  . 

The topology parameters are selected as: 1 0.2G   and 2 1G  . The spatial-varying functions are 

chosen as    0.154 0.075cos 5.14 0.0317s s i      and    0.042 0.075cos 5.1c s s   0.03i  

The finite difference method is applied to discretize the hyperbolic PDE (21) satisfied by the kernel 
 ,F s  , which leads to the kernel gain  2 ,F G   of the controller , as shown in Figure 4. Then, 

under the distributed control laws (71)–(73), the evolution of the agents from the initial formation 
(circular) to the desired formation (V-shaped) is simulated. The initial position is the circle 

       0 2 23cos 2 0.18 3 sin 2 0.18z s s G i s G       and the desired position is V-shaped 

           1 2 1 2

2 07 3.67 17 6 5 11 17 6 3dz s i J i s i Y i s i         . The first leader reaches the 
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desired position directly. The second leader communicates with its neighbors in both directions under 
the action of the actuator, and thus gradually reaches the desired position with the followers. The 
transient evolution process is shown in Figure 5. The above analysis and the simulation results show 
that the proposed control scheme is effective. 

6. Conclusions 

In this paper, a distributed cooperative deployment scheme was constructed using the Volterra 
integral transformation, which is used for two-dimensional spatial deployment control of the MAS on 
a one-dimensional chain topology. The communication graph of agents is determined by the 
discretization of the PDE space derivatives, which leads to a distributed protocol in which each agent 
only needs to exchange information with its neighbors. The well-posedness of the kernel function in 
the control scheme is proved using the iterative and inductive methods, so that the feasibility of the 
control protocol was guaranteed. Then, the stability of the closed-loop system is illustrated by a 
rigorous mathematical analysis combined with Lyapunov stability theory. Finally, the effectiveness of 
the proposed control protocol is verified by simulation. Moreover, considering finite-time control, 
event-triggered control and bipartite cooperative control of MASs based on the PDE continuum model 
will be significant and interesting. All these issues will be our future work. 
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