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Abstract: While competing endogenous RNAs (ceRNAs) play pivotal roles in various diseases, the 
proliferation and differentiation of keratinocytes are becoming a research focus in psoriasis. Therefore, 
the three commitment points for S phase entry (CP1–3) cell cycle model has pointed to a new research 
direction in these areas. However, it is unclear what role ceRNA regulatory mechanisms play in the 
interaction between keratinocytes and the immune system in psoriasis. In addition, the ceRNA 
network-based screening of potential therapeutic agents for psoriasis has not been explored. Therefore, 
we used multiple bioinformatics approaches to construct a ceRNA network for psoriasis, identified 
CTGF as the hub gene, and constructed a ceRNA subnetwork, after which validation datasets 
authenticated the results' accuracy. Subsequently, we used multiple online databases and the single-
sample gene-set enrichment analysis algorithm, including the CP1–3 cell cycle model, to explore the 
mechanisms accounting for the increased proliferation and differentiation of keratinocytes and the 
possible roles of the ceRNA subnetwork in psoriasis. Next, we performed cell cycle and cell trajectory 
analyses based on a single-cell RNA-seq dataset of psoriatic skin biopsies. We also used weighted gene 
co-expression network analysis and single-gene batch correlation analysis-based gene set enrichment 
analysis to explore the functions of CTGF. Finally, we used the Connectivity Map to identify MS-275 
(entinostat) as a novel treatment for psoriasis, SwissTargetPrediction to predict drug targets, and 
molecular docking to investigate the minimum binding energy and binding sites of the drug to target 
proteins. 
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1. Introduction 

Psoriasis is a complex chronic inflammatory disease at the genetic, genomic, and cellular levels, 
with scaling, erythema, and thickening as characteristics of this condition [1]. Patients with psoriasis 
have a reduced quality of life compared with healthy individuals and are at an increased risk of 
developing depression, cardiovascular diseases, and psoriatic arthritis [2]. It takes approximately 50 
days for basal keratinocytes to differentiate into anucleate corneocytes in normal skin but merely 
approximately five days in psoriatic lesions [3]. Moreover, the classical view holds that keratinocyte 
progression and differentiation are mutually exclusive (keratinocytes stop cell cycle progression before 
differentiation). However, this hypothesis does not explain the growth of keratinocytes during 
differentiation and the epidermal acanthosis observed in psoriatic lesions [4]. Nevertheless, studies 
have shown that the differentiation of keratinocytes can occur within any cell cycle phase [5,6], which 
is a breakthrough from the previous view. 

Although keratinocytes play a pivotal role in psoriasis development, whether the trigger of 
psoriasis is keratinocytes or immune cells remains unclear. It has also been revealed that keratinocytes 
and the immune system have complex interactions [7]. Furthermore, while the cell cycle dysregulation 
of keratinocytes leads to keratinocyte proliferation and differentiation, promoting immune cell 
infiltration via antimicrobial peptides and chemokines, immune cells also stimulate the formation of a 
cytokine microenvironment that promotes keratinocyte proliferation and differentiation [7]. 
Specifically, researchers have demonstrated the effects of certain cytokines, such as tumor necrosis 
factor α (TNF-α) and interferon γ (IFN-γ), in cell cycle-related signaling pathways [8,9]. In addition, 
some cell cycle-regulating proteins, for instance, transforming growth factor-beta (TGF-β) [7], p53 
protein [10], MYC protein, and retinoblastoma protein (Rb) [11], play crucial roles in regulating 
keratinocyte proliferation and differentiation. However, these roles require further elucidation. 

In the classic cell cycle model, unphosphorylated Rb accompanies newborn cells into the G1 
phase. Here, cyclin D-CDK4/6 progressively phosphorylates Rb and partially activates E2F1, E2F2, 
and E2F3A (E2Fs) due to the action of protein phosphatase 1 (PP1). Owing to this process, increased 
transcription of CCNE1 and CCNE2 is observed, and cyclin E-CDK2 further phosphorylates Rb to 
activate E2Fs in late G1 [12]. The hyperphosphorylation of Rb persists throughout the cell cycle [13]. 
Although several studies have observed that most newborn cells emerge with hyperphosphorylated Rb 
based on this cascade, only a few cells are affected by PP1 [14–16]. Furthermore, it has also been 
shown that at the end of the G1 phase, cyclin E-CDK2 does not phosphorylate Rb further, and Rb 
phosphorylation by cyclin D-CDK4/6 is sufficient to maintain the entire cell cycle [17]. These studies 
present a different perspective from the classic cell cycle model. In 2020, Hume et al.[18] first proposed 
the CP1–3 (three commitment points for S phase entry) model of the cell cycle, advocating that 
mitogens compete with DNA damage to regulate whether cells enter the S phase. They divided the 
specific mechanism into three regulatory points, CP1, CP2 and CP3, mainly controlled by cyclin D 
and p21, including p53, DNA damage response (DDR), and E2Fs, respectively, providing a new 
direction for researchers. 

Several deep learning- and artificial intelligence-based methods for cell cycle classification, such 
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as label-free cell cycle analysis based on imaging flow cytometry [19] and cell image analysis using 
deep learning methods [20], have been recently developed. Alternatively, applying the traversal theory 
to the cell cycle, cell cycle markers can be used to infer a cell's current phase of the cell cycle, as well 
as the lengthening/shortening of a particular phase. Liu et al. constructed a computational framework 
called DLGene based on convolutional neural networks for cell cycle regulatory gene detection [21], 
and Huang et al. used multiple machine learning approaches to identify new potential cell cycle-related 
genes based on single-cell RNA sequencing (scRNA-seq) data [22]. With the development of 
transcriptomics techniques, various methods to analyze time-course expression profile data and gene 
regulatory networks have emerged. For instance, Huang et al. developed GeneReg, a time delay linear 
regression model-based method for analyzing time-delayed gene regulatory networks [23]. Moreover, 
Liu et al. proposed a network inference method, IMBDANET, based on an improved Markov blanket 
discovery algorithm to analyze gene regulatory networks [24]. Kordmahalleh et al. developed a 
hierarchical recurrent neural network for identifying time-delayed gene interactions [25], while Yang 
et al. proposed a restricted gene expression programming (RGEP)-based parallel algorithm MPRGEP 
[26]. These studies provide practical methods for constructing dynamic gene regulatory networks and 
simulating interactions in time-delayed gene regulatory networks, which can be applied to cell cycle 
and differentiation studies. Moreover, to better reconstruct the cell cycle phases from gene expression 
data, the number of parameters in scRNA-seq can be increased to thousands, and the data can be 
processed by bioinformatics methods, such as the CellCycleScoring function in the R language “Seurat” 
package [27]. 

With respect to skin cells and psoriasis, Grabe et al. simulated the pathological conditions of 
psoriasis by altering transit amplified cells [28], and Zhang et al. constructed a model to study 
epidermal homeostasis under normal and pathological conditions and simulated keratinocyte 
proliferation and differentiation in psoriasis, predicting homeostatic patterns [29]. Moreover, Ohno et 
al. constructed a model to simulate the dynamic equilibrium between the epidermis and dermis [30]. 
However, it remains unclear how to systematically analyze the cell cycle of skin cells in patients with 
psoriasis. 

Since the competing endogenous RNA (ceRNA) hypothesis was first deduced by Salmena et 
al. [31] in 2011, many studies have confirmed this hypothesis. For the first time, the ceRNA hypothesis 
connects the functions of long noncoding RNA (lncRNA), messenger RNA (mRNA), and microRNA 
(miRNA), conceiving the regulatory network between them.  

The increase in omics data allowed computational biologists to develop methods for mining RNA-
RNA crosstalk and RNA-disease relationships, especially those involving ceRNAs. Cancerin [32], a 
LASSO regression-based method; Cernia [33], a support vector machine-based method; and SPONGE 
[34], a method based on multi-miRNA sensitivity correlation analysis have been developed to analyze 
RNA–RNA interactions based on statistics. Zhang et al. developed models for the prediction of 
lncRNA–miRNA association based on network distance analysis [35] and a semi-supervised 
interactome network [36]. Liu et al. proposed a deep forest-based approach (DFELMDA) to predict 
miRNA–disease associations [37]. Other machine learning-based models, such as graph neural networks 
(GNN), have also been used for predicting the association between biomarkers and diseases [38,39]. 

Consequently, five studies have constructed the lncRNA–miRNA–mRNA regulatory network for 
psoriasis based on the ceRNA theory [40–44]. In addition, Deng et al. analyzed gene regulatory 
networks in psoriasis using a tree-based machine learning approach [45]. These studies have served as 
a foundation for our study. 
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However, we discovered that most of these studies focused on the genetic level. Moreover, how 
the cell cycle of keratinocytes is regulated in psoriasis, how the CP1-3 regulatory points of the cell 
cycle function, and how the lncRNA-miRNA-mRNA regulatory network contributes to the overall 
pathogenesis of psoriasis, especially its relationship with the cell cycle, immune cells, immune 
functions, and immune pathways, remain unclear. In addition, potential therapeutic drug screening and 
molecular docking of small-molecule drugs with protein targets have also not been explored. Therefore, 
this study started from the above aspects to further develop previous research results.  

First, we constructed a lncRNA–miRNA–mRNA regulatory model of psoriasis based on the 
ceRNA theory and microarray datasets different from those in previous studies. Then, we identified a 
hub gene in the ceRNA network and verified the diagnostic value of the hub gene for psoriasis by 
validating datasets and constructing a ceRNA subnetwork. Next, we followed the “cell cycle-
antimicrobial peptide and chemokine-immune cells-cytokine-cell cycle” trail and the CP1-3 cell cycle 
model to analyze CP1-3 cell cycle regulatory point changes, including those of immune cells, immune 
functions, and immune pathways in psoriatic lesions, respectively. We also analyzed the relationship 
between the ceRNA subnetwork and CP1-3 cell cycle regulatory points, immune cells, and immune 
functions and pathways, deepening knowledge of the cell cycle of keratinocytes in psoriasis, including 
the interaction between keratinocytes and the immune system, to reveal the possible role of the ceRNA 
regulatory mechanism in the above processes. Finally, using the Connectivity Map (CMap), we 
screened potential therapeutic drugs for psoriasis, after which we used molecular docking to visualize 
the interaction patterns between a small-molecule drug and its protein targets. 

2. Methods and materials 

2.1. Data acquisition 

Datasets that met the following criteria were included in our study: 1) studies that focused on 
patients with psoriasis, 2) studies whose data and platform information were complete and available 
for our research, and 3) studies that included psoriatic lesions and normal skin tissue samples. 
Nevertheless, those that included lesions and uninvolved skin tissue samples from patients with 
psoriasis were also selected. As a result, five datasets (GSE181318, GSE145054, GSE14905, 
GSE106992 and GSE117239) were downloaded from the GEO database. Specifically, GSE181318 
contains lncRNA, circRNA, and the mRNA expression data from three psoriatic lesions and three 
normal skin tissue samples; GSE145054 contains miRNA expression data from four psoriatic lesions 
and four normal skin tissue samples; and GSE14905 contains mRNA expression data from 33 psoriatic 
lesions and 21 normal skin tissue samples. Subsequently, we used the three above datasets to construct 
a ceRNA network. While GSE106992 contains mRNA expression data of 67 lesions and 67 uninvolved 
skin tissue samples from untreated psoriasis patients, GSE117239 contains similar data from 83 lesions 
and 84 uninvolved skin tissue samples from untreated psoriasis patients, which we used to validate the 
accuracy of our results. Additionally, since all data were downloaded from a publicly available 
database (Gene Expression Omnibus), ethics committee approval was unnecessary. 

2.2. Data pre-processing and identification of differentially expressed lncRNAs, miRNAs and mRNAs 

First, array probes in the three datasets were converted to matching gene symbols according to 
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platform annotation information. Then, while the Perl language was used for gene biotype re-
annotation of the lncRNA and mRNA expression data in GSE181318, the R software's "limma" 
package was used to normalize the raw data, after which differentially expressed lncRNAs 
(DElncRNAs) were identified, following the criteria of the adjusted P-value < 0.05 and |log2 (fold 
change)| > 1. Subsequently, the raw mRNA expression data in GSE181318 and GSE14905 were 
merged, and batch effects were removed using the R software “SVA” package. Next, we used the R 
software's "limma" package to normalize raw miRNA expression data in GSE145054 and the merged 
mRNA expression data. After that, we identified differentially expressed miRNAs (DEmiRNAs) and 
mRNAs (DEmRNAs), using the criteria of the adjusted P-value < 0.05 and |log2 (fold change)| > 1. 
Finally, the raw data in GSE106992 and GSE117239 were normalized using the R software's "limma" 
package for subsequent validation. 

2.3. Construction of the ceRNA regulatory network 

With the file “highly conserved microRNA families” downloaded from the miRcode database, 
we predicted miRNAs binding to DElncRNAs. These miRNAs were then intersected with DEmiRNAs. 
Subsequently, we constructed a ceRNA network using the miRNAs at the intersection. First, the target 
mRNAs of miRNAs at the intersection were predicted using the miRDB and TargetScan databases. 
Only mRNAs with the same result in both databases could be exported. Then, the exported mRNAs 
were intersected with DEmRNAs. The mRNAs in the intersection were also used to construct a ceRNA 
network, after which we followed two principles to construct a ceRNA network: 1. each miRNA in the 
network must have a regulatory relationship with one or more lncRNAs and mRNAs simultaneously 
and 2. in the regulatory axis, the upregulation or downregulation trend of lncRNA should be similar to 
that of mRNA but opposite to that of miRNA. Finally, we used Cytoscape (v.3.9.0) to construct the 
lncRNA-miRNA-mRNA regulatory network of psoriasis. 

2.4. Pathway analysis 

We performed gene enrichment using gene set enrichment analysis (GSEA, v.4.1.0). First, the 
merged and normalized mRNA expression data and groups were converted into “gct” and “cls” files, 
respectively, for submission to the GSEA software. Accordig to the criteria of the nominal P-value < 
0.05 and a false discovery rate (FDR) < 0.025, the signaling pathways that were significantly enriched 
with differentially expressed genes between psoriasis and normal groups were uncovered. Then, GO 
annotation and KEGG pathway enrichment analysis of mRNAs in the ceRNA network were conducted 
using the R software “clusterProfiler” package. Finally, signaling pathways that were significantly 
enriched were identified, using P-value < 0.05 as the criterion. 

2.5. Construction of a protein–protein interaction (PPI) network and ceRNA subnetwork 

The PPI network of mRNAs in the ceRNA network was constructed using the STRING database, 
setting the confidence score to > 0.500 and excluding noninteracting genes to simplify the network. 
Then, the simplified network was imported into Cytoscape (v.3.9.0). Subsequently, referring to the 
methods of previous studies [46,47], we calculated the degree, betweenness, and bridging values of 
each node in the network using CentiScaPe v.2.2. A top-ranking gene in terms of degree, betweenness, 
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and bridging values was then identified simultaneously as the hub gene, after which the expression of 
the hub gene was verified in the GSE106992 and GSE117239 datasets. Finally, we obtained its 
upstream miRNA and lncRNAs from the previous ceRNA network and then constructed a ceRNA 
subnetwork based on this hub gene. 

2.6. Analysis of lncRNAs and miRNA in the ceRNA subnetwork 

We used the ImmLnc database [48] to analyze the relationship between lncRNAs in the ceRNA 
subnetwork and various immune pathways and cells. Significant signaling pathways associated with 
the miRNA of the ceRNA subnetwork were first obtained using DIANA-miRPath v.3.0, based on 
TarBase (P < 0.05). Then, we used the ncRI database (http://www.jianglab.cn/ncRI/) [49] to finally 
retrieve the miRNA expression from the ceRNA subnetwork during inflammation. 

2.7. Immune infiltration algorithm 

We derived marker genes for five CP1, four CP2, and three CP3 cell cycle regulatory point-
associated pathways. Among them, the marker genes of the DDR pathway were obtained from a 
previous paper [50], and the marker genes of the remaining 11 pathways were derived from 11 clusters. 
We also derived marker genes for 18 immune functions and pathways from 18 clusters, after which we 
defined the above marker genes as metagenes using the GSVA algorithm and then encompassed the 
marker genes of 28 types of immune cells [51]. Subsequently, we used the R software “GSVA” package 
to calculate normalized ssGSEA scores for each sample in the previously merged and normalized 
mRNA expression data to evaluate the enrichment levels of cell cycle-related pathways, immune cells, 
immune functions, and pathways in each sample. We also compared the normalized ssGSEA scores of 
the psoriasis group with those of the normal group. Finally, Spearman’s rank correlation coefficients 
and P-values were calculated for the mRNA in the ceRNA subnetwork with each cell cycle-related and 
immune pathway, including those for immune cell and function. Details of these metagenes are listed 
in Supplementary File 1. We used TIMER [52] to investigate the relationship between the expression 
level of the hub gene and immune infiltration in pan-cancer. Because the pathogenesis of melanoma is 
similar to psoriasis [53], we focused on the relationship between the expression level of the hub gene 
in melanoma with the abundance of six types of infiltrating immune cells: CD8+ T cells, CD4+ T cells, 
B cells, dendritic cells, macrophages, and neutrophils. 

2.8. Acquisition and analysis of scRNA-seq data 

A scRNA-seq dataset (GSE176509) containing skin biopsy details of two patients with psoriasis 
was downloaded from the GEO database. First, we used the R language “Seurat” package to normalize 
the scRNA-seq data and perform quality control, excluding cells with a detected gene number of ≤ 
50 and a proportion of mitochondrial genes per cell of ≥ 5%. Then, we normalized the gene expression 
of the cells using the LogNormalize function and identified the 1500 most highly variable genes. 
Subsequently, we used principal component analysis (PCA) and t-distributed stochastic neighbor 
embedding (t-SNE) methods to cluster cell samples based on the 1500 most variable genes. We used 
the CellCycleScoring function of the “Seurat” package to infer the S phase and G2M phase scores of 
every single cell and subsequently classified the cell cycle state of each cell into G1, S or G2M phases. 
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We also used the R language “SingleR” and “celldex” packages for cell type annotation and the R 
“monocle” package for pseudotime analysis. 

2.9. Weighted gene correlation network analysis (WGCNA) and single-gene batch correlation 
analysis-based GSEA 

WGCNA was constructed using the R language “WGCNA” package. First, the soft thresholding 
power (β) was set to 13, and the reliability of genes belonging to modules was described using module 
membership (MM). Next, the correlation between modules and clinical traits was calculated. We also 
calculated gene significance (GS) to assess the correlation between each gene and clinical traits. As a 
result, the hub genes of each module were obtained using the criteria of GS > 0.5 and MM > 0.8, 
including the correlation of each module with the standardized ssGSEA score of each type of immune 
cell. Finally, the expression levels of DEmRNAs were analyzed for batch correlation and ranked using 
Spearman’s rank correlation coefficients with the expression level of the hub gene, followed by GSEA 
using the R language “clusterProfiler” package to assess the functions of the hub gene. The code used 
during single-gene batch correlation analysis-based GSEA is shown in Supplementary File 2. 

2.10. Screening of potential therapeutic drugs and molecular docking 

CMap was screened for potential therapeutic agents. With the Perl language, gene symbols of up-
regulated and downregulated mRNAs in the ceRNA network were translated into matching microarray 
probes and submitted to CMap. Drugs with negative mean values, enrichment correlation coefficients, 
and P < 0.05 were identified as promising therapeutic drugs. Subsequently, we retrieved the SMILES 
of the small-molecule drug from the PubChem database and used the SwissTargetPrediction to predict 
the target genes of the drug. First, the target genes were intersected with the ceRNA network’s mRNAs. 
Then, the STITCH database was used to explore the interactions between the proteins encoded by the 
intersection/hub genes and the drug. Next, we searched the UniProt database for receptor proteins 
encoded by the intersection genes and downloaded the 3D structures of these proteins from the RCSB 
PDB database. Simultaneously, the 2D structure of the small molecular ligand was downloaded from 
the PubChem database, after which its energy-minimized 3D structure was calculated and derived 
using ChemBio3D (v.14.0). We also used PyMOL (v.2.5.2) to remove water molecules and separate 
ligands from these protein structures. However, AutoDockTools (v.1.5.7) was used to hydrogenate 
protein structures, after which we saved them as “PDBQT” files and constructed docking grid boxes 
for the protein structures. The 3D structure of the small molecular ligand was also saved as a “PDBQT” 
file using AutoDockTools (v.1.5.7). Finally, while AutoDock Vina (v.1.1.2) was used to dock the 
receptor proteins with the small-molecule ligand, PyMOL (v.2.5.2) was used to visualize the 
conformations with the lowest binding energy. 

3. Results 

3.1. CCND1 was significantly downregulated in psoriatic lesions 

The workflow of this study is shown in Figures 1 and 2. Investigations identified 103 lncRNAs 
(42 were up-regulated and 61 were downregulated), 50 miRNAs (18 were up-regulated and 32 were 



13490 

Mathematical Biosciences and Engineering  Volume 19, Issue 12, 13483–13525. 

downregulated), and 1159 mRNAs (616 were up-regulated and 543 were downregulated) to be 
differentially expressed between psoriatic lesions and normal skin tissue samples using an adjusted P-
value < 0.05 and |log2 (fold change)| > 1 as criteria (Figure 3; Supplementary File 3). Notably, CCND1, 
encoding cyclin D1, was downregulated in psoriatic lesions (log2 (fold change) = −1.63, adjusted P-
value = 9.80×10−15), which contradicts the results of some previous studies [54–56] and is consistent 
with only those of a few studies [57,58]. Furthermore, the classic cell cycle model suggested that the 
G1/S transition phase was  inhibited. However, the CP1-3 cell cycle model suggested that cells in 
psoriatic lesions (predominantly keratinocytes) were blocked from passing through CP1 and CP2 [18]. 

 

Figure 1. Workflow for constructing a three commitment points for S phase entry cell cycle 
model and immune-related ceRNA network. 
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Figure 2. Workflow for exploring novel therapeutic options for psoriasis. 

3.2. CeRNA network construction 

From the miRcode database, 207 miRNAs binding to DElncRNAs were identified. The 207 
miRNAs were intersected with 50 DEmiRNAs, and there were five miRNAs in the intersection. The 
overlap p-value is 0.01822255 (Figure 4A). We also identified 2311 target mRNAs at five intersecting 
miRNAs using the TargetScan and miRDB databases. Furthermore, while 2311 target mRNAs 
intersected with 1159 DEmRNAs, 150 mRNAs were also identified. The overlap p-value is 
0.007226333 (Figure 4B). Then, based on the ceRNA hypothesis, Cytoscape (v.3.9.0) was used to 
construct a ceRNA network. The ceRNA network contained ten lncRNAs, four miRNAs, and 89 
mRNAs (Figure 5). Specifically, we also observed that the miRNA that bound CCND1 : hsa-miR-17-
5p was associated with the G1 phase cell cycle arrest [59], which suggests that cells in psoriatic lesions 
were prevented from entering the S phase. 
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Figure 3. Identification of DElncRNAs, DEmiRNAs, and DEmRNAs. (A) Heatmap 
showing the 103 differentially expressed lncRNAs. (B) Heatmap showing the 50 
differentially expressed miRNAs. (C) Heatmap showing the top 50 significantly up-
regulated and significantly downregulated mRNAs in the psoriasis group compared with 
the normal group. Red squares represent up-regulated genes and blue squares represent 
down-regulated genes. The deeper the color, the more significant the up- or down-
regulation of the gene. [adjusted P < 0.05 and |log2 (fold change)| > 1 were the cutoff 
criteria]. N, normal; P, psoriasis. 
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Figure 4. CeRNA network construction. (A) Venn diagram showing the five overlapping 
miRNAs. (B) Venn diagram showing the 150 overlapping mRNAs. The overlap p-values 
were calculated using Fisher’s exact test. 

 

Figure 5. The lncRNA-miRNA-mRNA network in psoriasis. The ovals, rectangles, and 
arrows represent lncRNAs, miRNAs, and mRNAs, respectively. For lncRNAs, dark green 
means upregulation, and light green means downregulation; for miRNAs, dark red means 
upregulation, and light red means downregulation; and for mRNAs, purple means 
upregulation, and blue means downregulation. 
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3.3. DNA damage as a significant factor in cell cycle dysregulation of psoriatic lesions 

GSEA revealed that 14 pathways were significantly enriched (nominal P < 0.05 and false 
discovery rate < 0.025) in the psoriasis group (Figure 6A), and among these pathways, the pathway 
with the highest normalized enrichment score (NES) was base excision repair (BER, NES = 1.80). 
With a nominal P < 0.05 and false discovery rate < 0.025 as the criteria, no pathway was significantly 
enriched in the normal group. However, we observed that the normal group was negatively associated 
with several pathways, such as maturity-onset diabetes of the young (NES = −1.64, P = 0.020) and 
melanoma (NES = −1.46, P = 0.040). BER is a prominent mechanism of cellular DNA repair that can 
directly remove damaged bases from DNA, displace them, and regulate many pathological states 
associated with DNA damage [60]. It not only is an isolated DNA damage repair mechanism but also 
constitutes a regulatory network together with other DNA damage repair pathways [61]. This finding 
suggests that increased DNA damage could occur in psoriatic lesions. Based on these facts, GO 
annotation and KEGG pathway enrichment analysis were performed to further investigate the 
mechanisms and pathways associated with the ceRNA network. GO annotations revealed some 
functions that were related to psoriasis, for instance, the bone morphogenetic protein (BMP) signaling 
pathway (P = 6.46×10−5) [62] and beta-catenin binding (P = 0.007) [63] (Figure 6B, Supplementary 
File 4). Notably, four of the five mRNAs enriched in the guanyl-nucleotide exchange factor activity 
were significantly downregulated (DNMBP, SH3BP5, ARHGEF10 and ARHGEF28). Alternatively, 
the KEGG enrichment analysis indicated that mRNAs in the ceRNA network were significantly 
enriched in several pathways essential to psoriasis, for instance, the Hippo signaling pathway (P = 
0.009) [64] and the TGF-β signaling pathway (TGF-β signaling pathway) (P = 0.012) [65] (Figure 6C). 
Among these pathways, the TGF-β signaling pathway is closely related to the keratinocyte’s cell cycle 
[7]. Additionally, BMP has been reported to be part of the TGF-β superfamily [66]. Hence, 
investigations revealed that mRNAs enriched in both the TGF-β and BMP signaling pathways were 
also significantly downregulated (BMP2, SMAD7, RGMB, EGR1 TMEM100 and SORL1), 
suggesting the downregulation of the TGF-β pathway in psoriasis. This finding indicates that the G1 
cell cycle arrest suggested by the significant downregulation of CCND1 and the increased production 
of β-defensins in psoriasis may be caused by other mechanisms different from the TGF-β pathway, for 
which we performed a ssGSEA. Complete GSEA, GO annotation, and KEGG pathway enrichment 
analysis results are presented in Supplementary File 4. 

3.4. CTGF is the PPI network hub and has a high diagnostic value for psoriasis 

Subsequently, we explored the mRNA interaction relationships in the ceRNA network at the 
protein level using STRING (confidence score > 0.500) and removed disconnected nodes. Next, we 
constructed a PPI network containing 35 nodes (Figure 7A). Agreeing with previous studies [46,47], 
CentiScaPe v.2.2 was used to calculate the degree, betweenness, and bridging values for each node in 
the PPI network. Table 1 lists the top five nodes in the PPI network for these parameters. Investigations 
revealed that only CTGF (degree = 5, betweenness = 286, bridging = 49) ranked in the top five for all 
three values. Therefore, two datasets (GSE106992 and GSE117239) were selected to verify the specific 
expression of CTGF, which revealed that in both datasets, the expression level of CTGF in psoriatic 
lesions was significantly lower than that in uninvolved skin tissue samples (P = 3.2×10−9, P = 
6.2×10−13), which was similar to our previous results (Figure 7B). The receiver operating characteristic 
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(ROC) curves also demonstrated that CTGF had a high diagnostic value in psoriasis samples (Figure 
7C–E). Based on these facts, we identified CTGF as the hub gene. We also identified upstream miRNA 
(hsa-miR-212-3p) and lncRNAs (LINC00173, MIR600HG and MAGI1-IT1) of CTGF from the 
ceRNA network and then constructed a ceRNA subnetwork based on these data (Figure 7F). 

 

Figure 6. GSEA, GO annotation, and KEGG enrichment analysis of mRNAs in the ceRNA 
network. (A) GSEA showing 14 significantly enriched pathways in the psoriasis group. 
The horizontal coordinate labels the expression level of the genes in the pathway and the 
vertical coordinate labels the enrichment scores. The pathways are colored differently. (B) 
Five most enriched biological processes, cellular components, and molecular functions. (C) 
Fifteen most enriched KEGG pathways. While the color intensity of the bars represents 
enrichment significance, the length of the bars represents the number of genes in a pathway. 
BP, biological process; CC, cellular component; MF, molecular function. 
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Figure 7. (A) PPI network showing mRNAs in the ceRNA network (confidence score > 
0.500). (B) Validation of CTGF expression in the GSE106992 and GSE117239 datasets. 
(C) ROC analysis of CTGF in the merged data from GSE181318 and GSE14905. (D) ROC 
analysis of CTGF in the GSE106992 dataset. (E) ROC analysis of CTGF in the 
GSE117239 dataset. (F) The ceRNA subnetwork. PN, uninvolved psoriasis skin; PP, 
involved psoriasis skin. 
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Table 1. Top five nodes in the PPI network for the degree, betweenness and bridging values. 

Degree  Betweenness  Bridging 
Node Value  Node Value  Node Value 
EGR1 6  CTGF 286  GPC6 127 
CCND1 6  BMP2 228  SDC2 107 
CTGF 5  GPC6 190  NEDD4L 84 
BMP2 4  EGR1 181  CTGF 49 
SMAD7 4  SMAD7 172  TXNIP 44 

Table 2. Immune pathways most significantly associated with each lncRNA in the ceRNA 
subnetwork and the diseases in which these relationships were detected. 

LncRNA Immune pathway 
Name P adjust Disease 

LINC00173 Antigen processing and presentation 
Antimicrobials 
Interleukin receptor 
Natural killer cell cytotoxicity 
TCR signaling pathway 

0.004 
0.004 
0.004 
0.004 
0.004 

LIHC 
LIHC 
LIHC 
LIHC 
LIHC 

MIR600HG Antimicrobials 
Chemokines 
Cytokines 
Cytokine receptors 

0.010 
0.010 
0.010 
0.010 

CHOL 
CHOL 
CHOL 
CHOL 

MAGI1-IT1 Antimicrobials 
Chemokines 
Cytokines 
Cytokine receptors 

0.005 
0.005 
0.005 
0.005 

THYM 
THYM 
THYM 
THYM 

Note: Adjusted P-value retained three decimal places. CHOL, Cholangiocarcinoma; LIHC, Liver 

hepatocellular carcinoma; THYM, Thymoma. 

3.5. Relationships between lncRNAs and miRNA in the ceRNA subnetwork and immune features 

Using the ImmLnc database (lncRES > 0.995 and adjusted P-value < 0.05), we obtained immune 
pathways significantly associated with three lncRNAs in the ceRNA subnetwork (P-value < 0.05 and 
|correlation coefficient (R)| > 0.3). Complete results are presented in Supplementary File 5. 

Tables 2 and 3 list the immune pathways most significantly associated with each lncRNA (the 
smallest adjusted P-values are also given). We identified immune cells negatively associated with each 
lncRNA (|R| > 0.4). The diseases in which these relationships existed were also detected. Our 
investigations indicated that the three lncRNAs were significantly associated with antimicrobials, 
cytokines, cytokine receptors, and chemokines, and were negatively correlated with dendritic, 
macrophage, and CD4(+) T cells. Subsequently, we used DIANA-miRPath v.3. 0, with P < 0.05 as the 
cutoff point, further revealing that hsa-miR-212-3p was significantly associated with eight signaling 
pathways, including the cell cycle, TGF-β signaling pathway, and Hippo signaling pathway. Therefore, 
based on these results, we searched the studies included in the ncRI database and discovered that the 
expression of hsa-miR-212-3p was up-regulated during inflammation [67–69], which agreed with our 
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previous results (Table 4). 

Table 3. Immune cells negatively associated with each lncRNA and |R| > 0.4, and the 
diseases in which these relationships existed were also identified. 

LncRNA 
 

Immune cell 
Name R-value Disease 

LINC00173 Dendritic 
CD8(+) T cell 
CD8(+) T cell 
CD4(+) T cell 

−0.489 
−0.475 
−0.432 
−0.425 

UVM 
LGG 
KIRP 
THCA 

MIR600HG Dendritic 
Dendritic 
Macrophage 
CD4(+) T cell 
Neutrophil 
Dendritic 
CD4(+) T cell 

−0.550 
−0.543 
−0.524 
−0.498 
−0.497 
−0.432 
−0.417 

KICH 
SARC 
SARC 
TGCT 
TGCT 
UVM 
KICH 

MAGI1-IT1 CD4(+) T cell 
Dendritic 
Macrophage 
Dendritic 
Macrophage 
Macrophage 

−0.491 
−0.464 
−0.461 
−0.443 
−0.434 
−0.428 

CHOL 
KICH 
CHOL 
BLCA 
KICH 
THYM 

Note: R-values were retained in three decimal places. BLCA, bladder urothelial carcinoma; CHOL, 

cholangiocarcinoma; KICH, kidney chromophobe; KIRP, kidney renal papillary cell carcinoma; LGG, brain 

lower-grade glioma; SARC, sarcoma; TGCT, testicular germ cell tumors; THCA, thyroid carcinoma; THYM, 

thymoma; UVM, uveal melanoma. 

Table 4. Signaling pathways significantly associated with hsa-miR-212-3p and its 
expression during inflammation. 

Pathway P-value 
Cell cycle 
Hippo signaling pathway 
TGF-beta signaling pathway 
Viral carcinogenesis 
Chronic myeloid leukemia 
Proteoglycans in cancer 
Signaling pathways regulating pluripotency of stem cells 
Oocyte meiosis 

3.98e−07 
3.98e−07 
1.70e−06 
7.18e−05 
0.0007954285 
0.007607116 
0.0135859 
0.01494916 

Expression during inflammation Study 
Upregulated 
Upregulated 
Upregulated 

Häsler et al. [67]  
Patel et al. [68] 
Dang et al. [69] 
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3.6. Cells in psoriatic lesions were inhibited from passing CP1 and CP2 but significantly passed CP3 
compared with normal skin tissue samples 

We further investigated the interaction between the cell cycle, immune cells, and immune 
dysfunction in psoriasis, including the role played by the ceRNA subnetwork. For this analysis, the R 
language “GSVA” package was used first to calculate normalized ssGSEA scores for five CP1-related 
pathways, four CP2-related pathways, three CP3-related pathways, 28 immune cells, and 18 immune 
functions and pathways in each sample. Our results showed that among the five CP1-related pathways, 
while Rb was significantly up-regulated in the psoriasis group, mitogen-activated protein kinase 
(MAPK) signaling pathway, epidermal growth factor (EGF), and fibroblast growth factor (FGF) were 
significantly downregulated in the psoriasis group. Simultaneously, MYC was not statistically different 
between psoriasis and normal groups (Figure 8A). This finding suggests a mitogen decrease in psoriatic 
lesions. Combined with GSEA, an active BER in the psoriasis group was also suggested, indicating 
that increased levels of DNA damage and reduced mitogens in the psoriasis group inhibited CDK4/6 
and triggered Rb dephosphorylation. This cascade is proposed to be accompanied by CCND1 
downregulation, where the MAPK pathway might have played a significant role. Furthermore, we 
observed that among the four CP2-related pathways, TP53 regulates transcription of genes involved in 
G1 cell cycle arrest, p53 signaling pathway, regulation of DNA damage response by p53 class mediator 
resulting in transcription of p21 class mediator and DDR pathway were significantly up-regulated in 
the psoriasis group in comparison with the normal group. (Figure 8B). This finding served as further 
evidence to prove that DNA damage in psoriasis prevailed in competition with mitogens and activated 
p21 via p53, inhibiting CDK4/6 and dephosphorylating Rb. Indeed, the above mechanisms also play 
an essential role in determining whether cells pass CP1 [18]. 

In contrast to those in CP1 and CP2, our results indicated a significant increase in cellular passage 
through CP3 in psoriatic lesions compared with normal skin tissue samples. Investigations also 
revealed a key G1/S transcription factor, the E2F transcription factor family (E2Fs), which increased 
in the psoriasis group more than in the normal group. Furthermore, while an aggregation in E2F4 and 
E2F5 was observed in the G0 phase, E2F1, E2F2 and E2F3 were unexpressed. Still, in our results, 
E2F1 (adjusted P = 0.03), E2F2 (adjusted P = 1.75E−07), and E2F3 (adjusted P = 0.004) were also up-
regulated in psoriatic lesions, which is another evidence that the cells are in a proliferative state. 
Specifically, while both the G1/S (P = 0.039) and G2/M phase transitions (P = 1.59×10−12) were more 
active in the psoriasis group than in the normal group, the G1/S phase transition in the psoriasis group 
was closer to that in the normal group relative to the G2/M phase transition (Figure 8C). Besides, while 
the normalized ssGSEA scores of 16 immune functions and pathways were significantly different 
between psoriatic lesions and normal skin samples (P < 0.05), 11 of them were significantly up-
regulated in psoriatic lesion samples, such as beta-defensins (β-defensins, P = 1.58×10−10) and IL12 (P 
= 7.24×10−10). Some immune functions and pathways, such as PI3K/AKT signaling pathway (P = 
1.38×10−8) and protein kinase C (PKC, P = 1.56×10−8), were significantly downregulated in psoriatic 
lesions compared with normal skin (Figure 9A). In addition, we discovered that the scores of 20 types 
of immune cells were significantly different between psoriatic lesion samples and normal skin samples. 
Of these, 17 were significantly increased in psoriatic lesion samples. Also, the three types of immune 
cells with the most significant differences were neutrophils (P = 1.51×10−14), activated CD4 T cells (P 
= 4.07×10−13), and activated CD8 T cells (P = 1.85×10−10), all of which were up-regulated in the 
psoriatic lesion samples, whereas the plasmacytoid dendritic cell and type 1 T-helper cell (Th1) were 
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insignificantly different (Figure 9B). The heatmap shows the correlation between immune cells (Figure 
S1A). The principal component analysis results also showed that a normalized ssGSEA score of 28 
immune cells could distinguish the psoriasis group from the normal group (Figure S1B). 

 

Figure 8. ssGSEA for five CP1-related pathways, four CP2-related pathways, and three 
CP3-related pathways (A) Differences in normalized ssGSEA scores of five CP1-related 
pathways between the psoriasis and normal groups. (B) Differences in normalized ssGSEA 
scores of four CP2-related pathways between the psoriasis and normal groups. (C) 
Differences in normalized ssGSEA scores of three CP3-related pathways between the 
psoriasis and normal groups. *p < 0.05, **p < 0.01, ***p < 0.001. 
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Figure 9. ssGSEA for 18 immune functions and pathways, and 28 immune cell types. (A) 
Differences in normalized ssGSEA scores of 18 immune functions and pathways between 
the psoriasis and normal groups. (B)  Differences in normalized ssGSEA scores of 28 
immune cell types between the psoriasis and normal groups. *p < 0.05, **p < 0.01, ***p 
< 0.001. 

3.7. Correlation of CTGF with cell cycle and immune signatures 

Among the CP1-3-related pathways, the results showed that although CTGF was strongly 
negatively correlated with some pathways, such as the DDR pathway (ρ = −0.75, P-value close to 0), 
TP53 that regulates the transcription of genes and is involved in G1 cell cycle arrest (ρ = −0.72, P-
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value close to 0), and G2/M phase transition (ρ = −0.68, P = 6.38×10−9), it was positively correlated 
with some other pathways such as the MAPK signaling pathway and fibroblast growth factor (Figure 
10A,B,C). Furthermore, among the 28 subsets of immune cells, investigations revealed that while 
CTGF was strongly and inversely correlated with some immune cells, such as neutrophils, activated 
CD4 T cells, and CD56dim natural killer cells, it was positively correlated with some immune cells, 
such as mast cells and central memory CD4 T cells (Figure 10D). Moreover, of the 18 immune 
functions and pathways, while CTGF was negatively correlated with the p38 MAPK signaling pathway, 
IFN alpha (IFN-α) and β-defensins, it was positively correlated with the PI3K/AKT signaling pathway 
and PKC (Figure 10E). Complete results of the correlation analysis are presented in Supplementary 
File 6. Using TIMER to analyze the relationship between CTGF expression and immune infiltration 
in melanoma, we found a significant positive correlation between CTGF expression and the neutrophil 
and macrophage abundance in both primary and metastatic melanoma, but not with CD8+ T cells and 
B cells. Notably, CTGF showed a significant positive correlation with the abundance of CD4+ T and 
myeloid dendritic cells in metastatic melanoma but not in primary melanoma (Figure S2). The 
complete results obtained using TIMER are shown in Supplementary File 7. 

3.8. Cell cycle and cell trajectory analyses based on scRNA-seq data 

GSE176509 contains 880 cells from skin biopsies of two patients with psoriasis. After quality 
control, 747 cells were used for subsequent analysis. Subsequently, PCA was used to first classify the 
cell samples (Figure S3). The distribution of P-values in each PC is shown in Figure S3. Using the t-
SNE method, the 747 cells were divided into 6 clusters (Figure 11A). Cluster 4 was annotated as 
monocytes, and the remaining 5 clusters were annotated as dendritic cells (DCs) (Figure 11B). 
Subsequently, we performed cell cycle scoring for each cell. Figure 12A shows the cell counts in the 
G1, G2M, and S phases. Cell types are annotated in Figure 12B. A pseudotime analysis simulated the 
state of cell differentiation based on gene expression. All cells were sorted along trajectories to 
construct a pseudotime axis (Figure 13). Figure 13B and Figure 13C show cell clusters and cell types, 
respectively. 

3.9. Further exploration of CTGF functions 

After calculations, no outlier samples were removed, and all 60 samples were used to construct 
the adjacency matrix (Figure S4A). The different modules’ dynamic tree was constructed (Figure S4B), 
after which the soft thresholding power “β” was set to 13 (Figure S4C). WGCNA identified seven 
color-coded co-expression modules, with CTGF being one of the hub genes in the brown module (GS 
= 0.51, P = 3.31×10−5; MM = 0.83, P = 2.65×10−16). The brown module was significantly correlated 
with clinical traits. It was also significantly correlated with activated CD4 T cells, plasmacytoid 
dendritic cells, neutrophils, and mast cells, which play essential roles in psoriasis (Figure 14A). Single-
gene batch correlation analysis-based GSEA investigations also revealed that while CTGF might 
inhibit allograft rejection, IFN-α responses, and IFN-γ responses, suggesting that CTGF plays an anti-
inflammatory role in psoriasis. But the results also showed that it might be associated with the 
activation of TNF-α. Moreover, it could inhibit the mitotic spindle, MYC targets, E2F targets, G2/M 
checkpoint, and DNA repair, suggesting that CTGF plays a suppressive cell proliferation role in 
psoriasis (Figure 14B). 
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Figure 10. The expression level of CTGF and its association with the cell cycle, immune 
functions and pathways, and immune cells. (A) Correlation of CTGF expression levels 
with the relative abundances of 5 CP1-related pathways. (B) Correlation of CTGF 
expression levels with the relative abundances of 4 CP2-related pathways. (C) Correlation 
of CTGF expression levels with the relative abundances of 3 CP3-related pathways. (D) 
Correlation of CTGF expression levels with the relative abundances of 28 types of immune 
cells. (E) Correlation of CTGF expression levels with the relative abundances of 18 
immune functions and pathways. Dot sizes show the absolute value of Spearman’s rank 
correlation coefficients. The color of the dots represents the P-value. 
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Figure 11. (A) Skin cell samples divided into six clusters. (B) Cell type annotation. 

 

Figure 12. Cell cycle analysis. (A) Cell cycle phase annotation. (B) Cell cycle phase and 
cell type annotation. 
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Figure 13. Cell trajectory analysis. (A) Skin cell samples divided into five states. (B) Cell 
trajectory analysis of six cell clusters. (C) Cell type annotation. (D) Pseudotime analysis. 
The deeper the color, the earlier the beginning of cell differentiation. 

3.10. Screening of potential therapeutic agents and prediction of drug targets 

Subsequently, we examined the pragmatic implications of this study using 89 mRNAs in the 
psoriasis ceRNA network to predict compounds that might affect psoriasis and CMap. First, potential 
therapeutic drugs were screened based on their mean values and enrichment correlation coefficients. 
Results showed MS-275 (also known as entinostat) as the most promising potential treatment option. 
Table 5 lists the observed predictions obtained from CMap with negative mean and enrichment 
correlation coefficients, including those with non-null values of 100% and p < 0.05. Next, we further 
explored the role of MS-275 in psoriasis and predicted 109 target MS-275 genes using 
SwissTargetPrediction.  
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Figure 14. Further exploration of CTGF functions. (A) Correlation between modules with 
clinical features and normalized ssGSEA scores of immune cells. (B) Single-gene batch 
correlation analysis-based GSEA for CTGF. Dot sizes show the number of genes in a 
pathway. The color intensity of the dots represents enrichment significance. 

The results showed that while the target genes of MS-275 intersected with 89 mRNAs in the 
ceRNA network, three intersected genes were obtained. Notably, the probability value of F3 among 
them was 1, indicating a 100% probability that F3 is the target gene of MS-275, according to 
SwissTargetPrediction (Table 6). We also calculated the Spearman rank correlation coefficients 
between the genes, and the correlation coefficients were 0.68 for CTGF and F3, 0.68 for CTGF and 
PIK3R1, and 0.42 for CTGF and FKBP5 (Figure S5A). Subsequently, an interaction network between 
MS-275, CTGF, F3, PIK3R1, and FKBP5 was obtained by entering them into the STITCH database 
and setting a confidence score greater than 0.500 (Figure S5B). In addition, we observed that genes 
closely related to psoriasis, such as STAT3, FOXO1, and MTOR, appeared in the network, proving an 
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interaction between the drug, the intersecting genes, and the hub gene in psoriasis. Therefore, we 
focused on the interaction between the proteins encoded by the three intersecting genes and MS-275. 
The complete prediction results obtained using CMap and SwissTargetPrediction are presented in 
Supplementary File 8. 

Table 5. Potential therapeutic options forecasted by CMap. 

CMap name Mean Enrichment P-value 
MS-275 −0.813 −0.996 0.00004 
scriptaid −0.669 −0.949 0.00026 
5255229 −0.571 −0.888 0.02511 
STOCK1N-28457 −0.57 −0.872 0.00421 
NU-1025 −0.557 −0.912 0.01551 
0297417-0002B −0.546 −0.898 0.002 
procarbazine −0.536 −0.771 0.02466 
4,5-dianilinophthalimide −0.526 −0.876 0.03078 
cephaeline −0.524 −0.88 0.00008 
reserpine −0.509 −0.76 0.02822 
aceclofenac −0.503 −0.833 0.00145 
perhexiline −0.474 −0.745 0.00837 
naftopidil −0.441 −0.757 0.02954 
oxybuprocaine −0.412 −0.758 0.00696 

Table 6. Three genes presented in the predicted results from SwissTargetPrediction and 
the ceRNA network. 

Target Common name Target Class Probability 
Coagulation factor VII/tissue factor F3 Surface antigen 1 
PI3-kinase p85-alpha PIK3R1 Enzyme 0.11573667475 
Peptidyl-prolyl cis-trans isomerase 
FKBP5 

FKBP5 Enzyme 0.11573667475 

3.10. Compound-target docking 

Molecular docking was used to verify whether MS-275 played an essential role in regulating the 
proteins encoded by the three intersecting genes. This result demonstrated that MS-275 was closely 
associated with the proteins encoded by the three intersecting genes. For example, the affinity between 
MS-275 and tissue factor (encoded by F3) was −8.8 kcal/mol, forming a stabilized complex with 
residues PRO-40 and THR-112 by two hydrogen bonds (Figure 15A). Investigations also revealed that 
the affinity between MS-275 and phosphatidylinositol 3-kinase regulatory subunit alpha (encoded by 
PIK3R1) was −5.9 kcal/mol, forming a complex stabilized with residues TYR-142 and ASP-110 by 
two hydrogen bonds as well (Figure 15B). However, the affinity between MS-275 and peptidyl-prolyl 
cis-trans isomerase FKBP5 (encoded by FKBP5) was −7.2 kcal/mol, forming a complex stabilized by 
five hydrogen bonds with residues TYR-327, VAL-288, SER-296 and GLU-164 (Figure 15C). 
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Figure 15. Virtual docking of MS-275 with target proteins. 

4. Discussion 

A complex regulatory relationship exists between DNA damage and the cell cycle. Although 
Borska et al. found increased levels of DNA damage in patients with psoriasis compared to healthy 
individuals [70], the relationship between DNA damage and the cell cycle in psoriasis has not been 
fully elucidated. UV can cause DNA damage in keratinocytes during the treatment of psoriasis, which 
can effectively alleviate psoriasis [71]. However, in contradiction to this, some researchers have also 
reported that UV irradiation can lead to the production of reactive oxygen species (ROS) in 
keratinocytes, and the DNA damage caused by ROS can exacerbate inflammation and downregulate 
the TGF-β pathway, thus aggravating the condition of patients with psoriasis [72]. Exploring the 
regulatory relationship between DNA damage and the cell cycle in psoriasis is meaningful for 
understanding the pathogenesis of psoriasis and thus guiding treatment. 

DNA damage exacerbates the condition of psoriasis patients mainly by promoting inflammation. 
At the same time, a growing number of researchers have suggested that the interaction between 
keratinocytes and the immune system plays an important role in the pathogenesis of psoriasis [7]. 
However, the role of ceRNA regulatory mechanisms in the interaction of keratinocytes with the 
immune system has also not been elucidated. Our study attempts to shed light on this enigma. 

We constructed a ceRNA network with ten lncRNAs (three up-regulated, seven downregulated), 
four miRNAs (two up-regulated, two downregulated), and 89 mRNAs (13 up-regulated, 76 
downregulated). Based on our extensive literature search, the expression trends of 10 lncRNAs in the 
ceRNA network observed in this study were all reported for the first time in psoriasis. Among the four 
miRNAs, the upstream miRNA of CTGF (hsa-miR-212-3p) was significantly associated with the cell 
cycle, the Hippo signaling pathway, and the TGF-β signaling pathway. Specifically, the Hippo 
signaling pathway also appeared in the results of the KEGG enrichment analysis. This pathway 
regulates cell proliferation and apoptosis, including heart development and osteoblast differentiation 
[64]. However, whether its dysregulation is associated with psoriasis comorbid with cardiovascular 
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disease and complicated by psoriatic arthritis remains unexplored. Furthermore, studies have reported 
that hsa-miR-17-5p is closely associated with the cell cycle and the TGF-β signaling pathway [59, 73], 
further suggesting the essential roles of cell cycle dysregulation and TGF-β signaling pathway 
dysregulation in psoriasis pathogenesis. Hsa-miR-193a-3p is downregulated in cutaneous melanoma. 
Moreover, the overexpression of miR-193a inhibits the expression of the MAPK signaling pathway 
and PI3K signaling pathway-related genes, such as ERBB2, KRAS, PIK3R3, MTOR and NUSAP1 
[74], suggesting that it may also be an effective psoriasis treatment. In this study, among the 89 mRNAs, 
the expression trends of some mRNAs were also reported for the first time in psoriasis, such as F3, 
FKBP5, PIK3R1, KDM5A, and MYO5C. 

Figure 16 illustrates the possible interaction mechanisms between the ceRNA subnetwork, the 
cell cycle, and the immune system in psoriasis. DNA damage levels have been significantly elevated 
in patients with psoriasis compared with healthy individuals [70]. Several studies have also highlighted 
that proliferating cells can undergo cell cycle arrest as a response to DNA damage, with a mechanism 
involved in this process being the downregulation of cyclin D1, usually associated with the activation 
of GSK3β, phosphorylation of cyclin D1, and degradation of cyclin D1 by proteases [75]. A previous 
genome-wide CRISPR screening revealed that CCND1 was required for the G1/S phase transition in 
79.8% of all 769 cell lines [18]. Specifically, CCND1 downregulation suggests that cells in psoriatic 
lesions (mostly keratinocytes) are blocked from entering the S phase, which according to the classical 
view explains the increased keratinocyte differentiation in psoriasis [4] but not the proliferation of 
keratinocytes. Additionally, the CP1-3 cell cycle model suggests that while cells in psoriatic lesions 
are inhibited from passing through CP1 and CP2 regulatory points and are significantly more likely to 
pass through CP3 than the normal group, overall, they still have an increased passage through the S 
phase compared to the normal group (P = 0.039), explaining keratinocyte proliferation in psoriasis. 
However, since CP1 and CP2 regulatory sites are located upstream of CP3, more studies should still 
elucidate this phenomenon. It has also been reported that the activation of the TGF-β signaling pathway 
can inhibit the DDR pathway, leading to decreased DNA repair capacity and increased mutations [76]. 
Therefore, we speculate that the upregulation of the DDR pathway in psoriasis may be related to the 
loss of the inhibitory effect of the TGF-β signaling pathway on it, suggesting that the interaction 
between the two pathways needs further study. Alternatively, DNA damage causes not only a DDR but 
also a DNA damage differentiation response (DDDR), leading to increased endoreplication [77]. This 
result is consistent with the increased keratinocyte volume observed in psoriasis and the severe DNA 
damage, decreased guanyl-nucleotide exchange factor activity, cell cycle dysregulation, increased 
E2Fs, and up-regulated CCNE1 and CCNE2 suggested by the results in this study. Still, this study did 
not observe the inactivation of cyclin A and cyclin B, including the blockade of cells from the G2 to 
M phases. Hence, endoreplication in psoriatic lesions should still be confirmed by further studies. 
Endoreplication may avoid, to some extent, the increase in DNA instability. However, it has been 
shown that tumor cells complete mitosis and cytokinesis, even with unstable DNA [78]. Thus, whether 
endoreplication is an essential biological process that distinguishes nontumors from tumors (e.g., 
psoriasis and epidermal melanoma, which have many similarities in their pathogenesis) remains 
uninvestigated. 

TIMER performs deconvolution based on linear least square regression to assess the abundance 
of six types of immune cells, reducing the correlation between CD8+ T cells and CD4+ T cells by 
multiple deconvolutions of the CD8+ and CD4+ T cell ratios [52]. Various sets of marker genes for 
immune cells are necessary for ssGSEA. ssGSEA is performed according to ranking genes by their 
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expression in the sample, scoring them according to their ranking weights, and obtaining a normalized 
enrichment score by calculating the difference between the cumulative density of genes present and 
not present in the gene set. An accurate assessment of immune cell abundance can be obtained using 
both methods. Nevertheless, it is sometimes necessary to use both methods simultaneously for 
increased accuracy. TIMER analysis showed that CTGF expression was significantly positively 
correlated with neutrophil abundance but not with CD8+ T cells in melanoma. However, ssGSEA 
showed that in psoriasis, CTGF expression was significantly negatively correlated with the abundance 
of both neutrophils and CD8+ T cells. Melanoma shares many similarities with psoriasis in terms of 
pathogenesis, such as elevated TNF-α, IL-12, and IL-17A concentrations and excessive proliferation 
of keratinocytes [79]. However, the relationship between psoriasis and melanoma has shown 
contradictory results in different studies [53]. It has also been shown that patients with psoriasis treated 
with biologics have an increased risk of developing melanoma [80]. However, the risk of melanoma 
in patients with psoriasis and the role of different treatments in carcinogenesis remain to be further 
investigated. And it also remains to be explored whether the increased risk of developing melanoma in 
psoriasis patients treated with biologic agents is associated with changes in gene expression profiles. 

CTGF is downstream of the TGF-β pathway, and its downregulation promotes cell proliferation 
by some mechanisms, including increasing insulin-like growth factor 1 (IGF-1), activating the 
nonclassical Wnt pathway, and inhibiting vascular endothelial growth factor (VEGF) loss [81] (which 
might be related to increased angiogenesis in psoriasis). This study discovered that CTGF was 
associated with various cell cycle regulators, immune cells, immune functions, and pathways, which 
could play an anti-inflammatory and cell proliferation inhibitory role in psoriasis. Some recent studies 
have also shown that CTGF inhibits cell proliferation and promotes cell apoptosis [81]. However, in 
psoriasis, whether CTGF downregulation leads to cell proliferation or cell proliferation leads to 
feedback downregulation of CTGF requires further experimental confirmation. For example, it has 
been studied that the application of anti-CTGF monoclonal antibodies exacerbated skin lesions in mice 
with imiquimod-induced psoriasis [82]. Additionally, the upstream and downstream regulatory 
relationships of the ceRNA subnetwork show a sequence consistent with the interaction between 
keratinocytes and the immune system in psoriasis, suggesting that ceRNA regulatory mechanisms not 
only act at the genetic level but also play a complex role in the overall pathogenesis. Recently, some 
researchers have observed that under the influence of LL-37, noncoding RNAs can stimulate adhesion 
molecules in endothelial cells [83], emphasizing the vital role of noncoding RNAs. Still, more work 
should confirm our hypothesis (Figure 9). 

We searched for the hub gene by calculating each node's degree, betweenness, and bridging values 
in the PPI network. In addition to CTGF and CCND1, we found some other cell cycle-related genes in 
Table 1. For example, EGR1 ranks in the top five for both degree and betweenness values. The MAPK 
cascade can activate EGR1, and overexpressed EGR1 can activate the MAPK signaling pathway, 
forming a positive feedback loop [84]. EGR1 can up-regulate the expression of some cell cycle-related 
proteins such as cyclin D1 and cyclin D2, to accelerate cell proliferation [85]. The downregulation of 
EGR1 may lead to p53 inactivation and dysfunctional DNA damage response, revealing that EGR1 
may play an essential role in regulating the DNA damage response [86]. In addition, EGR1 is one of 
the activators of the TGF-β pathway [87]. BMP2 belongs to the TGF-β superfamily. It has been 
indicated that downregulation of BMP2 is associated with G1 cell cycle arrest [88]. In addition, the 
BMP signaling cascade promotes regulatory T cell production and alleviates inflammation [62]. 
SMAD7 is also a key regulator of the TGF-β pathway, and its downregulation has been found to be 
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associated with decreased apoptosis [89]. GPC6 has been reported to promote cell proliferation in 
nasopharyngeal carcinoma [90] and may be a biomarker for melanoma metastasis [91]. 
Downregulation of SDC2 promotes endothelial cell migration and regulates angiogenesis [92]. 
NEDD4L inhibits IL-6 signaling in keratinocytes and promotes the degradation of GP130, thereby 
suppressing the progression of psoriasis [93]. Overexpression of TXNIP can inhibit cell proliferation 
by promoting the production of reactive oxygen species [94]. Meanwhile, 12-myristate 13-acetate, an 
inducer of keratinocyte differentiation, was reported to inhibit TXNIP expression [95]. The role of 
TXNIP in psoriasis remains to be explored. With increasing in-depth research on the cell cycle, 
increasing numbers of novel cell cycle-related genes have been identified, such as the proteasome 26S 
subunit, ATPase (PSMC) family genes [96], ABCB1 [97], and FMR1 [98]. In the future, we aim to 
develop methods to more accurately identify cell cycle-related information and explore the 
heterogeneity of gene regulation during the cell cycle in tumor and nontumor diseases. 

Drug repurposing has the advantages of shorter development time, lower development costs, and 
lower risk of failure than traditional drug development strategies. Drug repurposing has been effective 
in diseases such as acquired immune deficiency syndrome (AIDS), breast cancer, and coronavirus 
disease 2019 (COVID-19) [99-101]. However, despite developments in treatments against psoriasis, 
there are still many limitations to currently approved drugs. Long-term use of high doses of 
glucocorticoids is associated with adverse effects such as peptic ulcers, osteoporosis, and withdrawal 
syndrome. In addition, 30%-50% of patients respond poorly to biologics such as etanercept, 
adalimumab, and secukinumab, especially those with generalized pustular psoriasis [102]. Considering 
the current lack of research in drug repurposing in psoriasis [103], our study that identified MS-275 as 
a potential therapeutic agent for psoriasis is remarkable for its significance and novelty. 

MS-275, also known as entinostat, is a histone deacetylase inhibitor (HDAC inhibitor, HDACi) 
that selectively inhibits classes I and IV histone deacetylases. It has been demonstrated that inhibiting 
both classes I and IV HDACs results in enhanced regulatory T cell (Treg) function and greater stability 
of Foxp3 (forkhead box protein P3) [104], which could explain its potential therapeutic effect on 
psoriasis. Moreover, HDACi can act as epigenetic modifiers; regulate chromatin conformation [105], 
acetylation, and DNA methylation; and alter gene and miRNA expression [106]. In addition, the 
binding of hypophosphorylated Rb to E2Fs can recruit histone deacetylases associated with regulating 
multiple transcription factors [107]. Besides, although HDACi is mainly used to treat liquid tumors 
(e.g., leukemia and lymphoma), it has recently also demonstrated the ability to treat autoimmune 
diseases. For example, in rheumatoid arthritis, HDACi reduced TNF-α [108], and in an animal SLE 
model, it reduced pro-inflammatory cytokines [109]. HDACi can also reduce MIP-1α and MCP-1, but 
this appears dose-dependent, as in osteoblasts, where high doses of MS-275 are required to exert anti-
inflammatory effects [110]. Furthermore, while HDACs can aberrantly modify both histones and 
nonhistone proteins that make up chromatin and further alter cell proliferation and differentiation, they 
are significantly higher in psoriatic lesions than in healthy skin. Therefore, they are likely associated 
with clinical subtypes of psoriasis [111]. Moreover, our study suggests that MS-275 is expected to bind 
spontaneously to key proteins in psoriasis. Still, more animal experimentation and clinical trials should 
verify the efficacy and adjust the dose of MS-275 and other HDAC inhibitors. Also, in-depth studies 
on HDAC inhibitors will help design next-generation drugs. 

This study has the following limitations. In terms of internal validity, this study identified CTGF 
as the hub gene and analyzed the function of CTGF in psoriasis, concluding that CTGF may inhibit 
cell proliferation in psoriasis. However, because of the complexity of cell cycle regulation, whether 
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and how CTGF can directly regulate cell proliferation needs to be verified by cell and animal 
experiments. In terms of external validity, this study identified MS-275 (entinostat) as a potential 
therapeutic agent for psoriasis. However, its effectiveness in treating psoriasis needs to be further 
evaluated in animal experiments and clinical trials. In terms of methodology, this study used multiple 
bioinformatics methods with online databases for analysis, but no new cell cycle and RNA‒RNA 
crosstalk analysis methods were developed. Deep learning and artificial intelligence require new 
methods to more accurately resolve cellular information from microscopy, image flow cytometry, time-
course gene expression profiling data, and scRNA-seq data, as well as to mine RNA‒RNA interaction 
patterns from gene sequence and gene expression profiling data. This will be the focus of a future study. 

 

Figure 16. Possible interactions between the ceRNA subnetwork, the cell cycle, and the 
immune system in psoriasis. 
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Appendix 

 
Figure S1. (A) Correlation between immune cells. (B) Principal component analysis based 
on the abundance of 28 types of immune cells. 
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Figure S2. (A) The expression level of CTGF and its association with the abundance of 
CD8+ T cells, CD4+ T cells, B cells, dendritic cells, macrophages, and neutrophils in 
melanoma. (B) The expression level of CTGF and its association with the abundance of 
CD8+ T cells, CD4+ T cells, B cells, dendritic cells, macrophages, and neutrophils in 
primary melanoma. (C) The expression level of CTGF and its association with the 
abundance of CD8+ T cells, CD4+ T cells, B cells, dendritic cells, macrophages, and 
neutrophils in metastatic melanoma. Dot sizes show the absolute value of Spearman's rank 
correlation coefficients. The color of the dots represents the P-value. SKCM, skin 
cutaneous melanoma. 
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Figure S3. (A) The top two dimensions of all skin cells identified by principal component 
analysis. (B) The P-values of each PC. 
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Figure S4. WGCNA results. (A) Cluster tree showing the samples and a heatmap showing 
clinical traits. (B) A dynamic tree displaying the different modules. (C) Selection of the 
soft-thresholding power (β) for the optimal scale-free topology module-fit index. 
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Figure S5. (A) Correlations between the expression levels of the four mRNAs (CTGF, F3, 
PIK3R1 and FKBP5). (B) The drug–protein interaction network. 
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