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Abstract: In this paper, the Adomian decomposition method (ADM) and Picard technique are used
to solve a class of nonlinear multidimensional fractional differential equations with Caputo-Fabrizio
fractional derivative. The main advantage of the Caputo-Fabrizio fractional derivative appears in its
non-singular kernel of a convolution type. The sufficient condition that guarantees a unique solution
is obtained, the convergence of the series solution is discussed, and the maximum absolute error is
estimated. Several numerical problems with an unknown exact solution are solved using the two
techniques. A comparative study between the two solutions is presented. A comparative study shows
that the time consumed by ADM is much smaller compared with the Picard technique.
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1. Introduction

Fractional calculus is a main branch of mathematics that can be considered as the generalisation of
integration and differentiation to arbitrary orders. This hypothesis begins with the assumptions of L.
Euler (1730) and G. W. Leibniz (1695). Fractional differential equations (FDEs) have lately gained
attention and publicity due to their realistic and accurate computations [1-7]. There are various types
of fractional derivatives, including Riemann—Liouville, Caputo, Griinwald—Letnikov, Weyl, Marchaud,
and Atangana. This topic’s history can be found in [8-11]. Undoubtedly, fractional calculus applies
to mathematical models of different phenomena, sometimes more effectively than ordinary calculus
[12,13]. As aresult, it can illustrate a wide range of dynamical and engineering models with greater
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precision. Applications have been developed and investigated in a variety of scientific and engineering
fields over the last few decades, including bioengineering [14], mechanics [15], optics [16], physics
[17], mathematical biology, electrical power systems [18—20] and signal processing [21-23].

One of the definitions of fractional derivatives is Caputo-Fabrizo, which adds a new dimension in
the study of FDEs. The new derivative’s feature is that it has a nonsingular kernel, which is made
from a combination of an ordinary derivative with an exponential function, but it has the same
supplementary motivating properties with various scales as in the Riemann-Liouville fractional
derivatives and Caputo. The Caputo-Fabrizio fractional derivative has been used to solve real-world
problems in numerous areas of mathematical modelling for example, numerical solutions for
groundwater pollution, the movement of waves on the surface of shallow water modelling [24], RLC
circuit modelling [25], and heat transfer modelling [26,27] were discussed.

Rach (1987), Bellomo and Sarafyan (1987) first compared the Adomian Decomposition method
(ADM) [28-32] to the Picard method on a variety of examples. These methods have many benefits:
they effectively work with various types of linear and nonlinear equations and also provide an analytic
solution for all of these equations with no linearization or discretization. These methods are more
realistic compared with other numerical methods as each technique is used to solve a specific type
of equations, on the other hand ADM and Picard are useful for many types of equations. In the
numerical examples provided, we compare ADM and Picard solutions of multidimentional fractional
order equations with Caputo-Fabrizio.

The fractional derivative of Caputo-Fabrizio for the function x (¢) is defined as [33]

B ('d

CF pya _ el G 1.1
0ox (=1~ ) 7, (X () e, (L.1)

and its corresponding fractional integral is

FIx (1) =

-« o !
B(a)x(t)+mj(;x(s)ds, O<a<l, (1.2)

where x (7) be continuous and differentiable on [0, T]. Also, in the above definition, the function B (@) >
0 is a normalized function which satisfy the condition B(0) = B(1) = 0. The relation between the
Caputo—Fabrizio fractional derivate and its corresponding integral is given by

(I5) (FDyf ) = £ (D~ f @. (1.3)
2. Construction of the algorithm

In this section, we will introduce a multidimentional FDE subject to the initial condition. Let a €
0,1,0 < a; < a; < ...,a,, < 1, and m is integer real number,

““Dx = f(t,x,F D" x,F D"x, ..., F D™x,), 2.1)
x(0) = co,

where x = x(¢),t € J=[0,T],T e R*,x € C(J).
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To facilitate the equation and make it easy for the calculation, we let x () = ¢y + X (¢) so Eq (2.1)
can be witten as

CFD(IX
X (0)

f(t,co + X,5F D X,F DX, ...CF D™ X), (2.2)
0.

the algorithm depends on converting the initial condition from a constant ¢ to O.
Let " DX = y (¢) then X = 1%y, so we have

Fprx = P Cfpex = CFpeoly i=1,2,..,m. (2.3)
Substituting in Eq (2.2) we obtain
y=flt,co+ 1%, Iy, ., Py, (2.4)

Assume f satisfies Lipschtiz condition with Lipschtiz constant L given by,

£ 3031w ¥l = (820, 215 o2l S LD Iy — 2l (2.5)
i=0

which implies

|f(t, Co +CF Iay’CF I"““y, ”,CF Ia—(lmy)
_f(t’ Co +<F IQZ,CF 1%z, ..,CF Ia_amZ)|

< LZ | CFIa—aiy _ CFIa—a,-Z| ) (2.6)
i=0

The solution algorithm of Eq (2.4) using ADM is,

yo() = a()
Yarr () = A, (1), j>0. 2.7)

where a (¢) pocesses all free terms in Eq (2.4) and A, are the Adomian polynomials of the nonlinear
term which takes the form [34]

n—1
Av=fS)- ) A (2.8)
i=0

where f(S,) = X, A;. Later, this accelerated formula of Adomian polynomial will be used in
convergence analysis and error estimation. The solution of Eq (2.4) can be written in the form,

YO =) yi@. (2.9)
i=0

lastly, the solution of the Eq (2.4) takes the form
x(=co+X@® =co+ FI'Y@). (2.10)

At which we convert the parameter to the initial form y to x in Eq (2.10), so we have the solution of
the original Eq (2.1).
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3. Convergence analysis

3.1. Existence and uniqueness

Define a mapping F : E — E where E = (C [/],]|:]|) is a Banach space of all continuous functions
on J with the norm ||x|| = m?x x(1).
113

Theorem 3.1. Equation (2.4) has a unique solution whenever 0 < ¢ < 1 where
m [(a—a)(T-1]+1
¢ = L(Z Bla—a;) )
Proof. First, we define the mapping F : E — E as
Fy — f(t, o + CFIay’ CFIa—my, o CFIa—amy)'
Let y and z € E are two different solutions of Eq (2.4). Then
Fy —F7= f([, Co +CF ]ozy,CF Ioz—(rly’“,CF Ioz—amy) —f(t, Co +CF IQZ,CF Ia—mz’ ...,CF Ioz—(t,,,z)
which implies that

IFy—Fz| = |f(t.co+ “FI%, Iy, .., FI*my)

_ f(l, co + CFIQZ, CFIa—an’ - CFIa/—amZ)|

LZ | CFIa/—a;y _ CFIa—aiZ|

IA

: B(((ya— 094 g all)f(y Db
|[Fy—Fz|| < LZ B(c(xa aa'), maxly—z|+%meax|y—z|fds
< 1), - dl+ gy T

N1 - (@ - @) r-a
L||y—zll(; B(a—a,) +B(Cl—a'i)T]
O @ —a)(T-DI+1
< Llly—Z”[ ]
_— B(a - )

< olly -zl

IA

under the condition 0 < ¢ < 1, the mapping F is contraction and hence there exists a unique solution
y € C [J] for the problem Eq (2.4) and this completes the proof.

3.2. Proof of convergence

Theorem 3.2. The series solution of the problem Eq (2.4) converges if |y, (t)| < c and c is finite.
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Proof. Define a sequence {S p} such that S, = Y17 y; (¢) is the sequence of partial sums from the series
solution ;2 y; (), we have

f(t, co + CFIay, CFIa_aly, . CFIa—amy) — ZAI"
i=0

So )
fltoeo+ IS, TS, L, TS ) = ) A

From Eq (2.7) we have

i)’i () =a()+ iAi—l
i=0 i=0

let S, S, be two arbitrary sums with p > g. Now, we are going to prove that {S p} is a Caushy sequence
in this Banach space. We have

D 2

S, i (1) —a(r)+ZA11

Sy yi (1) —a(t)+ZA11

I
o

Sp_Sq = ZAZ I_ZAI 1= ZAI 1 _ZAZ 1
i=q+1
= flt,co+ CFI"S,,_ i “15,,_1,..., LIS, ) -
ft,co+ FI7S oy, IS oy, o, SFI7S 0)
1S, =8, = |[ftco+ FI°S oy, FITNS oy, oy FIS o 0)-

fltco+ IS 1, TS oy, PS8 )

< LZ | CFIoz—a,-Sp - CFIa—aiSq_l|
= 1-(a-a) a—q; !
< ZO B(a’ a) S Sq_l)'l'm (Sp—l —Sq_l)ds

—(a - a) @ —q;
< LZ e R P a)f|s,,1 S| ds
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1—((1 Q) a — q; '
5o sl = 13 T ama s Sl e asmanlsi =Sl [
m (a, a’z a — q;
< LI|S ( T)
” q”zZo: B(a - a;) B(a'—a,')
m (a—a,-)(T—D]"‘l)
< L|IS,-S
|| p q”[i:O B(a - ;)
< ¢||SP_SQ||

let p = g + 1 then,
[Sqe1 = Sql| < B|Sg = Sgmt]| < &[S -1 = S 2| < - < B71IS 1 = Sl

From the triangle inequality we have

IS5 =Sall = 1S =Sl + [S g2 = S| + IS = S i
< [+ ¢+ o+ 7| 11S ) - Sl
< @1+ .+ IIS ) - Sl
1
e

Since 0 < ¢ < 1,p > g then (1 — ¢”"7) < 1. Consequently

IS, -5, < ¢¢wm»L-£3mwwmm 3.

q|| — 0 and hence, {S p} is a Caushy sequence in this

but |y; (#)] < oo and as ¢ — oo then,
Banach space then the proof is complete.

3.3. Error estimate

Theorem 3.3. The maxzmum absolute truncated error Eq (2.4) is estimated to be
max |y (1) = 5o yi (0] < {Z5max ly; ()

Proof. From the convergence theorm inequality (Eq 3.1) we have

q
Is, - sl < <Z5maxiy o)

but, S, = X7 vi (1) as p — oo then, S, = y (1) so,
¢q
Ibm—smsTtggyma»
so, the maximum absolute truncated error in the interval J is,
q
()= D i)
i=0

¢q
max < mnllgx ly1 (0] (3.2)

and this completes the proof.

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13306-13320.



13312

4. Numerical examples

In this part, we introduce several numerical examples with unkown exact solution and we will use
inequality (Eq 3.2) to estimate the maximum absolute truncated error.

Example 4.1. Application of linear FDE
FDx (@) + 24" D' x (1) + bx (1) = 0, x(0) = 1. 4.1)

A Basset problem in fluid dynamics is a classical problem which is used to study the unsteady
movement of an accelerating particle in a viscous fluid under the action of the gravity [36]
Set

X=x@-1

Equation (4.1) will be
DX (t) + 24T DX (1) + bX (1) = 0, X (0) = 0. 4.2)

Appling Eq (2.3) to Eq (4.2), and using initial condition, also we take a = 1, b = 1/2,

1 1
= - - 211/2 - —I 43
y 3 y=5ly (4.3)

Appling ADM to Eq (4.3), we find the solution algorithm become

1
yo@®) = —5,
1 .
yi(t) = —2”1”2%_1—5”1%_1, i>1. (4.4)

Appling Picard solution to Eq (4.2), we find the solution algorithm become

1
yO (t) = _Ea
1 1 )
i = —5-2 Fry - 3 Fryi ., ix1. (4.5)

From Eq (4.4), the solution using ADM is given by y(t) = Li@?:o” (t) while from Eq (4.5), the
solution using Picard technique is given by y(t) = Lim y; (t). qLately, the solution of the original
problem Eq (4.2), is o

x@ =1+ “TIy@).

One the same processor (q = 20), the time consumed using ADM is 0.037 seconds, while the time
consumed using Picard is 7.955 seconds.
Figure 1 gives a comparison between ADM and Picard solution of Ex. 4.1.
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Figure 1. ADM and Picard solution of Ex. 4.1.

Example 4.2. Consider the following nonlinear FDE [35]

CFpin, gz M 1 CFpl/4, 4 1x2,
3 4r(11) 4 8 4
x(0) = 0.

Appling Eq (2.3) to Eq (4.6), and using initial condition,

1 1 2
y= ﬁ _@_2_{_ §CF11/4y+Z(CF11/2y) )

Appling ADM to Eq (4.7), we find the solution algorithm will be become

g3 [1/4 p
H = — —— — —,
Yo () 3ve ar (u) 1
1 1 )
yi(®) = 3 Frhyi .+ 1 (A, i>1.

2
at which A; are Adomian polynomial of the nonliner term (CF 1Y 2y) .

Appling Picard solution to Eq (4.7), we find the the solution algorithm become
yof) = ——m = ——— — —,
yi®) = yo)+ ! Fr'y s+ l(CFII/Z)G'—I)Z , =1
8 4

Mathematical Biosciences and Engineering
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From Eq (4.8), the solution using ADM is given by y(t) = Lim]_y; (1) while from Eq (4.9), the
g—00
solution using Picard technique is given by y(t) = Limy;(t). Finally, the solution of the original

problem Eq (4.7), is.
x (1) = Fr'i2y.

One the same processor (q = 2), the time consumed using ADM is 65.13 seconds, while the time
consumed using Picard is 544.787 seconds.

Table 1 showed the maximum absolute truncated error of of ADM solution (using Theorem 3.3) at
different values of m (when t = 0:5; N = 2):

Table 1. Max. absolute error.

q max. absolute error
2 0.114548
5 0.099186
10 0.004363

Figure 2 gives a comparison between ADM and Picard solution of Ex. 4.2.

X
I a
/.

: /o

031 s
/ ----- Picard
02l s — ADM
2 e
o

I ~
0.1+ ~

n /

,"/‘ '
L , - . ) ) ) . . ) ) ) ) . ) ) ) ) . ) ) ) ) . t
0.1 0.2 0.3 04 0.5
Figure 2. ADM and Picard solution of Ex. 4.2.
Example 4.3. Consider the following nonlinear FDE [35]
128 1 2
CFpa, _ 2.2 5 CF y1/2
D = -— —(*"D 4.1
x = 3 +10( x) (4.10)
x(0) = 0.

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13306-13320.
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Appling Eq (2.3) to Eq (4.10), and using initial condition,

128 1 2
_ 22 5 CFyl/2
y =3t 125ﬂt + 10( 1 y) “4.11)

Appling ADM to Eq (4.11), we find the solution algorithm become

128
) = 3 - —7~,
Yo (1) 35,
1 .
yi() = E(Ai—l)a i>1 (4.12)

—_— : . : CFp12,\?
at which A; are Adomian polynomial of the nonliner term ( I y) .

Then appling Picard solution to Eq (4.11), we find the solution algorithm become

128
_ 2 5
o) = 36 - >,
1 2 )
i = yo@+ o (T1yn) izl (4.13)

From Eq (4.12), the solution using ADM is given by y (t) = Lim’_y; (t) while from Eq (4.13), the
g—00
solution is y (t) = Limy; (t). Finally, the solution of the original problem Eq (4.11), is

x() = Iy@).

One the same processor (q = 4), the time consumed using ADM is 2.09 seconds, while the time
consumed using Picard is 44.725 seconds.

Table 2 showed the maximum absolute truncated error of of ADM solution (using Theorem 3.3) at
different values of m (when t = 0:5; N = 4):

Table 2. Max. absolute error.

q max. absolute error
2 0.00222433

5 0.0000326908

10 2.88273*%1078

Figure 3 gives a comparison between ADM and Picard solution of Ex. 4.3 with a = 1.

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13306-13320.
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Figure 3. ADM and Picard solution where of Ex. 4.3.
Example 4.4. Consider the following nonlinear FDE [35]
Fpex = 2+ 1 CFp¥ix + 1 CFpeyx + l CFp®Bx 4+ 1)64 (4.14)
2 4 6 8’ '
x(0) = 0.
Appling Eq (2.3) to Eq (4.10), and using initial condition,
2 L er rama 1 cr ramar 1 cF jama3 L cr e\
y:t+§( I y)+Z( I y)+8( I y)+§( Iy), (4.15)
Appling ADM to Eq (4.15), we find the solution algorithm become
o) = 7, (4.16)
_ 1 CF ya—ay 1 CF ya—-« 1 CF ya—a3 1 .
yi(t) = E( I y)+Z( I 2y)+6( I y)-l-gAi_], i>1
4
where A; are Adomian polynomial of the nonliner term (CF I“y) .
Then appling Picard solution to Eq (4.15), we find the solution algorithm become
Y = 2, (4.17)
1 1 1 1 4
_ 42 CFya-ay,,. ~ (CF ja—az,,. ~ (CF ja—a3,,. ~ (CF ja,, :
i) = 2 (Fryn) e g (I ) w2 (1) 4 o (TIa) iz L

From Eq (4.16), the solution using ADM is given by y(t) = Liml.qzoyi (t) while from Eq (4.17), the
g—00
solution using Picard technique is y(t) = Limy; (t). Finally, the solution of the original problem Eq

(4.14), is
x(®) = Iy ().
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One the same processor (q = 3), the time consumed using ADM is 0.437 seconds, while the time
consumed using Picard is (16.816) seconds. Figure 4 shows a comparison between ADM and Picard
solution of Ex. 4.4 ata =0.7, ¢y =0.1,a; = 0.3,a;3 = 0.5.

2.0r g
I f{
/
1.5+ /
/
N Picard
I /
L0y s — ADM
;/‘
I 7
05} e
F /
. -/.‘
. '/
L __..---r-—"1'-'-—... '-..- L 1 L L L 1 L N L 1 L L L 1 r
0.2 0.4 0.6 0.8 1.0

Figure 4. ADM and Picard solution where of Ex. 4.4.

5. Conclusions

The Caputo-Fabrizo fractional deivative has a nonsingular kernel, and consequently, this definition
is appropriate in solving nonlinear multidimensional FDE [37, 38]. Since the selected numerical
problems have an unkown exact solution, the formula (3.2) can be used to estimate the maximum
absolute truncated error. By comparing the time taken on the same processor (i7-2670QM), it was
found that the time consumed by ADM is much smaller compared with the Picard technique.
Furthermore Picard gives a more accurate solution than ADM at the same interval with the same
number of terms.
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