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Abstract: Regulatory elements in DNA sequences, such as promoters, enhancers, terminators and so 
on, are essential for gene expression in physiological and pathological processes. A promoter is the 
specific DNA sequence that is located upstream of the coding gene and acts as the “switch” for gene 
transcriptional regulation. Lots of promoter predictors have been developed for different bacterial 
species, but only a few are designed for Pseudomonas aeruginosa, a widespread Gram-negative 
conditional pathogen in nature. In this work, an ensemble model named SPREAD is proposed for the 
recognition of promoters in Pseudomonas aeruginosa. In SPREAD, the DNA sequence autoencoder 
model LSTM is employed to extract potential sequence information, and the mean output probability 
value of CNN and RF is applied as the final prediction. Compared with G4PromFinder, the only 
state-of-the-art classifier for promoters in Pseudomonas aeruginosa, SPREAD improves the 
prediction performance significantly, with an accuracy of 0.98, recall of 0.98, precision of 0.98, 
specificity of 0.97 and F1-score of 0.98. 
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1. Introduction 

Pseudomonas aeruginosa (P. aeruginosa), a kind of Gram-negative bacteria, is an opportunistic 
pathogen able to cause serious infections and has become the third source of nosocomial infection [1,2]. 
In addition, the medical treatment for such infections is fairly difficult due to the high level of innate 
and acquired antibiotic resistance of Pseudomonas aeruginosa [3,4]. The pathogenesis of 
Pseudomonas aeruginosa is modulated by signaling pathways [5,6]. A certain adaptation mechanism 
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is necessary for Pseudomonas aeruginosa to enter the body and survive, which involves regulatory 
elements such as promoters, enhancers, terminators and so on [7]. Among these regulatory elements, 
the promoter, the special DNA sequence located upstream of the coding gene, can be recognized and 
combined with a special RNA polymerase, and as a result it plays the role of “switch” for gene 
transcriptional regulation [8,9]. Therefore, identifying promoter fragments accurately is basic and 
essential for the further study of gene regulation in Pseudomonas aeruginosa. 

With the availability of high-throughput screening data, many computational methods have been 
developed to identify promoters in bacterial genomes, such as Escherichia coli. [10–24]. On one hand, 
both shallow machine learning and deep learning classifiers are used to build promoter recognition 
models. More specifically, BPROM [19] applied linear discriminant analysis (LDA). 70ProPred [14], 
iPromoter-2L [17], IBPP [22], iProEP [15] and MULTiPLy [23] all applied a support vector machine 
(SVM) as the classifier. Promotech [11] used a random forest (RF) and recurrent neural network (RNN) 
to predict bacterial promoters. In Stack-ORI [16] 12 schemes of feature coding were used to train the 
eXtreme Gradient Boosting (XGBoost) algorithm, and the final model was built based on the stacked 
ensemble approach. CNNProm [21] and iPromoter-BnCNN [10] adopted convolutional neural 
networks (CNN). On the other hand, information of different conservative motifs or certain 
physicochemical characteristics of DNA sequences are employed as feature representation in bacterial 
promoter detection algorithms. BPROM [19] applied five relatively conserved sequence motifs and 
two sequence features. G4PromFinder [13], which focused on the promoter recognition of 
Streptomyces coelicolor A3(2) and Pseudomonas aeruginosa PA14, took advantage of AT-rich 
elements and G-quadruplex motifs, these two conserved sequence features in the DNA sequence, to 
build a prediction algorithm. G4PromFinder outperforms three other promoter prediction algorithms, 
bTSSfinder [20], PePPER [12] and PromPredict [18], in the bacterial genome of GC-rich. In particular, 
most of these fourteen models are built for Escherichia coli, and G4PromFinder is the only one 
available to recognize promoters in Pseudomonas aeruginosa. However, the prediction results of 
G4PromFinder just achieved a recall of 69.0%, a precision of 43.1%, a specificity of 8.9%, an F1-
score of 53% and an accuracy of 38.9%, so there is ample room for improvement. 

In this study, a novel model, SPREAD, is introduced to identify promoters in Pseudomonas 
aeruginosa. Specifically, for feature extraction, the DNA sequence autoencoder model LSTM and an 
improved teacher forcing mechanism are trained based on the promoter and non-promoter sequence 
data of Pseudomonas aeruginosa PA14, in order to mine the potential information of DNA sequences. 
Their outputs form embedding vectors and matrices in different sizes. Embedding vectors are inputted 
into five traditional machine learning algorithms, containing XGBoost, RF, GNB, SVM, KNN, 
respectively, and embedding matrices are inputted to a deep learning CNN architecture. Different 
embedding dimensions and different integrations of classifiers are evaluated. After comparison and 
optimization, the combination of RF with an embedding vector of dimension 256 and CNN with 
embedding matrix of dimensions 81*32 shows the best prediction performance, and forms the final 
ensemble prediction model. Extensive results show that SPREAD is superior to other existing 
methods and can be a powerful auxiliary tool to screen Pseudomonas aeruginosa promoters in 
batches for experimenters. 
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2. Materials and methods 

2.1. Datasets processing 

The genomic sequences of P. aeruginosa were collected from the National Center for 
Biotechnology Information (NCBI) under accession code NC_008463.1. Then, according to the 
annotation information together with transcriptome information provided by Wurtzel O. et al. [25], 2117 
sequences with the TSS site at the 0-th position were extracted 60 bp upstream and 20 bp downstream. 
In order to decrease redundancy, CD-HIT-EST [26] was applied to prune those sequences with 
homology above 0.8. Finally, there were 2108 sequences retained for our positive dataset. To build 
the negative dataset, 10,000 sequences of length 81 without TSS sites were randomly selected in the 
same genome. Then, we deleted the sequences whose similarities with positive samples were greater 
than 0.8. Finally, 2108 negative sequences were chosen randomly to build the negative dataset. The 
samples are available in the Supplementary file. 

2.2. DNA autoencoder: LSTM 

Traditional sequence features have to be defined manually in advance based on experience, before 
being derived from the sequence itself or its physicochemical properties [27]. Therefore, it is 
sometimes impossible to fully mine the potential information from the sequences, which may affect 
the performance of the prediction model [28]. Different from traditional methods, neural networks 
with many variants can automatically capture features from sequences and make a classification 
accordingly [29–31]. Through unsupervised learning, an autoencoder composed of neural networks is 
able to mine potential information out of input data and represent it efficiently [32,33]. This efficient 
representation of input data is called coding, and its dimension is usually much smaller than that of 
input data, which means the autoencoder is helpful for dimensionality reduction [34]. Features 
extracted by the autoencoder can be used alone directly or combined with traditional manual features, 
so as to improve the performance of the predictor. 

 

Figure 1. DNA autoencoder. 
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Considering the above advantages of an autoencoder, the DNA autoencoder model LSTM was 
utilized in this work to encode the efficient representation of input data through unsupervised 
learning [32]. The DNA automatic encoder framework we constructed was based on a sequence to 
sequence (seq2seq) structure [35]. The encoder and decoder both consisted of long short-term memory 
networks (LSTM) and a modified teacher forcing mechanism, as shown in Figure 1. As a modification 
of the traditional teacher forcing mechanism, inputs of decoder nodes were the outputs of the LSTM 
encoder nodes, instead of the prediction result of the previous LSTM node in the decoder. The output 
of this autoencoder is embedding matrices and vectors. 

2.3. Machine learning and deep learning algorithms 

In this work, five traditional machine learning models, including eXtreme Gradient Boosting 
(XGBoost) [36], random forest (RF) [37], Gaussian Naive Bayes (GNB) [38], support vector 
machine (SVM) [39] and k nearest neighbors (KNN) [40], combined with a deep learning algorithm, 
i.e., a convolutional neural network (CNN) [41], were tried to classify promoters and non-promoters 
in P. aeruginosa. 

In order to obtain the optimal performance, we adopted the method of adjusting parameters. For 
CNN, three parameters, “filters,” “conv_size” and “latent_dim,” were selected in sets [64, 128, 256, 512], 
[3, 5, 7], [128, 256, 512], respectively. For XGBoost, RF and KNN, the parameter “n_estimators” was 
selected in sets [100, 200, 300, 400, 500], [100, 200, 300, 400, 500] and [3, 4, 5, 6, 7, 8, 9, 10, 11, 12], 
respectively. For SVM, we only focused on the parameter “kernel,” selected in [“linear,” “poly,” “rbf”]. 
The final parameters used in each model are available in Tables S1–S5. 

2.4. Performance evaluation 

Evaluation indicators, including recall (sensitivity), specificity, precision, F1-score and accuracy, 
were adopted to assess and compare the performance of our model on the training and validation 
datasets. The formulas are calculated as below: 
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where TP, TN, FP and FN represent the numbers of true positives, true negatives, false positives and 
false negatives, respectively. In addition, the area under the receiver operating characteristic curve 
(AUC) is also used to examine the performance of our model. Among the seven measurement 
indicators, the recall, precision and F1-score can well describe the model’s ability to predict true 
promoters, and the accuracy and AUC can reflect the overall performance of the model. 
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3. Results and discussion 

3.1. Optimization of DNA autoencoder: LSTM 

Because of the superiority of neural network architectures, the autoencoder technique composed 
of an encoder and decoder was proposed as an unsupervised learning tool to capture the potential 
information and obtain the low-dimensional vector representation of the DNA sequences [34]. During 
the optimization of the automatic encoder, the sizes of output embedding vectors and matrices are key 
elements that influence the classification performance. For one output embedding vector (𝐸 ), we 
set the embedding size as 16, 32, 64, 128, 256, 512 and 1024, based on experience. For the output 
embedding matrix (𝐸  ) with 𝐿 𝑊  dimensions, L  is the fixed sequence length 81, and 𝑊 
represents the dimension of the embedding feature, which was set as 8, 16, 32. 

3.2. Establishment of prediction model 

In order to find the most suitable model for identifying promoters of P. aeruginosa, we tested and 
compared each embedding size and classification algorithm using five evaluation indicators (Recall, 
Precision, F1-score, Accuracy, AUC) and a 10-fold cross-validation test. Specifically, embedding 
vectors were inputted into five traditional machine learning algorithms, containing XGBoost, RF, GNB, 
SVM, KNN, respectively, and embedding matrices were inputted to a deep learning CNN architecture.  

We choose the appropriate size according to the performance of embedding vectors and matrices 
of different sizes on the six models. For embedding vectors and matrices, the models’ performances 
are shown in Table 1. It is coincident that these four traditional models (XGBoost, GNB, SVM, KNN) 
all achieve their best performance when the dimension of vector Evec is 512, except RF achieves its 
best performance when the dimension of vector Evec is 256. The CNN model reaches its best 
performance for the matrix Emat with dimensions 81*32. Furthermore, the AUC values of the six best 
models were compared on 10-fold cross-validation, and the CNN model based on an embedding matrix 
with dimensions 81*32 achieves the best AUC of 0.95(±0.01), which is 0.05 higher than those of the 
second-place SVM models. Figure 2 demonstrates the performances of the six models according to 
AUC value. 

Table 1. Five evaluation indicators of the five traditional machine learning algorithms 
(XGBoost, RF, GNB, SVM, KNN) and one deep learning network CNN. 

Model Best size Recall Precision F1-score Accuracy AUC 
XGBoost 512 0.86(±0.02) 0.82(±0.01) 0.84(±0.02) 0.84(±0.01) 0.89(±0.02) 
RF 256 0.85(±0.03) 0.83(±0.01) 0.84(±0.02) 0.84(±0.02) 0.89(±0.01) 
GNB 512 0.73(±0.03) 0.81(±0.02) 0.77(±0.02) 0.78(±0.02) 0.86(±0.01) 
SVM 512 0.87(±0.03) 0.84(±0.02) 0.85(±0.02) 0.85(±0.02) 0.90(±0.01) 
KNN 512 0.89(±0.02) 0.83(±0.02) 0.86(±0.02) 0.85(±0.02) 0.88(±0.01) 
CNN 81*32 0.87(±0.03) 0.89(±0.02) 0.88(±0.01) 0.88(±0.01) 0.95(±0.01) 

The integration of the above six classifiers was carried out in order to further optimize the 
prediction model. With each attempt, the mean output probabilities were calculated as the final 
predicted value. With thresholds set at 0.5, 0.55 and 0.6, respectively, if the mean value is greater than 
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the threshold, the sample will be considered as a promoter; otherwise, the sample will be considered 
as a non-promoter. 

 

Figure 2. The performance comparison of six models based on the AUC values. 

 

Figure 3. The workflow of the promoter predictor for P. aeruginosa. 

First, we integrated the CNN with the other five models and compared their prediction results 
on a 10-fold cross-validation test (Table S6). It can be noticed that the integration of CNN and RF on 
the threshold of 0.5 reaches the best precision of 0.88, accuracy of 0.89 and AUC of 0.95. The 
combination of CNN and SVM, CNN and KNN are simultaneously achieved the second best precision 
of 0.87, accuracy of 0.89 and AUC of 0.95. Then, we added the other four classifiers to CNN and RF 
integration, successively (Table S6). However, the performance of these integrated prediction models 



13300 

Mathematical Biosciences and Engineering  Volume 19, Issue 12, 13294–13305. 

is not improved at all. We have tried the stacking strategy of fourteen different combinations using 10-
fold cross-validation and listed the corresponding prediction results in Table S6. It can be seen that the 
combination of CNN, RF and SVM reached the best performance with the average AUC of 0.89. 
However, it is still lower than the integration of CNN and RF on the threshold of 0.5. In addition, we 
also tried the stacking strategy of fourteen different combinations using 10-fold cross-validation and 
listed the corresponding prediction results in Table S6. It can be seen that the combination of CNN, 
RF and SVM reached the best performance with the average AUC of 0.89. However, it is still lower 
than our model SPREAD with AUC of 0.95. Therefore, our final predictor is designed as the 
integration of the CNN and RF with the threshold of 0.5. The workflow of this promoter predictor for 
P. aeruginosa is shown in Figure 3. 

3.3. Further evaluation of the predictor 

In this subsection, we further evaluate our model by comparing it with the latest model 
G4PromFinder [13], which is superior to PePPER, PromPredict and bTSSfinder according to the 
reports in [12,18,20]. The same evaluation strategy was repeated 10 times. At each time, 338 positive 
samples and 338 negative samples were randomly selected as a validation dataset, and the other 
samples were used as the training dataset. Evaluation indicators of 10 validation datasets were 
calculated, and for each indicator, the average value is shown in Figure 4. It can be concluded that our 
model is rather stable and shows better performances on all of five indicators. Specifically, our model 
reaches an Accuracy of 0.98, a recall of 0.98, a precision of 0.98 and an F1-score of 0.98, which are 
about 0.59, 0.29, 0.55 and 0.45 higher than those of G4PromFinder, respectively. 

 

Figure 4. Comparison of our model with G4PromFinder. 

In addition, six single classifiers, i.e., XGBoost, RF, GNB, SVM, KNN and CNN, combined with 
the autoencoder were evaluated and compared with G4PromFinder, in order to assess the effectiveness 
of the DNA encoder. It is demonstrated in Figure 5 that all of the six autoencoder-based single 
classifiers are superior to G4PromFinder significantly on all five evaluation indicators, with accuracies 
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all above 0.77. As for the other indicators, the comparison results are listed in Table S7. These results 
illustrate that the DNA autoencoder plays a key role in the construction of the efficient predictor. 

 

Figure 5. The five indicators of six autoencoder-based individual classifiers and G4PromFinder. 

4. Generalization ability of the model 

In this section, we applied the same encoding scheme and classification algorithms to distinguish 
promoters of Escherichia coli (E. coli). The training and independent test datasets are obtained from 
the latest predictor PredPromoter‑MF(2L) [42]. The results of six individual classification algorithms 
on the training dataset are listed in Table S8. It can be seen that the model based on the CNN reached 
the best performance with an Accuracy of 0.83 and an AUC of 0.93. Thus, it is used to test different 
types of promoters and compared with PredPromoter‑MF(2L). As illustrated in Table 2, SPREAD is 
superior to PredPromoter‑MF (2L) in prediction of σ24, σ28, σ32, σ38, but it is lower performing in 
prediction of σ54, σ70. The outperformance indicated the generalization ability of the model. 

Table 2. Results comparison of SPREAD and PredPromoter‑MF(2L) on specific types of 
promoters in E. coli. 

Promoter Method TP FN 

σ24 PredPromoter-MF 15 12 

CNN 22 5 

σ28 PredPromoter-MF 4 5 

CNN 8 1 

σ32 PredPromoter-MF 12 9 

CNN 21 0 

σ38 PredPromoter-MF 84 69 

CNN 145 8 

σ54 PredPromoter-MF 4 2 

CNN 3 3 

σ70 PredPromoter-MF 329 8 

CNN 312 25 
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5. Conclusions 

In this study, we proposed a specific prediction model for promoters in P. aeruginosa, called 
SPREAD, which is an ensemble model based on the integration of a CNN and RF. The effectiveness 
of our prediction model SPREAD is verified through several different tests, and it improves the 
accuracy by 0.59 compared to G4PromFinder. SPREAD utilized an LSTM induced matrix and vector 
embedding of DNA sequences as feature encoding. The test results suggest that the DNA sequence 
autoencoder strategy contributes to the impressive classification performance. The code and datasets 
are available at https://github.com/Zhou-Shengming/SPREAD. In the future, this method will be 
extended to other types of bacterial promoter recognition. 
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