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Abstract: Brain community detection is an efficient method to represent the communities of brain
networks. However, time-variable functions of the brain and the intricate brain community structure
impose a great challenge on it. In this paper, a time-sequential graph adversarial learning (TGAL)
framework is proposed to detect brain communities and characterize the structure of communities
from brain networks. In the framework, a novel time-sequential graph neural network is designed as
an encoder to extract efficient graph representations by spatio-temporal attention mechanism. Since
it is difficult to capture the community structure, the measurable modularity loss is used to optimize
by maximizing the modularity of the community. In addition, the framework employs an adversarial
scheme to guide the learning of representation. The effectiveness of our model is shown through
experiments on the real-world brain network datasets, and the great performance of brain community
detection demonstrates the advantage of the proposed framework.
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1. Introduction

Neurological diseases are one of the most common diseases, causing a large number of patients
and casualties worldwide every year and imposing a huge burden on the healthcare industry. Mean-
while, pharmacological magnetic resonance imaging (phMRI) is a technology that allows researchers
to obtain noninvasive functional brain imaging of drug-induced variations in blood flow dynamics. As
a derivative of functional magnetic resonance imaging (fMRI), phMRI will significantly promote the
progression of neurological diseases in terms of pharmacokinetic and pharmacodynamic properties if
the time course and neurological response of specific pharmacological stimulus can be analyzed for
specific diseases and medications. As a result, phMRI processing analysis has a wide range of appli-
cations and a significant impact in the medical field. For example, the analysis of phMRI of addictive
drugs can be used to study the addictive mechanisms of drugs in order to develop therapies for treating
addiction [1]. And the work in this paper proposes the relevant technique for medical research in this
field and engages in the processing and analysis of MRI data.

With the increasing number of studies contributing to the exploration and advancement of neu-
roscience, researchers are extracting and processing brain information more elaborately and pro-
foundly [2], characterized by a large amount of complicated biological data obtained from large-scale
brain neural systems. The vast amount of this enormous data is overwhelmingly in the form of net-
work datay [3], representing the connections or interconnections of components in various large-scale
neurobiological systems. In neuroscience, these data often span a variety of scales [4] (neurons, cir-
cuits, systems, and brains) or include different types of data (e.g., structural networks that express the
anatomical connections of nerves, functional networks that represent the connections of distributed
brain regions associated with neural activity). Brain networks [5] are composed of anatomical struc-
tures that segment different brain regions and connect them through functional networks that reveal
complex patterns of neuronal communication. Such complex neural signal patterns, attributed to cur-
rent advances in imaging technology and advanced medical image processing methods [6, 7], can be
studied with fMRI [8] and mentioned phMRI, yielding neural response activity thought to be associated
with various behavioral and cognitive functions as well as brain diseases [9].

Complex networks are characterized by their modular structure [10]. This implies that the nodes of
a network may be divided into modules or communities that are inwardly dense and outwardly sparse.
The brain follows the organizing principle of modular organization [11], and the most widely encoun-
tered and biologically meaningful aspect of brain networks is their organization into distinct network
communities or modules, meaning that tightly connected clusters within them are less connected to
each other. Modular blocks have neuroscientific significance due to the fact that their boundaries dis-
tinguish functionally relevant neuron elements [12], define hubss [13] and crucial bridges that connect
communities, channel and impede the flow of neural impulses and messages, and constrain the unre-
stricted spread of instabilities.

Due to brain networks being large and their connectivity patterns being complex, it is often impossi-
ble to identify modules simply by visually inspecting the network. Community identification methods
have been used to significant effect in solving such problems [14]. Subgraphs, network modules, and
communities have all been explored in depth in network topologies. They have been widely used in
network neuroscience [15]. Network structure identification, also known as community detection, is
the division of nodes in a network into groups, where nodes within communities are densely connected
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and nodes between communities are sparsely connected. Mining network structure reveals and un-
derstands complex network systems’ organizational principles and operational roles. In addition, the
development of new methods for mapping the structural and functional connectivity of the brain has led
to the preparation of complete network maps of neuronal circuits and systems [16, 17]. The structure
of these brain networks can be examined and analyzed using various graph-theoretic methods. Thus,
methods for finding modules or network clusters in brain networks have specialized applicability, re-
vealing tightly coupled core building blocks or substructures, often corresponding to specific functional
components [18]. With the recent intersection of neurobiological imaging and network science graph
theory, new applications and analytical methods are being developed to analyze real-world biological
networks.

Since the past few decades, data-driven models have received a great deal of attention in a broad
range of fields, for example, it is used for image [19], disease prediction [20, 21] and trajectory detec-
tion [22]. When cooperated with machine learning approaches, these models has led to a great deal of
success in the area of medical image computing [23] when it comes to constructing pattern recognition
frameworks. The models get the capacity to fulfill a high level of precision at a minimal computational
cost. Building on its foundation, deep learning has become a method presently regarded as one of the
most critical advances in machine learning overall. Deep learning is a novel technique for process-
ing high-dimensional biological network data and learning low-dimensional graph representations of
brain network structures [24–26]. Exemplary approaches include those based on generative adversar-
ial techniques [27–29] and graph neural networks [30]. Generative adversarial networks (GANs) [31],
which can bee seen as variational-inference [32] based generative model, are frequently unsupervised
in training, and the freshly produced data (in theory) has the same distribution as actual data, allow-
ing for robust, complicated data analysis. And it is important to note that the prevalent technique in
medical image analysis is the use of GAN [35, 36]. By pooling and convolution, the convolutional
neural network (CNN) [33] method decreases the dimensionality of medical imaging data, allowing
it to discover patterns in biomedical research effectively. Graph convolutional network (GCN) [34] is
built to extract community characteristics as it directly analyzes network-structured data and succeeds
CNN capabilities. However, existing approaches for processing dynamic network data to produce tem-
poral graph representations for community discovery remain hard [37], particularly for small network
sample datasets [38].

To resolve mentioned problems, we developed a novel time-sequential graph adversarial learning
(TGAL) to accomplish the partitioning of brain regions in time-varying brain networks, detect differ-
ent communities involving similar brain regions in brain networks and their evolution over time steps,
and improve the robustness of the framework when dealing with small sample network data utilizing
generative adversarial techniques. The main contributions of our work can be concluded as follows: 1)
A time-sequential graph attention encoder is designed to learn more efficient graph representation, and
more helpful graph embeddings are obtained to complete the clustering to detect more accurate dy-
namic communities. 2) An adversarial training scheme is proposed to assist the representation learning
of brain networks. It alleviates some of the issues created by training with few data samples. 3) Due to
the excellent classification performance of our frameworks with neuroscientific supports, the commu-
nities discovered in biological and medical imaging experiments may be employed as biomarkers.

Following is the outline for this paper: In Section 2, a graph learning framework with adversar-
ial strategy is established, and its formulas and details of the composition of each module is given.
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Figure 1. The architecture of the proposed time-sequential graph adversarial learning
(TGAL) framework for detecting brain communities. It contains three essential components:
1) a construction module for brain networks, 2) a temporal graph auto-encoder that combines
a decoder and an encoder for temporal graph attention, and 3) an adversarial regularizer con-
sisting of a discriminator and a generator.

In Section 3, a neurobiology networks dataset is constructed and described as following, a dynamic
community detection experiment is designed to estimate the capability of node clustering in brain re-
gions, Then, a visualization of the results is displayed. And a graph representation learning experiment
is implemented to verify the representational learning capabilities of the framework. In Section 4,
the discussion of the pros and cons of our framework and the future directions for improvement is
presented. Finally, we summarize the work of this paper in Section 5.

2. Methods

The architecture of our TGAL is illustrated in Figure 1. Firstly, the raw brain functional image
dataset is input to the module called “brain network construction” to construct network data with
nodes and connections by time series and brain atlas. Secondly, on one hand, the network data is fed
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to an encoder, and on the other hand, the network data is given as positive samples to a discrimina-
tor in adversarial learning to generate augmented data. Then, the encoder provides the output graph
embedding for not only decoding to reconstruct but calculating the loss function for community detec-
tion. The forward computation is then completed and the detected brain communities are outputted,
backpropagation is finally carried out to update the model parameters.

Brain networks construction will be describe in the datasets preparation below. And the explanation
of the notations is given in Table 1. In the auto-encoder, the encoder (E) adopts temporal graph atten-
tion networks to transform the time series of brain regions (

{
Xt}T

t=1) and brain functional connections
(A) into the embeddings (

{
Zt}T

t=1). Additionally, in the adversarial regularizer, the encoder, which is
referred to as the generator (G), and the discriminator (D), engage in a min-max adversarial game in
order to learn more suitable embeddings. The community assignment matrix is optimized using the
measurable soft modularity loss in order to detect communities. Consequently, the encoder is trained
with two objectives: a typical auto-encoder reconstruction loss and a measured modularity loss for
community detection.

Table 1. Explanation of notations.

notation description
E encoder
G generator
D discriminator
X attributes of brain region(node)
A adjacency(connectivity) matrix of brain networks
H hidden representations of region(node) attributes
Z embeddings of region(node) attributes
φ parameters of discriminator
ψ parameters of generator
E expectation
i, j No.i and No. j brain region

2.1. Temporal graph autoencoder

The purpose of the temporal graph autoencoder is to encode the properties of the dynamic brain
network in a low-dimensional latent space. First, we create the encoder using two distinct network
blocks: the topological attention block and the temporal attention block. Each block is composed of
multiple layers of the respective stack. Both utilize self-attention techniques to achieve an effective
time-sequential graph representation from its neighbors and historical context data.

2.1.1. Topological attention layer

The initial input for this layer is a set of brain network attributes
{
xi ∈ R

d,∀i ∈ V
}

where d is the

dimension of time series. The output is a set of brain region representations
{
hi ∈ R

f ,∀i ∈ V
}

where f
is the dimension of captured topological properties.

Similar to graph attention networks (GAT) [39],our topological attention layer is concerned with
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the near neighbors of the brain region i by calculating attention weight from input brain region repre-
sentations:

hi = σ

∑
u∈Ni

αi jWx j

 , (2.1)

αi j =
exp

(
σ

(
Ai j ·

[
Wx j‖Wxi

]))∑
w∈Ni

exp (σ (Awi · [Wxw‖Wxi]))
(2.2)

Here Ni = { j ∈ V : (i, j) ∈ E} is the set of near neighbor of region i which are linked by functional
connection A; W ∈ Rd× f is a weight transformation matrix for each region representations; σ(·) is
sigmoid activation function and ‖ is the concatenation operation. The learnt coefficients αi j, which
is computed by performing softmax on each neighbors, indicates the significance of brain region i to
region j. Note that topological attention layer applies on brain region representation at a single time
step, and multiple topological attention layer can calculate the entire time sequence in parallel.

2.1.2. Temporal attention layer

Capturing the constantly changing patterns of brain networks in a global way is critical for dynamic
community detection. When obtaining attributes at current time step, it is essential to consider the
global temporal context. The essential concern is how to record the temporal variations in the orga-
nization of brain networks over several time steps. Temporal attention layers are intended to address
this problem using the scaled dot-product attention [40]. Its queries, keys, and values are utilized to
represent the properties of brain regions that provide input.

We define Hs =
{
h1

s , h
2
s , ..., h

T
s

}
, a representation sequence of a brain region s at continuous time

steps as input, where T is the number of time steps. And the output of the layer is Zs =
{
z1

s , z
2
s , ..., z

T
s

}
, a

new brain network representation sequence for region s at different time steps.
Using ht

s as the query, temporal attention layer evaluate its historical representations, inquiring
the temporal context of the neighborhood around region s. Hence, temporal self-attention allows the
discovery of relationships between time-varying representations of a brain region across several time
steps. Formally, the temporal attention layer is computed as:

Z s = βs (HsW s) , (2.3)

βi j
s =

exp
(
ei j

s

)
∑T

k=1 exp
(
eik

s
) , ei j

s =


((

HsWq

)
(HsWk)T

)
i j

√
F′

 (2.4)

where βs ∈ R
T×T is the attention coefficient matrix computed by the query-key dot product attention

operation; Wq ∈ R
d× f ,Wk ∈ R

d× f and Wv ∈ R
d× f are linear projections matrices which transform

representations into a particular space.
The two attention blocks are calculated in sequence to obtain the final temporal representation, i,e.,

the output embeddings Z. And It is utilized to reconstruct the brain network topology in the decoder:

Â = σ(ZZT ) (2.5)
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Â is the reconstructed brain functional connection and σ(·) is still sigmoid function.
The classic reconstruction loss is defined by the form of cross entropy:

LRE =
∑
E

[
Ai j log Âi j +

(
1 − Ai j

)
log

(
1 − Âi j

)]
(2.6)

2.2. Adversarial learning

In this adversarial model, the main objective is enforcing brain network embeddings Z to match the
prior distribution. Other naive regularizers push the learned embeddings to conform to the Gaussian
distribution rather than capture semantic diversity [41]. As a result, conventional techniques to net-
work embedding cannot effectively profit from adversarial learning. Generative data augmentation is
needed to explore the underlying features of the data to offset the negative impact of small sample data.
Therefore, we derive the previous distribution of communities by counting different kinds of modules
in the functional brain network that have been confirmed by neuroscience. The adversarial model
serves as a discriminator by using a three-layer fully connected network to identify whether a latent
code generated from the prior distribution pz′ or brain network data from the real-world dataset (X, A).
The regularizer will eventually enhance the embedding during the minimax competition between the
encoder and the discriminator in the training phase by generating augmented data X′ as input to the
auto encoder.

The loss of the encoder(generator) LG and discriminator LD in the adversarial model, defined as
follows:

LG = −Ex∼pdata log Dφ

(
Gψ (X, A)

)
(2.7)

LD = − Ez′∼pz′ log Dφ(X′)

− Ex∼pdata log
(
1 − Dφ

(
Gψ (X, A)

)) (2.8)

In this expression, z′ is a latent code sampled from the prior distribution pz′ of empirically confirmed
brain communities; Dφ(·) and Gψ(·) is the above-mentioned discriminator and encoder.

Formally, the objective of this adversarial learning model can be indicated as a minmax criterion:

LAL = min
G

max
D

Θ (D,G)

= min
G

max
D

(
Ez′∼pz′ log D(X′; φ)

+ Ex∼pdata log (1 − D (G (X, A) ; φ))
) (2.9)

2.3. Measurable modularity loss

Modularity maximization is a technique for community discovery that is commonly used in the
detection of brain modules. A partition is regarded high quality (and so has a higher Q score [24])
conceptually if the communities it forms are more dense internally than would be predicted by chance.
Thus, the partition that gets the maximum value of Q is considered to be a good estimation of the
community structure of a brain network. This intuition may be expressed as follows:
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Q =
1

2m

∑
i j

[
Ai j − ci j

]
δ
(
ωi, ω j

)
(2.10)

Here ai j indicates the number of functional connection between region i and j; ci j =
kik j

2m denotes
the estimated number of connections based on a null model where ki =

∑
j Ai j is a degree of the region

i and 2m =
∑

i j Ai j is overall amount of connections in the brain networks; δ(ωi, ω j) = 1, if ωi = ω j,
which means reigon i and reigon j are in the same community and 0 otherwise.

Inspired by [42], to develop a differentiable objective for optimizing the community assignment
matrix P = so f tmax(Z) ∈ RN×C which represents a matrix of probabilities of brain region attribution
to communities, the measurable modularity loss employed by our framework is defined as:

LMM = −
1∑
|Ai j|

tr
(
P>BP

)
︸                 ︷︷                 ︸

measurable modularity

+λ

 C∑
i

 N∑
j

Pi j −
1
C


2︸                    ︷︷                    ︸

regularization

(2.11)

where the modularity matrix B = A − ddT

2m ; C is the amount of communities and N is the number of
regions in the brain networks. The regularization ensures that the model can identify communities of
the predicted size.

Thus, the total loss for the encoder optimization in the train process to obtain better embeddings is
sum of the above three loss terms, expressed as follows:

Ltotal = LRE +LG +LMM (2.12)

3. Experiments and results

In this part, we assess the performance of TGAL in terms of both dynamic community detection
and graph representation learning. We use metrics of graph theory and machine learning to measure
the experimental results over dynamic community detection, evaluating the performance of our model
in graph representation learning with binary classification metrics.

3.1. Materials and datasets preparation

The neurobiological experiment dataset contains two types of data with different numbers: raw
functional MRI images of 8 nicotine non-drug injected rats and 16 drug-injected rats, each with 800
time series. The injection was carried out in the middle moment of the fMRI processing on rats, and
its injection time was ignored. The injected drug will stimulate the nervous system of the rat brain and
cause some disturbance to the brain network.

• Brain networks construction: By preprocessing long-term functional MRI scans of experimen-
tal rats, we produced the dynamic brain network dataset necessary for the experiment. The first
preprocessing was performed using the Statistical Parametric Mapping 8 (SPM8) tool in MAT-
LAB. In order to account for head motion, functional signals were aligned and unwrapped, and
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the average motion-corrected picture was coregistered with the high-resolution anatomical T2 im-
age. The functional data were then smoothed using an isotropic 3 mm full-width at half-maximum
(FWHM) Gaussian kernel. Upon the base of the Wister rat brain atlas, 150 functional brain re-
gions have been characterized. We used magnitude-squared coherence to evaluate the spectrum
correlation between regional time series, resulting in a 150×150 functional connection matrix for
each time step, the elements of which displayed the strength of functional connectivity between
all interactions of regions. Therefore, in the time-varying dynamic brain network, the BOLD se-
quence signal from fMRI is used as a nodal attribute for each brain region, the adjacency matrix is
given by the preprocessed functional connectivity, and the entire time period is separated equally
into 6 time steps.

3.2. Implementation details

Python Torch was used as the backend for our TGAL. Two NVIDIA GeForce RTX 3080 Ti sped up
the training of the networks. During training, the training epoch was set at 1000 and the learning rate
was set to 0.001. Adam was used as an optimizer with a weight decay of 0.01 to reduce overfitting.
The encoder was trained using 2 topological and two temporal attention layers. We perform each
experiment 10 times and calculate the mean result. We set the regularization value to 0.5 and the
number of communities to 10 for all datasets and methods.

3.3. Dynamic community detection performance

3.3.1. Baseline

Our approach was compared against the following two kinds of baselines:

• GAE [44]: is recently the most common autoencoder-based unsupervised framework for graph
data, in which the encoder is composed of two-layer graph convolutional networks to leverage
topological information.
• ARGA [45]: is an adversarially regularized autoencoder method that employs graph autoencoder

to learn the representations, regularizes the latent codes, and forces the latent codes to match a
prior distribution; differing from ours, it used simple Gaussian distribution as the prior distribu-
tion.

3.3.2. Metrics

For graph-level metrics, we report average community conductance C and modularity Q. For
ground-truth label correlation analysis, we report normalized mutual information (NMI) between the
community assignments and labels and pairwise F-1 score between all node pairs and their associated
community pairs.

3.3.3. Ablation study

As indicated in Table 2, we conducted ablation research on community detection to evaluate the
effectiveness of our proposed TGAL framework in the three terms of encoder composition, adversarial
learning module and loss function. And three significant outcomes were achieved: 1) In a comparison
of graph-level metrics, the k-means-based technique performed admirably for community conductance,
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Table 2. Community detection performance on rat brain networks dataset by graph conduc-
tance C, modularity Q, NMI, and pairwise F1 measure. GCN is graph convolutional neural
network and TG is the abbreviation of our proposed Temporal Graph encoder. AL indicates
whether the module of Adversarial Learning is implemented.

encoder AL loss Metrics(%)

GCN TG K-means modularity C Q NMI F1

" % % " % 68.4 16.7 55.5 28.5
" % " " % 72.5 24.3 49.6 44.4
" % % % " 28.4 64.5 50.8 60.2
" % " % " 22.8 58.8 47.5 59.8
% " " % " 42.9 69.5 67.5 66.7

while the modularity loss-based method performed better for community modularity. This is owing
to the fact that the two methods have fundamentally different optimization goals; modularity loss is
motivated by the desire to maximize modularity. 2) The strategy with adversarial regularizer performs
well on average; this demonstrates that adversarial learning serves as an adjunct to graph representation
learning. 3) Our technique performs poorly when the proposed encoder is replaced with a two-layer
graph convolutional encoder; this suggests that the proposed encoder may learn better embeddings to
improve performance by virtue of a powerful attention mechanism [43].

3.3.4. Visualization of dynamic community detection

Figure 2 depicts the results of our dynamic community experiment. It illustrates the changes in the
spatial distribution of the three major brain communities observed by our method over increasing time
intervals. The algorithm for community detection modularizes the clustering of nodes represented by
each brain region, and the top three communities with the largest number of nodes can be identified as
evolving in each time step. And each time step corresponds to a short period in the description of the
dataset as mentioned above. As can be observed from the figure, there was no significant change in the
distribution of brain communities at time steps 1–3, and the spatial location of the brain communities
did not change much in general during this period. But there was a significant change from time
step 4–6. The three main brain communities have altered spatial distribution to some extent in each
of the periods after time step 3. Because the experiment was administered drug injection after time
step 3 caused the rats in the original data set to change the characteristics and topology of their brain
networks. Thus, the experimental results are consistent with neuroscientific facts.

3.4. Graph representation learning performance

We divided the data from drug-injected and non-drug-injected rats into two groups and verified
whether the models learned efficient graph representations by competing with state-of-the-art graph
representation learning models for binary classification performance.
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Figure 2. Visualization of dynamic community detection performance within six time steps.
In each time step, the most dominant top three brain communities are represented by the red,
yellow and blue colored spheres, and the spatial location of each color sphere represents the
location of the corresponding region in the brain. The cartoon between time step 3 and time
step 4 represents the drug administration.
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Figure 3. Classification result of the proposed graph representaion learning and the compar-
ison method on baseline.

3.4.1. Comparison methods

• DGI [46]: highlights the importance of cluster and representation learning in combination. We
learn unsupervised graph representation with DGI and two algorithms both run SVM on the final
representations as the classifer.

3.4.2. Metrics

The performance of binary classification is evaluated using six quantitative representation learning
metrics: To summarize: 1) Accuracy (ACC), 2) Area under receiver operating characteristic curve
(AUC), 3) Precision (PRE), 4) Recall (REC), 5) Receiver operating characteristic (ROC), and 6) F1-
score. Our suggested technique is being evaluated using leave-oneout cross-validation (LOOCV), since
we only have a small quantity of data. One of the N individuals is omitted from the testing process, and
the N − 1 subjects that remain are used for training purposes only. Each technique’s hyperparameters
are adjusted to their optimal values via the greedy search algorithm.

3.4.3. Classification results

As shown in Figure 3, our method achieves better results in terms of classification performance
overall. In a way, it verifies that the representation obtained by our method is stronger in the unsuper-
vised learning process. Figures 4 and 5 display the comparison of our model’s second classification
accuracy and precision compared to the DGI method at different time steps. Again, the overall supe-
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riority of our method can be seen, and it can be observed that the classification metrics at time steps
4–6 are generally better than those at time steps 1–3, which may be due to the fact that it is easier to
classify when the alterations in the dynamic brain network start to appear after drug injection.

Figure 4. Classification accuracy under 6 ascending time steps compared with the compari-
son method.

Figure 5. Classification precision under 6 ascending time steps compared with the compari-
son method.
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4. Discussion

Considering all the factors that affect the performance of our framework in the experiment, one
of the essential points is the presence of noise in the data, which is a common problem in current
biomedical techniques when carrying out experiments.

In the data processing part of this experiment, we thoroughly considered the effect of noisy data
on the experimental results. The acquired fMRI data are screened, and the collected unqualified data
will be excluded from the subsequent experiments. Since the scanned subjects have a slight head
movement during the experimental data acquisition, it will cause the acquired images to be noisy.
Head movement correction is used to make the processed images overlap with the target images as
much as possible so that the same voxel corresponds to the same position in the brain at each moment.
In this way, the interference of noise in the experiment is reduced. Several pre-processing processes,
such as normalization, aim to minimize errors due to data acquisition and physiological properties.
However, it is still not possible to completely exclude the effect of noise in the data.

Therefore, our deep learning framework also incorporates a mechanism to resist noise to some ex-
tent: using adversarial learning to get the generated augmented data allows the model to learn more
about the distribution of the original data to extract more robust features, and to this view is weakening
the negative impact of noisy samples. From the results of the above experimental section, we can ob-
serve that the strategy of generating adversarial improves the performance of our framework. However,
in general, we still do not get particularly ideal detection results and classification accuracy due to the
negative impact of noisy samples.

In summary, the current method still has some limitations, and the noise in many places using the
current method can only reduce the impact as much as possible. But the noise problem still cannot be
completely eliminated. How to better eliminate the impact of noisy data is the direction of our future
research direction.

5. Conclusions

In this research, we develop a new framework termed time-sequential graph adversarial learning
(TGAL) for incorporating community detection into an adversarial regularizer-directed graph repre-
sentation learning process. Moreover, TGAL framework use a temporal graph attention encoder to
incorporate topological input properties, temporal contextual representation, and latent factors. It also
employs adversarial training with a neuroscientific prior to reconstructing the embedding space. In
dynamic brain network datasets, our strategy surpassed several unsupervised deep embedding and
community identification methods. Using the resulting graph representations for classification yielded
better results than the comparison method, demonstrating that learning graph representations may re-
sult in more accurate graph embeddings in the latent space. Detailed model discussions were held to
explore, among other concerns, the suggested TGAL and the superiority of the encoder and adversarial
regularizer. Last but not least, our framework, which achieved improved performance, can be applied
as a technology for medical-relevant research, and the detected dynamic brain communities altered by
drugs can be used as an underlying biological marker to facilitate biomedical research on the pharma-
codynamic properties and pharmacokinetics of neurological diseases and make efforts towards drug
therapy for brain diseases.
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