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Abstract: In ecology, the impact of predators goes beyond killing prey, the mere presence of predators
reduces the ability of prey to reproduce. In this study, we extend the predator-prey model with fear
effect by introducing the state-dependent control with a nonlinear action threshold depending on the
combination of the density of prey and its changing rate. We initially defined the Poincaré map of
the proposed model and studied its fundamental properties. Utilizing the properties of the Poincaré
map, periodic solution of the model is further investigated, including the existence and stability of the
order-1 periodic solution and the existence of the order-k (k ≥ 2) periodic solutions. In addition, the
influence of the fear effect on the system’s dynamics is explored through numerical simulations. The
action threshold used in this paper is more consistent with the actual growth of the population than
in earlier linear threshold studies, and the results show that the control objectives are better achieved
using the action threshold strategy. The analytical approach used in this study provided several novel
methods for analyzing the complex dynamics that rely on state-dependent impulsive.

Keywords: state-dependent impulsive system; fear effect; nonlinear threshold; Poincaré map;
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1. Introduction

Ecosystem modeling and analysis is a fascinating and active research field in biology, in which
the study of the interaction between predator and prey is a central topic in ecology and evolutionary
biology [1, 2]. With the progress of ecological research, the views on how predators interact with
the prey and affect the prey population have also changed greatly. Predators have a dual impact on
the structure of the ecological system [3]. On the one hand, predators physically attack and kill the
prey [4], thereby reducing the number of prey. On the other hand, the existence of predators alone can
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make the prey individual in a state of psychological pressure, resulting in many changes in the behavior
of prey species [5]. This is a common anti-predator response, also known as the ‘fear effect’, which
eventually slows the growth of prey populations [6].

In attempts to better understand the influence of fear effect on the predator-prey system, scholars
developed lots of mathematical models of predator-prey system with fear effect. For example, Wang
et al. [7] investigated the impacts of fear effect on the stability of the system, and obtained that the
fear effect can lead to the bifurcation of limit cycle under appropriate parameter values. Further, Wang
and Zou et al. [8] inspired by the experimental work by Zanette and his colleagues [9], expanded their
previous study [7] by incorporating age structures into prey populations (juvenile and adult stages) and
allowing adult prey to adaptively avoid predators. Das and Samanta [10] investigated the impacts by
introducing an exponential form of fear effect into a stochastic predator-prey system when extra meals
were offered to predators. Sahoo and Samanta [11] explored a two-prey and one-predator model by
incorporating fear factors into switching mechanisms during prey reproduction and predation. Das et
al. [12] studied a predator-prey model that incorporates fear factors into including birth and mortality
in prey populations with a functional Holling type-II response. See references [13–16] for more fear
factor influences in predator-prey model dynamics.

In addition to the above interactions, the predator-prey system is also disturbed by various external
factors, which can cause huge changes in the number of species in the short term. This change is
called an impulse in the modeling process, and the impulse differential equation can well describe this
change [17]. Correspondingly, there are two types impulsive control strategies in impulsive differential
equations, namely, fixed-time impulse and state-dependent impulse [17–20].

State-dependent feedback control methods are commonly represented by impulsive semi-dynamical
systems, which can well characterize threshold control strategies. That is, control interventions will
only take place when a target species size reaches a preset threshold density. In recent years, state-
dependent feedback control has received extensive attention from researchers and has been applied in
many fields and sciences, for example, fishery harvesting [21–23], integral pest management [24–26],
the effects between biological populations [27–29], virus control [30–32], etc.

In controlling reality biological species, we focus on choosing a proper time to implement the
control interventions and designing a practical strategy in proceeding the control. A basic assumption
of many existing models is that when the biological population density reaches a fixed threshold, then
the control is carried out, which is subject to the above-mentioned state-dependent feedback control.
But from a biological point of view, a fixed threshold control policy usually ignores many important
aspects in the real world. There are two practical situations: low population density but high rate of
change; high population density but low rate of change. In the above two situations, we may not need
to trigger the control interventions even though the population density is high, but the growth rate is
low. Thus, the threshold policy needs to include both population density and its changing rate, which
is actually a nonlinear threshold control strategy. Note that, the nonlinear threshold policy was recently
studied in many works [17, 31, 33, 34], and rich dynamic behaviors were observed in these studies. In
the control of biological populations, another assumption in the impulsive model is that the changing
rate is proportional to the population density due to the use of control interventions. However, there
should definitely be a limitation for this term. Therefore, the saturated form using a nonlinear function
can be more realistic. To the best of our knowledge, no study has tried to introduce the nonlinear
threshold policy and the nonlinear control function into the predator-prey system with fear effect, and
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the analysis of the dynamic behaviors remains challenging.
The major goal of this research is to introduce the nonlinear threshold policy and the nonlinear

function of the control effect into an impulsive predator-prey system with fear effect, propose a
state-dependent impulsive system with nonlinear threshold control, and focus on studying its dynamic
behaviors. In Section 2, a predator-prey state-dependent impulsive model with fear effect is proposed,
and a ratio-dependent nonlinear action threshold is adopted. In Section 3, the corresponding Poincaré
map is constructed by giving the range of impulsive set and phase set, and some fundamental
properties of Poincaré map are discussed. In Section 4, the conditions for the existence and stability
of order-1 periodic solution are given, and the existence of order-k (k ≥ 2) periodic solutions are
discussed. The Section 5 is numerical simulation, which verifies our theoretical results and discusses
the effect of fear factors on system dynamics. Finally, the relevant biological significance are
discussed and conclusions are given.

2. Model formulation and preliminaries

In the literature [35], the authors considered the impulse control guided by a linear threshold of the
density of prey based on a predator-prey model with fear effect, and partially studied the dynamics
of the proposed model. In the current study, we extend the model in [35] by introducing a nonlinear
threshold control policy, taking the combination of the density of prey and its changing rate as the
action threshold. The model is given by:

dx (t)
dt

=
bx(t)

1 + ky(t)
− dx(t) − cx(t)2 −

px(t)y(t)
1 + wx(t)

,

dy (t)
dt

=
epx(t)y(t)
1 + wx(t)

− my(t),

 u1x(t) + v1
dx(t)

dt < ET,

x(t+) = x(t) −
δx(t)2

x(t) + µ
,

y(t+) = y(t) +
τ

1 + ηy(t)
,

 u1x(t) + v1
dx(t)

dt = ET,

(2.1)

where x(t) and y(t) are the sizes of the prey and predator populations, respectively. b, d and c
represent the birth rate, natural mortality rate, and density-dependent decay rate caused by
intraspecific competition for prey, respectively, k represents the level of fear. px(t)

1+wx(t) indicates the
Holling II functional response, e denotes the ratio of biomass conversion (satisfying the restriction
0 < e < p), m is the death rate of the predator. The parameters u1, v1 and ET are all positive constants
with u1 + v1 = 1.

Another major assumption in existing research is that the prey capture rate is a linear function
dependent on population density, and the predator release amount is a positive number. Nevertheless,
in real nature, natural resources are finite, and implementing of control policies should be determined
by the present size of the population. Both the capture rates of prey and the release amount of predator
should be based on population saturation functions. Consequently, we consider the finiteness of natural
resources in our model is very meaningful. We apply the following nonlinear impulsive functions
relevant to biological population density and capture rate.

α = −
δx(t)2

x(t) + µ
, β =

τ

1 + ηy(t)
,
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that is, when the prey population density reaches the action threshold u1x(t) + v1
dx(t)

dt = ET , the control
measures will be taken to update the number of prey and predator to x(t) − δx(t)2

x(t)+µ and y(t) + τ
1+ηy(t) ,

respectively. Here, δ and µ denote maximum capture rates and the half-saturation constant for the prey,
τ represents the maximum number of predators released, η is the morphological coefficient. The release
of predators will not surpass the τ due to realistic factors, such as definite resources. For simplicity, we
denote x(t+) = x+ and y(t+) = y+.

Without the feedback control, the ODE system
dx (t)

dt
=

bx(t)
1 + ky(t)

− dx(t) − cx(t)2 −
px(t)y(t)
1 + wx(t)

,

dy (t)
dt

=
epx(t)y(t)
1 + wx(t)

− my(t).
(2.2)

With the dynamics of system (2.2) has been investigated in [35], and here we beriefly recall its
dynamics that are useful in the present research. The two nullclines of system (2.2) are noted by L1

and L2, where
L1 : x = m

ep−mw ,

L2 : y =
−p−k(d+cx)(1+wx)+

√
(p+k(d+cx)(1+wx))2−4pk(d+cx−d)(1+wx)

2pk .

System (2.2) always exists a trivial equilibrium O(0, 0), which is a saddle point, and a boundary
equilibrium E0(b−d

c , 0). When (b − d)(ep −mw) < cm, E0 is stable; when (b − d)(ep −mw) > cm, E0 is
unstable. In addition, system (2.2) has an internal equilibrium E∗(x∗, y∗), where

x∗ = m
ep−mw ,

y∗ =
−p−k(d+cx∗)(1+wx∗)+

√
(p+k(d+cx∗)(1+wx∗))2−4pk(d+cx∗−d)(1+wx∗)

2pk .

If k > k∗, then E∗(x∗, y∗) is a stable focus or node; if k < k∗, then E∗(x∗, y∗) is unstable and there exists
a unique stable limit cycle, where

k∗ = −
pw[w(d + cx∗ − b) + c(1 + wx∗)]

c(1 + wx∗)2[c(1 + wx∗) + w(d + cx∗)]
.

3. The Poincaré map and its properties

In a biological sense, our discussion is limited to the region R2
+ = {(x, y) : x ≥ 0, y ≥ 0}. The

impulsive set and phase set become two curves because system (2.1) adopts the action threshold control
strategy of prey density and its changing rate. According to u1x(t) + v1

dx(t)
dt = ET and the first equation

of system (2.1), we can obtain

y =

√
A − B + (pv1x)2 + C − pv1x

2pv1xk
,

denoted by LM, where

A = (cv1x2 + (dv1 − u1)x + ET )2(1 + wx)2k2,

B = 2pv1(1 + wx)x(cv1x2 + ((−2d + b)v1 − u1)x + ET )k,
C = (−cv1wx3 + ((−dw − c)v1 + u1w)x2 + (−ETw − dv1 + u1)x − ET )k.
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From x+ = x − δx2

x+µ
, we have

x =
x+ − µ +

√
(µ − x+)2 − 4x+µ(1 − δ)

2(1 − δ)
.
= χ.

Therefore

y =

√
A1 − B1 + (pv1χ)2 + C1 − pv1χ

2pv1χk
,

where
A1 = (cv1χ

2 + (dv1 − u1)χ + ET )2(1 + wχ)2k2,

B1 = 2pv1(1 + wχ)χ(cv1χ
2 + ((−2d + b)v1 − u1)χ + ET )k,

C1 = (−cv1wχ3) + ((−dw − c)v1 + u1w)χ2 + (−ETw − dv1 + u1)χ − ET )k.

Let
y+ = y +

τ

1 + ηy
= φ(x+),

denoted by LN . Next, unless otherwise specified, we always take an initial point S +
0 (x+

0 , y
+
0 ) from the

curve LN . The trajectory starting from LN may not reach LM due to different initial conditions. Now,
define the range of the impulsive set and phase set based on the different positions of the trajectories of
system (2.1) with the equilibrium point (see Figure 1).

Case (i) x∗ ≥ x∗M
Let the horizontal coordinate of curve LM at y = y∗ is x∗M. Since x∗ ≥ x∗M, there exists a curve ΓT1

such that the LN tangent to this cure at the T1(xT1 , yT1). Clearly, the curve ΓT1 intersects the LM at point
T2(xT2 , yT2) (see Figure 1 (a)). Therefore, we denote the impulsive set and phase set as:

M1 = {(x, y)|0 ≤ x ≤ xT2 , 0 ≤ y ≤ yT2},

N1 = {(x+, y+)|0 ≤ x+ ≤ xT2 −
δx2

T2
xT2 +µ

, τ ≤ y+ ≤ yT2 + τ
1+ηyT2

},

where (x, y) is a point on the curve LM and (x+, y+) is a point on the curve LN .
Case (ii) x∗ ≤ x∗M
When x∗ ≤ x∗M, there must have a point A(xA, yA) on impulsive set such that the trajectory ΓA is

tangent to LM at that point and intersects L2 at point E1(xE1 , yE1). Suppose the horizontal coordinate of
curve LN at y = yE1 is xN1 . Therefore, we consider the following two different cases:

(I) xE1 > xN1 . If xE1 > xN1 , the situation is the same as Case (i), and the trajectory ΓA does not
intersect LN . There exists a trajectory ΓB1 tangent to LN at point B1(xB1 , yB1), and after a period of time
the trajectory ΓB1 will intersect the impulsive set LM at point B2(xB2 , yB2) (see Figure 1 (b)). For this
situation, the impulsive set is defined by

M2 = {(x, y)|0 ≤ x ≤ xB2 , 0 ≤ y ≤ yB2},

and the corresponding range of phase set is defined by

N2 = {(x+, y+)|0 ≤ x+ ≤ xB2 −
δx2

B2

xB2 + µ
, τ ≤ y+ ≤ yB2 +

τ

1 + ηyB2

}.
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(II) xE1 < xN1 . If xE1 < xN1 , the curve ΓA intersects the line LN at points C1(xC1 , yC1) and C2(xC2 , yC2),
where yC1 > yC2 . In this case, it is easy to observe that none of the solution trajectory from the interior
of segment C1C2 reach the curve LM, that is, it is not affected by the impulsive effect (see Figure 1 (c)).
So we define the impulsive set by

M3 = {(x, y)|0 ≤ x ≤ xA, 0 ≤ y ≤ yA},

and the phase set is

N3 = {(x+, y+)|x+ ∈ [xA −
δx2

A
xA+µ

, xC2] ∪ [xC1 ,+∞], y+ ∈ [yA + τ
1+ηyA

, yC2]
∪[yC1 ,+∞]}.

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
x

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

y

L
N L

M

L
2

L
1

E*T
1

T
2

(x*
M

,y*
M

,)
Γ

T1

(a)

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
x

0.4

0.6

0.8

1

1.2

1.4

1.6

y

L
M

B
1

B
2

A

E
1

L
2

L
1

Γ
A

(x
N1

,y
E1

)

L
N

E*

(b)

0.6 0.8 1 1.2 1.4 1.6 1.8
x

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

y

L
M

L
2

L
1

C
1

C
2

E
1

A
Γ

A

E*

(x
N1

,y
E1

)

L
N

(c)

Figure 1. The trajectories of system (2.1) under different cases, where the parameter values
are k = 0.04, d = 0.02, c = 0.1, w = 0.1, e = 0.44, m = 0.2, δ = 0.2, µ = 1, τ = 1.8, η = 5,
u1 = 0.85, v1 = 0.15. (a) b = 0.4, p = 0.33, ET = 1.2, (b) b = 0.4, p = 0.38, ET = 1.18, and
(c) b = 0.5, p = 0.4, ET = 1.2.

Based on the above discussion, the construction of Poincaré map is given below. Given an initial
point S +

0 (x+
0 , y

+
0 ) ∈ N, we define the trajectory starting from S +

0 as Γ(t, t0, S +
0 ) = Γ(x(t, t0, (x+

0 , y
+
0 )),

y(t, t0, (x+
0 , y

+
0 )). For any S +

i (x+
i , y

+
i ) ∈ N, the trajectory from S +

i reaches the LN at point S i+1(xi+1, yi+1)
in a finite time t̃. We express this process as

Γ(t̃, x+
i , y

+
i ) = Γ(t̃, xi+1, yi+1)

= Γ(x+(t̃, x+
i , y

+
i ), y+(t̃, x+

i , y
+
i ))

= Γ(xi+1, yi+1),

where yi+1 = y+(t̃, x+
i , y

+
i ). From the Cauchy-Lipschitz Theorem we know that yi+1 can only be

represented by y+
i . Therefore, we have

y+
i+1 = yi+1 +

τ

1 + ηyi+1

= ξ(y+
i ) +

τ

1 + ηξ(y+
i )

= QM(y+
i ). (3.1)
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Consider the scalar differential equation from system (2.1):
dy
dx

=

epxy
1+wx − my

bx
1+ky − dx − cx2 −

pxy
1+wx

∆
= g(x, y),

y(ET ) = y+
0 .

(3.2)

The function g(x, y) is continuously differentiable. Further, we denote x+
0 = X, y+

0 = Z, and
S +

0 (x+
0 , y

+
0 ) ∈ N. Let

y(x) = y(x; X,Z) = y(x,Z), (3.3)

here the value of x is between the LN and the LM. According to (3.2) have

y(x,Z) = Z +

∫ X

x
g(z, h(z,Z))dz. (3.4)

Thus, from Eqs. (3.1) and (3.4), the Poincaré map can be expressed as

Q(Z) = y(X,Z) +
τ

1 + ηy(X,Z)
. (3.5)

Next, we provide some fundamental properties of the Poincaré map Q(Z) in the following theorem.

Theorem 3.1. [35] Assume x∗ ≥ x∗M, then the Poincaré map satisfies the following properties (Figure
2):

(i) The domain of Q(Z) is [0,+∞). Moreover Q(Z) is monotonically increasing on [0, yT1] and
monotonically decreasing on [yT1 ,+∞).

(ii) Q(Z) is continuously differentiable in [0,+∞), and has a unique fixed point.

When x∗ ≤ x∗M and xE1 > xN1 , the properties of Poincaré map is similar to Case (i). In what follows,
we consider the case where xE1 < xN1 .

Theorem 3.2. Suppose x∗ ≤ x∗M and xE1 < xN1 . The Poincaré map satisfies (Figure 3):
(i) The domain of Q(Z) is (0, yC2] ∪ [yC1 ,+∞). On (0, yC2] the map Q(Z) monotonically increases

and on [yC1 ,+∞) the map Q(Z) monotonically decreases.
(ii) Q(Z) is continuously differentiable in its domain.
(iii) If Q(yC1) > yC1 , the map Q(Z) has a unique fixed point on [yC1 ,+∞). If Q(yC2) < yC2 , there is

no fixed point.

Proof. (i) When xE1 < xN1 , we know the trajectory ΓA is tangent to the impulsive set LM and intersect
with the phase set LN at two points C1 and C2. For ∀S +

i (x+
i , y

+
i ) ∈ N, if y+

i ∈ (yC2 , yC1), the trajectory
starting from the S +

i cannot reach the LM. Meanwhile, the Q(Z) is well defined on (0, yC2] ∪ [yC1 ,+∞).
Suppose there are two points S +

k1
(x+

k1
, y+

k1
) and S +

k2
(x+

k2
, y+

k2
) on the phase set. If y+

k1
, y+

k2
∈ (0, yC2] and

y+
k1
< y+

k2
. The trajectory from these two points will reach the impulse set after time t̃, i.e., Γ(t̃, x+

i , y
+
i ) =

Γ(t̃, xi+1, yi+1). Since the uniqueness of the solution we have yk1+1 < yk2+1. Hence, according to the
expression of Poincaré map Q(Z), we get Q

(
yk1+1

)
< Q

(
yk2+1

)
. So, Q(Z) is monotonically increasing

on (0, yC2].
When y+

k1
, y+

k2
∈ [yC1 ,+∞) and y+

k1
< y+

k2
. The trajectory starts from point y+

k1
, y+

k2
cross the nullcline

L1 and intersects the LN at the points S
′

k1
(x
′

k1
, y
′

k1
) and S

′

k2
(x
′

k2
, y
′

k2
). We can easily obtain y

′

k1
> y

′

k2
, and
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Figure 2. Fixed point of Poincaré map for Case (i), where the parameter values are b = 0.4,
k = 0.04, d = 0.02, p = 0.33, c = 0.1, w = 0.1, e = 0.44, m = 0.2, δ = 0.2, µ = 1, u1 = 0.85,
v1 = 0.15, ET = 1.2. (a) τ = 0.2, η = 0.8, (b)τ = 0.8, η = 0.2.

from the uniqueness of the solution, we have Q
(
y
′

k1

)
> Q

(
y
′

k2

)
. So, Q(Z) is monotonically decreasing

on [yC1 ,+∞).
(ii) From equation (3.2) we can easily determine that g(x, y) is a continuously differentiable

function. Therefore, it follows from the continuity and differentiability theorem for solution of
ordinary differential equation that the Poincaré map Q(Z) is also continuously differentiable on
(0, yC2] ∪ [yC1 ,+∞).

(iii) The curve ΓA from C1 reaches the LM at point A, and then arrives in LN at point A+
(
x+

A, y
+
A

)
through the impulsive effect. If Q(yC1) > yC1 , then y+

A = Q(yC1) ∈ [yC1 ,+∞), i.e., y+
A > yC1 . Since

Q(Z) is monotonically decreasing on [yC1 ,+∞), then Q
(
y+

A

)
< Q

(
yC1

)
= y+

A. By the existence of zeros
theorem and the continuous differentiability of Q(Z), there exists a point ỹ ∈ (yC1 , y

+
A) and satisfies

Q(ỹ) = ỹ, which implies that Q(Z) has a unique fixed point on [yC1 ,+∞).
If Q(yC2) < yC2 , for any yi ∈ (0, yC2], the trajectory from point S i(xi, yi) arrives the LM at point

S i+1(xi+1, yi+1), then S i+1(xi+1, yi+1) is pulsed to S +
i+1

(x+
i+1
, y+

i+1
). By knowing the direction of the trajectory

of system (2.1), it is easy to infer that y+
i+1
< yi+1 < yi. Therefore, there is no ỹ1 ∈ (0, yC2] such that

Q(ỹ1) = ỹ1.

4. Order-k periodic solution

From the discussion in the above section, we explore the existence of an equilibrium point in the
system, which implies that there is an order-1 periodic solution to system (2.1). Next, we will explore
more properties of order-k (k ≥ 1) periodic solutions.

Theorem 4.1. If x∗ ≥ x∗M (Case (i)), system (2.1) has a unique order-1 periodic solution. Furthermore,
we can obtain that
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Figure 3. Fixed point of Poincaré map for Case (ii)(II), where the parameter values are
b = 0.5, k = 0.04, d = 0.02, p = 0.33, c = 0.1, w = 0.1, e = 0.44, m = 0.2, δ = 0.2, µ = 1,
u1 = 0.85, v1 = 0.15, ET = 1.2. (a) τ = 0.8, η = 1.4, (b)τ = 1.8, η = 0.4.

(i) If Q(yT1) < yT1 , the order-1 periodic solution of system (2.1) is globally asymptotically stable;
(ii) If Q(yT1) > yT1 , then system (2.1) has a globally stable order-1 periodic solution if and only if

Q2(y+
0 ) > y+

0 for any y+
0 ∈ [yT1 , ỹ].

Proof. From Eq. (3.2), we have y+
i+1 = ξ(y+

i ) + τ
1+ηξ(y+

i ) = Q(y+
i ). Therefore, the trajectory from

S +
0 (x+

0 , y
+
0 ) ∈ N reaches the point S 1(x1, y1) on the impulsive set after a period of time, and will arrive

at point S +
1 (x+

1 , y
+
1 ) ∈ N through the impulsive effect. This process can be defined as

Q(y+
0 ) = ξ(y+

0 ) + τ
1+ηξ(y+

0 ) = y+
1 , repeat the above process can obtain Q

[
Q

(
y+

0

)]
= Q

(
y+

1

)
= y+

2 = Q2
(
y+

0

)
,

further we have Qk
(
y+

0

)
= y+

k .
(i) For different value ranges of initial point y+

0 , we will have the following three situations:
Case a. If ỹ < y+

0 < yT1 , since Q(yT1) < yT1 and Q(Z) is monotonously increasing on [0, yT1], so we
have yT1 > Q

(
yT1

)
> Q

(
y+

0

)
> Q (ỹ) = ỹ, Q

(
y+

0

)
= y+

1 < y+
0 , further through the similar process we can

get
y+

0 > Q
(
y+

0
)
> · · · > Qk−1 (

y+
0
)
> Qk (y+

0
)
> · · · > Q (ỹ) = ỹ,

which represents that Qk(y+
0 ) decreases monotonically and lim

n→+∞
Qk(y+

0 ) = ỹ.

Case b. If 0 < y+
0 < ỹ, through a similar analysis above, we can obtain y+

0 < Q
(
y+

0

)
= y+

1 < Q (ỹ) = ỹ

and Q
(
y+

0

)
< Q2

(
y+

0

)
< Q (ỹ) = ỹ, by mathematical induction we have

y+
0 < Q

(
y+

0
)
< · · ·<Qk−1 (

y+
0
)
<Qk (y+

0
)
< · · ·<Q (ỹ) = ỹ.

That is Qk(y+
0 ) increases monotonically and lim

n→+∞
Qk(y+

0 ) = ỹ.
Case c. If y+

0 ∈ [yT1 ,+∞), since Q(yT1) < yT1 and Q(Z) is monotonously decreasing on [yT1 ,+∞),
so according to the properties of Q(Z) we have Q(y+

0 ) < Q(yT1) < yT1 , i.e., Q(y+
0 ) < yT1 . When

ỹ < Q(y+
0 ) < yT1 , this is the situation a.; when 0 < Q(y+

0 ) < ỹ, this is the same as situation b.
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In summary, we always can obtain

lim
n→+∞

Qk(y+
0 ) = ỹ.

(ii) Sufficient condition: When Q(yT1) > yT1 , Q(Z) has unique fixed point ỹ ∈ [yT1 ,+∞) by Theorem
3.1 and monotonically decreasing on [yT1 ,+∞). Thus, if Q2(y+

0 ) > y+
0 for any y+

0 ∈ [yT1 , ỹ], then have

yT1 ≤ y+
0 < Q2 (

y+
0
)
< ỹ < Q

(
y+

0
)
≤ Q

(
yT1

)
.

Further more, we derive that

yT1 < Q2k (y+
0
)
< ỹ < Q2k+1 (

y+
0
)
≤ Q

(
yT1

)
.

Thus by the monotone bounded theorem we can get lim
k→+∞

Q2k(y+
0 ) = lim

k→+∞
Q2k+1(y+

0 ) = ỹ, then order-1
periodic solution is globally stable.

Necessary condition: Suppose ỹ is an order-1 periodic solution of system (2.1), i.e., Q(ỹ) = ỹ.
Let ỹ+

1 ∈ [yT1 , ỹ) and satisfies Q2(ỹ+
1 ) ≤ ỹ+

1 . By the global stability of ỹ it follows that there exists
ỹ+

2 ∈ (ỹ − ε, ỹ + ε) such that Q2(ỹ+
2 ) > ỹ+

2 , where ε is sufficiently small. It also follows from the
continuity of Poincaré map that there must exist a ỹ

′

∈ (ỹ+
2 , ỹ

+
1 ) satisfying Q2(ỹ

′

) = ỹ
′

, which shows
that system (2.1) has an order-2 periodic solution and contradicts the conditions we know. Thus, if
there exists a globally stable order-1 periodic solution for system (2.1), then Q2(y+

0 ) > y+
0 for any

y+
0 ∈ [yT1 , ỹ].

Theorem 4.2. When x∗ ≤ x∗M and xE1 < xN1 (Case (ii)(II)), if Q(yC1) > yC1 and Q2(y+
0 ) > y+

0 for any
y+

0 ∈ [yT1 , ỹ], then system (2.1) exists an order-1 periodic solution which is globally stable.

Proof. By Theorem 3.2, when Q(yC1) > yC1 , we obtain that the Poincaré map Q(Z) has a unique fixed
point on the interval [yC1 ,+∞), which implies that system (2.1) has an order-1 periodic solution on the
interval [yC1 ,+∞).

For any y+
0 ∈ [yT1 , ỹ], let Qk(y+

0 ) = y+
k . Since Q(Z) that is monotonically decreasing on [yC1 ,+∞),

then have ỹ < Q
(
y+

0

)
< Q

(
yC1

)
. If Q2(y+

0 ) > y+
0 , then yC1 < y+

0 < y+
2 < ỹ < y+

1 < Q
(
yC1

)
. By further

deduction we can get

yC1 < y+
0 < y+

2 < · · · < y+
2k < ỹ < y+

2k+1 < · · · < y+
3 < y+

1 < Q
(
yC1

)
.

Therefore, we have lim
k→+∞

y+
2k = lim

k→+∞
y+

2k+1 = ỹ. That is to say the order-1 periodic solution Q(ỹ) = ỹ is

globally stable if Q(yC1) > yC1 and Q2(y+
0 ) > y+

0 for any y+
0 ∈ [yT1 , ỹ].

Theorem 4.3. When x∗ ≥ x∗M (Case (i)), if Q(yT1) > yT1 and Q2(yT1) > yT1 , then system (2.1) has a
stable order-1 or order-2 periodic solution.

Proof. For any initial point S +
0 (x+

0 , y
+
0 ) in the phase set, where x+

0 , y
+
0 > 0, there exists a positive integer

k such that y+
k = Qk

(
y+

0

)
holds after the pulse. When y+

0 < yT1 , it follows from Theorem 3.1 that Q(Z)
has no fixed point in the interval [0, yT1] and is monotonically increasing. Therefore, there exists a
integer q such that y+

q > yT1 and y+
q−1 < yT1 , then can get y+

q = Q(y+
q−1) < Q

(
yT1

)
, i.e., yT1 < y+

q < Q
(
yT1

)
.
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Figure 4. (a)–(c) An order-1 periodic solution of system (2.1) with b = 0.6 and p = 1;
(d)-(f) A stable order-1 periodic solution of system (2.1) with b = 0.7 and p = 0.5; (g)-(i)
An unstable order-1 periodic solution of system (2.1) with b = 2.3, p = 0.5, w = 0.1 and
k = 0.5. All other parameter values are fixed as k = 0.04, d = 0.02, c = 0.01, w = 1,
e = 0.44, m = 0.2, δ = 0.2, µ = 1, τ = 1.8, η = 5, u1 = 0.6, v1 = 0.4, ET = 0.7.

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13152–13171.



13163

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

x(t)

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

y
(t

)

(a)

50 100 150 200 250 300

t

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

x
(t

)
(b)

50 100 150 200 250 300

t

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

y
(t

)

(c)

Figure 5. (a) An order-2 periodic solution of system (2.1). The time series of prey population
x(t) (b) and predator population y(t) (c). The parameters fixed as b = 0.7, p = 1 d = 0.02,
c = 0.01, w = 1, e = 0.44, m = 0.2, δ = 0.2, µ = 1, τ = 1.8, η = 5, u1 = 0.6, v1 = 0.4,
ET = 0.7.

According to Q(Z) is monotonically decreasing in [yT1 ,Q(yT1)], we have

Q[yT1 ,Q(yT1)] = Q[Q2(yT1),Q(yT1)] ⊂ [yT1 ,Q(yT1)].

Thus we only need to study periodic solutions in interval [yT1 ,Q(yT1)]. Let Q
(
y+

0

)
= y+

1 , y+
0 and

Q2
(
y+

0

)
= y+

2 , y+
0 , which means system (2.1) has an order-1 or order-2 periodic solution. Next, we

consider the following four circumstances:
(i) If yT1 ≤ y+

2 < y+
0 < y+

1 ≤ Q
(
yT1

)
, from the monotonicity of Q(Z) we can obtain y+

3 = Q(y+
2 ) >

Q(y+
0 ) = y+

1 > Q(y+
1 ) = y+

2 and y+
4 = Q

(
y+

3

)
< Q(y+

1 ) = y+
2 < Q(y+

2 ) = y+
3 , i.e., yT1 ≤ y+

4 < y+
2 < y+

0 < y+
1 <

y+
3 ≤ Q

(
yT1

)
. The following relationships are obtained by mathematical induction

yT1 ≤ · · · y
+
2k < · · · < y+

4 < y+
2 < y+

0 < y+
1

< y+
3 < · · · < y+

2k−1 < y+
2k+1 < · · · ≤ Q

(
yT1

)
.

(ii) If yT1 ≤ y+
1 < y+

2 < y+
0 ≤ Q

(
yT1

)
, then have y+

2 = Q(y+
1 ) > Q(y+

2 ) = y+
3 > Q(y+

0 ) = y+
1 and

y+
3 = Q(y+

2 ) < y+
4 = Q(y+

3 ) < Q(y+
1 ) = y+

2 , i.e., yT1 ≤ y+
1 < y+

3 < y+
4 < y+

2 < y+
0 ≤ Q

(
yT1

)
. Furthermore, we

have
yT1 ≤ y+

1 < · · · y
+
2k−1 < y+

2k+1 · · · < y+
2k+2

< y+
2k < · · · < y+

2 < y+
0 ≤ Q

(
yT1

)
.

(iii) If yT1 ≤ y+
0 < y+

2 < y+
1 ≤ Q

(
yT1

)
, through the similar discussion, we easy to get

yT1 ≤ y+
0 < y+

2 < · · · < y+
2k < y+

2k+2 < · · · y
+
2k−1

< · · · < y+
3 < y+

1 ≤ Q
(
yT1

)
.

(iv) yT1 ≤ y+
1 < y+

0 < y+
2 ≤ Q

(
yT1

)
, after the similar derivation we have

yT1 ≤ y+
2k+1 < y+

2k−1 < · · · < y+
1 < y+

0 < y+
2 < · · · < y+

2k
< y+

2k+2 < · · · ≤ Q
(
yT1

)
.

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13152–13171.



13164

After analysis, for case (i) and case (iv), there exists different values ỹ1, ỹ2 ∈ (yT1 ,Q(yT1)) such that
lim

k→+∞
Q2k−1(y+

0 ) = ỹ1 and lim
k→+∞

Q2k(y+
0 ) = ỹ2, where ỹ1 , ỹ2. This means that in both cases there is a

stable order-2 periodic solution of system (2.1).
For case(ii) and case (iii), there has ỹ ∈ (yT1 ,Q(yT1)), so that lim

k→+∞
Q2k−1(y+

0 ) = lim
k→+∞

Q2k(y+
0 ) = ỹ,

i.e., system (2.1) exist a stable order-1 periodic solution.

Theorem 4.4. If Q(yT1) > yT1 and Q2(yT1) > y+
m1, where y+

m1 = max{y+,Q (y+) = yT1}, then system (2.1)
has an order-3 periodic solution.

Proof. When Q(yT1) > yT1 , the Q(Z) has a unique fixed point on [yT1 ,Q(yT1)], i.e., Q (ỹ) = ỹ, where
ỹ ∈ (yT1 ,Q(yT1)). Based on the continuity of Q(Z), there exist y+

m1 ∈ (0, ỹ) which make Q(y+
m1) = yT1 .

Let G(y) = y − Q3(y), then have Q3(y+
m1) = Q2 (

yT1

)
> y+

m1 and Q3(0) > 0, so have G(0) < 0 and
G(y+

m1) > 0. Therefore, there is at least one value ỹ ∈ (0, y+
m1) such that G(ỹ) = 0, namely, Q3(ỹ) = ỹ,

which shows that an order-3 periodic solution of system (2.1) exists.

Remark 4.1. Using the similar proof methods as above, we can show that if Qk−1(yT1) > y+
m1, where

Q(y+
m1) = yT1 , then system (2.1) has an order-k (k ≥ 2) periodic solution.

5. Numerical simulations

In this subsection, we will design some numerical examples to verify the theoretical results. In
addition, the influence of fear factor k on the dynamics of system (2.1) is also discussed.

We set the parameters as k = 0.04, d = 0.02, c = 0.01, w = 1, e = 0.44, m = 0.2, δ = 0.2, µ = 1,
τ = 1.8, η = 5, u1 = 0.6, v1 = 0.4, ET = 0.7. For Case (i), we set b = 0.6, p = 1, it can be seen from
Theorem 4.1 that when x∗ ≥ x∗M, system (2.1) has a stable order-1 periodic solution. Observation of
Figure 4(a) shows that system (2.1) forms a stable order-1 periodic solution after the impulse. For Case
(ii)(II), let b = 0.7, p = 0.5, when Q(yC1) > yC1 , system (2.1) has a stable order-1 periodic solution,
as is illustrated in Figure 4(d). Let b = 2.3, p = 0.5, w = 0.1 and k = 0.5, when Q(yC1) > yC1 , Figure
4(g) indicates that system (2.1) does not have periodic solution, after multiple impulses, the system is
stable at the equilibrium E∗(0.998, 3.313).
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Figure 6. (a) An order-3 periodic solution of system (2.1). The time series of prey population
x(t) (b) and predator population y(t) (c). The parameter b = 0.8, other parameter values are
same as those shown in Figure 5.

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13152–13171.



13165

0 0.2 0.4 0.6 0.8 1 1.2

x(t)

0.5

1

1.5

2

2.5

3

y
(t

)

(a)

0 50 100 150 200 250 300

t

0

0.2

0.4

0.6

0.8

1

1.2

x
(t

)
(b)

0 50 100 150 200 250 300

t

0.5

1

1.5

2

2.5

3

y
(t

)

(c)

Figure 7. (a) An order-4 periodic solution of system (2.1). The time series of prey population
x(t) (b) and predator population y(t) (c). The parameters fixed as b = 1.4, τ = 2 and η = 2,
other parameter values are same as those shown in Figure 5.

Figure 5(a) shows the trajectory of the order-2 periodic solution of system (2.1). Figure 5(b) and
Figure 5(c) are the solutions of the prey and predator corresponding to the order-2 periodic solution,
respectively. By observing Figure 5, we can find that the existence of order-2 periodic solution of
system (2.1) indicates that reasonable predation behaviour can keep the system in a stable ecological
equilibrium. As the parameter b increases, the existence of the order-1 periodic solution of system
(2.1) cannot be guaranteed, for example, when b = 0.8, system (2.1) has an order-3 periodic solution
(Figure 6), and when b = 1.4, system (2.1) has an order-4 periodic solution (Figure 7).

In the action threshold, when the weighted coefficients u1 = 1 and v1 = 0, the impulsive set and
phase set become two straight lines (Figure 8(a)). This reduces to the linear impulsive systems that
have been studied in most previous, in which case the action threshold only depends on the population
density of the prey. When changing the weighted coefficients of the action threshold, here v1 , 0, we
can observe that the impulsive set and phase set become two curves and that the curvature of the curves
varies with u1 and v1, see Figure 8. When we use an action threshold control strategy determined by
the density of the prey and its rate of change, system (2.1) still has a stable order-1 periodic solution
(Figure 8(a)-(c)). On the other hand, if the comprehensive control strategy is more dependent on the
change rate of the prey, the control goal can be successfully achieved after a limited number of control
measures, making the prey population density is below a given action threshold, as can be seen in
Figure 8(d).

To explore the impact of the fear coefficient k on the dynamics of system (2.1), we choose k as the
bifurcation parameter and perform a one-dimensional bifurcation analysis on system (2.1). It can be
seen from Figure 9 that the internal equilibrium E∗ of system (2.1) is unstable when the parameter set
satisfies k < k∗. The bifurcation diagram of k (0 < k ≤ 0.8) shows that there is a very complex dynamic
phenomenon in system (2.1). In particularly, the order-3 periodic solutions exist in the relatively small
scope of k (0.06 < k < 0.08), such as Figure 9(a), which further verifies the validity of the results
shown in Theorem 4.4. Comparing the bifurcation diagrams at different birth rates b, we conclude
that changing b can significantly alter the dynamics of system (2.1), and an interesting phenomenon is
that period doubling and period halving branches occur as b increases, as shown in Figures 9(b) and
9(c). The island in the middle of Figure 9(b) indicates that the density of prey and predators shows a
complex pattern when k lies in the interval around (0.06, 0.19).
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(a) u1 = 1, v1 = 0
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(b) u1 = 0.9, v1 = 0.1
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(c) u1 = 0.8, v1 = 0.2
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(d) u1 = 0.6, v1 = 0.4

Figure 8. The trajectories of system (2.1) under different action thresholds. The parameter
values are fixed as b = 0.45, k = 0.04, d = 0.02, c = 0.01, p = 0.4 w = 0.1, e = 0.44,
m = 0.2, δ = 0.2, µ = 1, τ = 1.8, η = 5. (a) u1 = 1, v1 = 0, ET = 1.4, (b) u1 = 0.9, v1 = 0.1,
ET = 1.32, (c) u1 = 0.8, v1 = 0.2, ET = 1.12, (d) u1 = 0.6, v1 = 0.4, k = 0.07,ET = 1.2,
δ = 0.8, µ = 0.4, τ = 1.45, η = 0.1.

6. Conclusion

State-dependent impulsive semi-dynamic systems are among the most discontinuous non-smooth
systems and have been investigated in many applications like integrated pest managememt, virus
dynamical systems, and diabetes treatment [17, 36–38]. In the last few years, substantial progress has
been made in the study of such systems in terms of analytical techniques, qualitative analysis, and
applied research [39, 40]. In particular, with the help of the mathematical tool of Poincaré map, a
comprehensive and in-depth branch study of impulsive systems with nonlinear impulsive functions
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Figure 9. Bifurcation diagrams with respect to k. The parameter values are fixed as follows:
d = 0.02, c = 0.1, p = 1 w = 1, e = 0.44, m = 0.2, δ = 0.2, µ = 1, τ = 1.8, η = 5, u1 = 0.8,
v1 = 0.2, ET = 0.7.

can be carried out, including the existence and global stability analysis of order-k periodic solutions.
In this studies, we establish and analyze a predator-prey state-dependent impulsive model with fear

effect. The action threshold of the model depends on the density of the prey and its changing rate, which
means that the action threshold depends not only on the density of the prey, but also on the density of
the predator. The action threshold contains two weighted quantities u1 and v1, when the weighted
parameter v1 = 0, the action threshold will be transformed into ET , previous literatures [24,35,37,38]
has carried on the extensive modeling and research.

In comparison with the main results in the literature [35], the innovation of our model is the use of
action thresholds determined by the density of prey and its changing rate. This leads to the
transformation of the impulsive set and phase set into more complex curves, i.e., non-linear impulsive
set and phase set, thus developing analytical techniques for the existence and stability of the order-1
periodic solution, including the study of the existence of order-k (k ≥ 2) periodic solutions.

By analysing three different positional relations between the trajectory of system (2.1) and the
equilibrium point , the corresponding impulsive set and phase set are obtained (Figure 1). Based
on these conditions, the Poincaré map is constructed and using the definition of Poincaré map, the
conditions under which order-1 periodic solution and order-2 periodic solution exist for system (2.1)
are examined, and the stability of order-1 periodic solution is investigated. The numerical simulation
of the order-1 periodic solution also proves our theoretical results, as shown in Figure 4. Further, we
also study the existence of order-k (k ≥ 2) periodic solutions and give the conditions that guarantee the
existence of such order-k (k ≥ 2) periodic solutions (Figures 5–7).

To further show how the fear coefficient k affects the dynamics of system (2.1), choosing k as
the bifurcation parameter and fixing the other parameters to those in Figure 7, and the period-doubling
bifurcation interspersed with the chaotic window are observed. Therefore, system (2.1) exhibits a sharp
transition from a chaotic window to an order-k periodic solutions via a periodic halving bifurcation,
and then from an order-k periodic solutions to an order-(k+1) periodic solutions with k ≥ 2 by period-
adding bifurcation. In a biological sense, due to the existence of the fear effect, the birth rate of the
prey will decrease. When the birth rate b is small, the fear coefficient k will make the prey-predator
system more complicated. The control methods used in this research are more general and the results

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13152–13171.
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obtained are more realistic, as the various factors affecting the population are taken into account in the
modelling.
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