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Abstract: Considering that many prey populations in nature have group defense behavior, and
the relationship between predator and prey is usually affected by environmental noise, a stochastic
predator-prey model with group defense behavior is established in this paper. Some dynamical
properties of the model, including the existence and uniqueness of global positive solution, sufficient
conditions for extinction and unique ergodic stationary distribution, are investigated by using
qualitative theory of stochastic differential equations, Lyapunov function analysis method, Itô formula,
etc. Furthermore, the effects of group defense behavior and environmental noise on population stability
are also discussed. Finally, numerical simulations are carried out to illustrate that the effects of
environmental noise on both populations are negative, the appropriate group defense level of prey
can maintain the stability of the relationship between two populations, and the survival threshold is
strongly influenced by the intrinsic growth rate of prey population and the intensity of environmental
noise.
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1. Introduction

In ecosystems, predation is not the only relationship between predator and prey. Many preys can
perceive threats from predators, and thus make a variety of different response behaviors [1], which has
an impact on the population dynamics of predators and prey. Studies have shown that the impact of
this indirect behavior can be as great as the direct capture and killing their prey by predators [2–6].
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For example, sparrowhawks are more likely to attack individual redshanks or small groups of
redshanks during hunting, while their predation success rate is significantly lower for larger groups of
redshanks [7]. Swarming locusts release large amounts of the volatile compound phenylacetonitrile,
while dispersing locusts hardly synthesize phenylacetonitrile. When locust is threatened by natural
enemies, phenylacetonitrile, as an olfactory warning compound, can further synthesize highly toxic
substance hydrocyanic acid to achieve the purpose of defense against natural enemies [8]. As a result,
locusts can reproduce recklessly, which causes locust plagues and results in serious economic
losses [9, 10]. This behavior of prey is called group defense, which reduces the defense cost for
individuals through ‘number security’ and thus increases survival rates. Freedman and Wolkowicz
first investigated predator-prey interactions under the effects of prey group defense behavior and
concluded that group defense behavior of sufficiently abundant prey would lead to extinction of
predator populations [11]. From then on, more and more scholars have studied the more complex
interspecific relationships of predator-prey systems under the effects of group defense [12–17]. Xiao
and Ruan analyzed the dynamical complexities of the following predator-prey model with group
defense behavior in [18]:  dx

dt = rx
(
1 − x

K

)
− αxye−βx,

dy
dt = y

(
µαxe−βx − D

)
,

(1.1)

where x(t) and y(t) represent the population densities of prey and predator at time t, respectively.
All parameter values of model (1.1) are non-negative. r denotes the intrinsic growth rate of prey
population; K is the environmental capacity; α is the predation intensity; µ is the conversion efficiency
of biomass; D is the natural death rate of predator. The response function f (x) = αxe−βx represents the
capture rate of predators on preys with group defense behavior, which satisfies

f (0) = 0, f (x) > 0 f or x > 0,

and  f ′(x) > 0, 0 ≤ x < 1
β
,

f ′(x) < 0, x > 1
β
,

where β ∈ [0, 1) reflects the group defense level of prey population. The predation rate of predator
reaches the maximum value at x = 1

β
, and decreases if the group defense level of prey increases

when x > 1
β
. The larger β indicates that prey population can produce group defense behavior under low

density. From [18], we know model (1.1) has complicated dynamics, when µα > eβD, if x1 < K < 1/β,
model (1.1) has three equilibria: two hyperbolic saddles (0, 0) and (K, 0), and a globally asymptotically
stable equilibrium (x1, y1) in the interior of the first quadrant; if K > 1/β + x2, model (1.1) has four
equilibria: two hyperbolic saddles (0, 0) and (x2, y2), a hyperbolic stable node (K, 0) and an unstable
equilibrium (x1, y1), and in this case, model (1.1) has no closed orbits, where x1 and x2 are roots of
µαxe−βx − D = 0. Moreover, model (1.1) may have a unique limit cycle or a homoclinic loop for
different parameter values.

However, considering that in nature, various systems are inevitably affected by some uncertain
environmental noises (weather change, human activities, etc.), which cannot be ignored, and it is more
realistic and appropriate to use stochastic dynamical systems to describe these phenomena. Recently,
many scholars considered introducing the stochastic pertubations into dynamical models [19–23] and
have achieved meaningful results, such as the prediction and control of infectious disease [24–27], pest
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management [28] and various predator-prey systems [29–32]. Based on [18] and above biological
background, considering that small environmental fluctuations in nature mainly affect the parameters
of the model, which can be characterized as white noise [33], the following stochastic perturbation
predator-prey model with group defense is established: dx =

[
rx

(
1 − x

K

)
− αxye−βx

]
dt + σ1xdB1(t),

dy =
(
µαxye−βx − Dy

)
dt + σ2ydB2(t).

(1.2)

Let B1(t) and B2(t) be independent standard Brownian motions defined on a complete probability
space

(
Ω,F , {Ft}t≥0,P

)
, σi > 0 (i = 1, 2) is the intensity of environmental noise.

By constructing suitable Lyapunov functions and applying Itô formula, scholars have studied the
dynamics of the stochastic predator-prey models with hunting cooperation [3], prey refuge and fear
effect [4, 34], Beddington-DeAngelis functional response [35], Holling type II-III functional
response [36], Allee effect [37], habitat complexity and prey aggregation [38], etc. As mentioned
above, the dynamic properties of the deterministic predator-prey model (1.1) with group defense
behavior are very complicated, so far, there is no literature on the stochastic predator-prey model (1.2)
with group defense behavior. Therefore, one purpose of this paper is to study the effects of stochastic
noise on the dynamics of the deterministic model with group defense behavior. We give how does the
globally asymptotically stable equilibrium point or limit cycle of a deterministic model change under
the effects of white noise. The other purpose of this paper is to analyze the impact of group defense
behavior and other key factors on the extinction or persistence of the population.

The rest of this paper is arranged as follows. In Section 2, Lyapunov function analysis method is
used for proving the existence and uniqueness of positive solution of model (1.2). In Section 3, the
extinction and persistence of the population in model (1.2) is discussed, and proves that there is a
unique ergodic stationary distribution. Numerical simulations are given in Section 4 and Section 5 to
support our conclusions.

2. Existence and uniqueness of the positive solution

In this paper, we define the state space as R2
+ = {(x1, x2) ∈ R2|x1 > 0, x2 > 0}.

Theorem 2.1. For any initial value (x(0), y(0)) ∈ R2
+, there is a unique solution (x(t), y(t)) of model

(1.2) on t ≥ 0 and the solution will remain in R2
+ with probability one, that is to say, (x(0), y(0)) ∈ R2

+

for all t ≥ 0 almost surely (a.s.).

Proof. Since the coefficients of model (1.2) satisfy the local Lipschitz condition, for any given initial
value (x(0), y(0)) ∈ R2

+, there exists a unique local positive solution (x(t), y(t)) on t ∈ [0, τe), where τe

denotes the explosion time. In order to prove that solution (x(t), y(t)) is global, it is sufficient to prove
τe = ∞.

Take a sufficiently large non-negative number n0, such that x (0) ∈
[

1
n0
, n0

]
, y (0) ∈

[
1
n0
, n0

]
. For each

integer n ≥ n0, define the stopping time as

τn = inf
{

t ∈ [0, τe)

∣∣∣∣∣∣x (t) <
(
1
n
, n

)
or y (t) <

(
1
n
, n

)}
.
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Obviously, τn is increasing as n→ ∞. Set τ∞ = lim
n→∞
τn, hence τ∞ ≤ τe a.s. If we can prove τ∞ = ∞

a.s., then τe = ∞ a.s.
If the statement is false, then there are a pair of constants T > 0 and ε ∈ (0, 1) such that

P {τ∞ ≤ T } > ε.

Thus, there is an integer n1 ≥ n0 such that

P {τn ≤ T } ≥ ε,∀n ≥ n1. (2.1)

Define a C2-function V : R2
+ → R+ by

V (x, y) =
(
x −

D
µα
−

D
µα

ln
µα

D
x
)
+

1
µ

(y − 1 − ln y) ≥ 0.

Making use of Itô formula, we obtain

dV (x, y) = LV (x, y) dt + σ1

(
x −

D
µα

)
dB1 (t) +

σ2

µ
(y − 1) dB2 (t) ,

where

LV(x, y) =
(
1 −

D
µαx

) (
rx

(
1 −

x
K

)
− αxye−βx

)
+

1
µ

(1 −
1
y

)
(
µαxye−βx − Dy

)
+

1
2

D
µαx2

(σ1x)2 +
1
2

1
µy2

(σ2y)2

≤rx −
r
K

x2 +
D
µα

r
K

x +
D
µ
+

1
2

D
µαx2σ

2
1 +

1
2µ
σ2

2

≤
K
4r

(
r +

Dr
Kµα

)2

+
2
µ

(
2D +

D
α
σ2

1 + σ
2
2

)
≜P̃,

P̃ is a positive constant. So we have

dV (x, y) ≤ P̃dt + σ1

(
x −

D
µα

)
dB1 (t) +

σ2

µ
(y − 1) dB2 (t) . (2.2)

Integrating both sides of (2.2) from 0 to τn ∧ T = min {τn,T } and then taking the expectation, we
obtain

EV (x (τn ∧ T ) , y (τn ∧ T )) ≤ V (x (0) , y (0)) + P̃E (τn ∧ T ) ,

therefore
EV (x (τn ∧ T ) , y (τn ∧ T )) ≤ V (x (0) , y (0)) + P̃T. (2.3)

Let Ωn = {τn ≤ T } for n > n1. From (2.1), we obtain P (Ωn) > ε. For each ω ∈ Ωn , x (τn, ω) or
y (τn, ω) equals either n or 1

n . So V (x (τn, ω) , y (τn, ω)) is no less than either

n − 1 − ln n or
1
n
− 1 − ln

1
n
=

1
n
− 1 + ln n.
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Thus

V (x (τn, ω) , y (τn, ω)) ≥ (n − 1 − ln n) ∧
(
1
n
− 1 + ln n

)
holds. According to (2.3), we have

V (x (0) , y (0)) + P̃T ≥ E
[
IΩn(ω)V (x (τn, ω) , y (τn, ω))

]
≥ ε (n − 1 − ln n) ∧

(
1
n
− 1 + ln n

)
,

where IΩn denotes the indicator function of Ωn. Letting n→ ∞, then we obtain

∞ > V (x (0) , y (0)) + P̃T = ∞,

which leads to a contradiction, so we must have τ∞ = ∞ a.s. This completes the proof.

3. Extinction and stationary distribution

3.1. Extinction

In this section, we first discuss the conditions for the extinction of population. The following
definition is given:

Definition 3.1. If lim
t→+∞

x(t) = 0 a.s. holds, the prey population will be extinct with probability one; If
lim

t→+∞
y(t) = 0 a.s. holds, the predator population will be extinct with probability one.

Theorem 3.1. For model (1.2), if σ1 >
√

2r holds, then the prey population x(t) will be extinct with
probability one.

Proof. Applying Itô’s formula to the first equation of model (1.2), we have

d ln x = 1
xdx − 1

2x2 (dx)2 =
(
r − r

K x − αye−βx − 1
2σ

2
1

)
dt + σ1dB1(t).

Integrating both sides from 0 to t and dividing by t, we obtain

ln x(t) − ln x(0)
t

=
1
t

∫ t

0

(
r −

r
K

x − αye−βx −
1
2
σ2

1

)
dt +

σ1B1(t)
t

≤ r −
1
2
σ2

1 +
σ1B1(t)

t
.

Making use of the strong law of large numbers for local martingales [39] leads to lim
t→∞

σ1B1(t)
t = 0 a.s.

Therefore
lim
t→∞

sup
ln x(t)

t
≤ r −

1
2
σ2

1 < 0 a.s.

That is to say lim
t→+∞

x(t) = 0 a.s., according to definition 3.1, the prey population will be extinct with
probability one. This completes the proof.

Remark 3.1. Theorem 3.1 gives a sufficient condition for the extinction of prey population. When
σ1 >

√
2r, the prey population will be extinct, and it is not difficult to draw from model (1.2) that if

the prey population is extinct, it will lead to the extinction of predator population. When σ1 , 0, from
the above proof process, it can be seen that even small effects of environmental noise will reduce the
density of prey population in mean. Once the environmental noise reaches a certain level, the prey
population will be extinct.
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Theorem 3.2. For model (1.2), if σ2 >
√

2
(
µα

β
− D

)
holds, then the predator population y(t) will be

extinct with probability one.

Proof. Applying Itô’s formula to the second equation of model (1.2), we have

d ln y(t) =
1
y

dy −
1

2y2 (dy)2

=

(
µαxe−βx − D −

1
2
σ2

2

)
dt + σ2dB2(t)

≤

(
µα

β
− D −

1
2
σ2

2

)
dt + σ2dB2(t).

Integrating both sides from 0 to t and dividing by t, we obtain

ln y(t) − ln y(0)
t

≤
1
t

∫ t

0

(
µα

β
− D −

1
2
σ2

2

)
dt +

σ2B2(t)
t

=

(
µα

β
− D −

1
2
σ2

2

)
+
σ2B2(t)

t
.

So
lim
t→∞

sup
ln y(t)

t
≤
µα

β
− D −

1
2
σ2

2 < 0 a.s.

Then we have lim
t→∞

y(t) = 0. This completes the proof.

Remark 3.2. Note that whenσ2 , 0, that is, in the presence of environmental noise, once the stochastic

noise σ2 is larger than the critical threshold (
√

2
(
µα

β
− D

)
), then the predator population will tend to

be extinct. From the expression of this threshold, it is not difficult to see that the lower group defense
level β of the prey is conductive to the survival of the predator population.

3.2. Stationary distribution

Whether the predator and prey populations will continue to survive is also an important issue in the
study of predator-prey model. Therefore, in this section, we will prove that model (1.2) has a unique
ergodic stationary distribution through the equivalent conditions of Hasminskii theorem, indicating that
both predators and prey populations will survive [40].

Theorem 3.3. If R =
(
D + σ

2
2

2

)−1
β

r − σ2
1

2 −
D
( r

K +
µα

D r
)2

4µα

 > 1, then model (1.2) has a unique stationary

distribution π(·) with ergodicity.

Proof. Model (1.2) can be written as the following form

d
(

x
y

)
=

(
rx − r

K x2 − αxye−βx

µαxye−βx − Dy

)
dt +

(
σ1x

0

)
dB1(t) +

(
0
σ2y

)
dB2(t),

then we get its diffusion matrix

A(x, y) =
(
σ2

1x2 0
0 σ2

2y2

)
,
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and there exists a positive number G = min
(x,y)∈Ū

{
σ2

1x2, σ2
2y2

}
, such that

2∑
i, j=1

ai jξiξ j = σ
2
1x2ξ1

2 + σ2
2y2ξ2

2 ≥

G|ξ|2, (x, y) ∈ Ū, ξ = (ξ1, ξ2) ∈ R2.
Construct a C2-function V : R2

+ → R+ by

V̄ (x, y) = −P
[
α ln x + ln y −

βα

D
(µx + y)

]
+

1
2

(µx + y)2,

where

P =
2

R − 1
max

2, sup
(x,y)∈R2

+

{(
r +
σ2

1

2

)
µ2x2 −

1
2

r
K
µ2x3 −

1
2

(
D −
µα

β
−
σ2

2

2

)
y2

} .
It is easy to prove that V̄ (x, y) has a unique minimum point (x0, y0). Define a C2-function V : R2

+ →

R+ by
V (x, y) = V̄ (x, y) − V̄ (x0, y0) ∆= V1 + V2, (3.1)

where V1 = −P
[
α ln x + ln y − βαD (µx + y)

]
, V2 =

1
2 (µx + y)2

− V̄ (x0, y0). Applying Itô’s formula to
(3.1), we have

LV1 =P
(
−βr + β

r
K

x + αβye−βx − µαxe−βx + D +
µαβ

D
rx

−
µαβ

D
r
K

x2 −
µαβ

D
xye−βx +

µαβ

D
xye−βx − αβy +

β

2
σ2

1 +
1
2
σ2

2

)

≤ − P

β
r − σ2

1

2
−

D
(

r
K +

µα

D r
)2

4µα

 −
(
D +
σ2

2

2

)
= −

P

D + σ
2
2

2

(R − 1)

≜ − P∗ (R − 1) .

LV2 =rµ2x2 −
r
K
µ2x3 − µ2αye−βxx2 + rµxy −

r
K
µx2y − µαxy2e−βx

+ µ2αye−βxx2 − µxy + µαxy2e−βx − Dy2 +
1
2
µ2σ2

1x2 +
1
2
σ2

2y2

≤

(
r −
σ2

1

2

)
µ2x2 −

r
K
µ2x3 + rµxy −

(
D −
µα

β
−
σ2

2

2

)
y2.

Therefore

LV =LV1 + LV2

≤ − P∗ (R − 1) +
(
r +
σ2

1

2

)
µ2x2 −

r
K
µ2x3 + rµxy −

(
D −
µα

β
−
σ2

2

2

)
y2.

Choosing sufficiently small ε1 and ε2 such that

0 < ε1 < (rµ)−1 min
{

1
2

(
D − µα

β
−
σ2

2
2

)
, P∗(R−1)

4

}
, (3.2)
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0 < ε2 < (rµ)−1 min
{

rµ2

2K ,
P∗(R−1)

4

}
, (3.3)

min
{

rµ2

2Kε1
,

D−β−1µα−
1
2σ

2
2

2ε2

}
≥ M − P∗ (R − 1) + 1. (3.4)

Then we consider the bounded open set

S =
{

(x, y) ∈ R2
+ | ε1 ≤ x ≤

1
ε1
, ε2 ≤ y ≤

1
ε2

}
.

Clearly, S c = R2
+\S = S 1 ∪ S 2 ∪ S 3 ∪ S 4, where

S 1 =
{
(x, y) ∈ R2

+ | 0 < x < ε1

}
, S 2 =

{
(x, y) ∈ R2

+ | 0 < y < ε2

}
,

S 3 =
{
(x, y) ∈ R2

+ | x >
1
ε1

}
, S 4 =

{
(x, y) ∈ R2

+ | y >
1
ε2

}
.

Case 1. When (x, y) ∈ S 1, and xy < ε1y < ε1

(
1 + y2

)
, we have

LV ≤ − P∗ (R − 1) + rµε1 +

(
r +
σ2

1

2

)
µ2x2 −

r
K
µ2x3 −

(
D −
µα

β
−
σ2

2

2
− rµε1

)
y2

≤ −
P∗ (R − 1)

4
+

(
−

P∗ (R − 1)
4

+ rµε1

)
+

(
−

1
2

(
D −
µα

β
−
σ2

2

2

)
+ rµε1

)
y2

+

(
−

P∗ (R − 1)
2

+

(
r +
σ2

1

2

)
µ2x2 −

1
2

r
K
µ2x3 −

1
2

(
D −
µα

β
−
σ2

2

2

)
y2

)
.

By (3.2) and the definition of P, we can obtain

LV ≤ −
P∗ (R − 1)

4
≤ −1, for (x, y) ∈ S 1.

Case 2. When (x, y) ∈ S 2, and xy < ε2x < ε2

(
1 + x3

)
, we have

LV ≤ − P∗ (R − 1) + rµε2 −

( r
K
µ2 − rµε2

)
x3 +

(
r +
σ2

1

2

)
µ2x2 −

(
m −

kα
β
−
σ2

2

2

)
y2

≤ −
P∗ (R − 1)

4
+

(
−

P∗ (R − 1)
4

+ rµε2

)
−

1
2

(
D −
µα

β
−
σ2

2

2

)
y2 +

(
−

rµ2

2K
+ rµε2

)
x3

+

(
−

P∗ (R − 1)
2

+

(
r +
σ2

1

2

)
µ2x2 −

rµ2

2K
x3 −

1
2

(
D −
µα

β
−
σ2

2

2

)
y2

)
.

By (3.3) and the definition of P again, we can obtain LV ≤ −P∗(R−1)
4 ≤ −1, for (x, y) ∈ S 2.

In addition, by Young inequality, we have xy ≤ 2
5 x

5
2 + 3

5y
5
3 , for ∀x, y > 0. Hence,

LV ≤ −P∗ (R − 1) +
(
r +
σ2

1

2

)
µ2x2 −

r
K
µ2x3 + rµ

(
2
5

x
5
2 +

3
5

y
5
3

)
−

(
D −
µα

β
−
σ2

2

2

)
y2. (3.5)
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Case 3. When (x, y) ∈ S 3, we have by (3.2) and (3.5)

LV ≤ − P∗ (R − 1) +
[
rµ

(
2
5

x
5
2 +

3
5

y
5
3

)
−

1
2

r
K
µ2x3 +

(
r +
σ2

1

2

)
µ2x2 −

1
2

(
D −
µα

β
−
σ2

2

2

)
y2

]
−

1
2

r
K
µ2x3 −

1
2

(
D −
µα

β
−
σ2

2

2

)
y2

≤ − P∗ (R − 1) −
rµ2

2Kε3
1

+ M,

where

M = max
(x,y)∈D3

{
rµ

(
2
5

x
5
2 +

3
5

y
5
3

)
−

1
2

r
K
µ2x3 +

(
r +
σ2

1

2

)
µ2x2 −

1
2

(
D −
µα

β
−
σ2

2

2

)
y2

}
. (3.6)

By (3.4) and (3.6), we have LV ≤ −1 , for ∀(x, y) ∈ S 3.
Case 4. When (x, y) ∈ S 4, similar to the case 3, by (3.4) we have ,

LV ≤ −P∗ (R − 1) −
1
2

(
D −
µα

β
−
σ2

2

2

)
y2 −

1
2

r
K
µ2x3 + M

≤ −P∗ (R − 1) −
D − β−1µα − 1

2σ
2
2

2ε2
2

+ M ≤ −1.

In conclusion, LV ≤ −1, ∀(x, y) ∈ S c. According to the equivalent conditions of Hasminskii
theorem in [40], we know that the model (1.2) is ergodic and has a unique stationary distribution.

4. The effects of environmental noise on model (1.2)

In this section, we will discuss the effects of environmental noise on extinction and persistence of
populations, and further investigate how the environmental noise affects the dynamics of deterministic
system through numerical simulations.

Take parameters as follows: r = 0.5, µ = 0.4, α = 0.4, K = 4, D = 0.15, β = 0.38. According to
Theorem 2.1 in [18], since eβD < µα and x1 < K < 1/β, deterministic model (1.1) has a globally
asymptotically stable equilibrium (x1, y1), which means that both populations are persistent (see the
dotted line in Figure 1(a) and the red curve in Figure 1(b)). Now consider the effects of small
environmental noise on stochastic model (1.2). Taking σ1 = σ2 = 0.01 , then

R =
(
D + σ

2
2

2

)−1
β
(
r − σ

2
1

2 −
D( r

K +
µα
D r)2

4µα

)
≈ 1.0089 > 1, it is clear from Theorem 3.3 that there is a unique

ergodic stationary distribution for model (1.2), which implies that both populations are still
persistent(see the solid line in Figure 1(a) and the blue curve in Figure 1(b)), and the solution of
stochastic model (1.2) fluctuates near (x1, y1). In addition, we can also get the density function
distribution of x(t), y(t), see Figure 1(c)(d). Moreover, we simulate the effects of environmental noises
σ1 and σ2 on the threshold R. It is not difficult to find that R > 1 in Theorem 3.3 is a strong sufficient
condition, which can only be satisfied when σ1 and σ2 are small, see Figure 2.

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13062–13078.



13071

0 200 400 600 800 1000
t

0.5

1

1.5

2

2.5

3

3.5
(a)

x
s

y
s

x
d

y
d

Figure 1. The effects of small environmental noise on stochastic model (1.2), where xs and
ys are stochastic predator-prey model, xd and yd are deterministic predator-prey model. (a)
Time sequence diagrams of model (1.2); (b) Phase portraits of model (1.2); (c)(d) Density
function distribution of x(t), y(t).
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Figure 2. The influence of environmental noises σ1 and σ2 on the threshold R.

However, when the environmental noise σ1 is small and σ2 is large ( σ1 = 0.01, σ2 = 1), β = 0.25,

by calculations we have σ2 >
√

2
(
µα

β
− D

)
≈ 0.9899. From Theorem 3.2, we conclude that the
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predator population y(t) goes extinct (see Figure 3(a)). We also find that the solution of stochastic
model (1.2) fluctuates around the hyperbolic saddle (K, 0) of deterministic model (1.1), which means
that environmental noise causes the solution of a deterministic model (1.1) to transform from tending to
a globally asymptotically stable equilibrium point (x1, y1) to fluctuating near another equilibrium point
(K, 0). In this case, predator population is extinct, and the prey fluctuates around the environmental
capacity K.

Let environmental noise σ1 continue to increase and take σ1 = 1.3, σ2 = 1. By calculations,
we get σ1 >

√
2r = 1. Theorem 3.1 and Remark 3.1 show that both populations are extinct, see

Figure 3(b). That is to say the environmental noise σ1 is unfavorable for the persistence of prey and
predator population.
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Figure 3. Time series of the population in model (1.2) under different environmental noise,
β = 0.25. (a) σ1 = 0.01, σ2 = 1; (b) σ1 = 1.3, σ2 = 1.

In fact, the conditions in Theorem 3.1, Theorem 3.2 and 3.3 are only sufficient conditions. When
the condition is not satisfied, the extinction or persistence of the population cannot be determined. Take
Theorem 3.1 as an example, when σ1 = 1, σ2 = 0.01, although the condition σ1 >

√
2r in Theorem 3.1

cannot hold, the prey population is still extinct, see Figure 4.
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Figure 4. Time series of the population in model (1.2) under σ1 = 1, σ2 = 0.01, β = 0.25.
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Take r = 0.5, µ = 0.4, α = 0.4, K = 6, D = 0.15, β = 0.25. Since eβD < µα and x1 + 1/β < K < x2,
by the results in [18] and numerical simulation, we know deterministic model (1.1) has a stable limit
cycle in the interior of the first quadrant. Now we investigate how σ1 or σ2 affects the dynamics of
deterministic model (1.1) in this case, see Figure 5(a)–(d). When σ1 and σ2 are small (σ1 = σ2 = 0.01
and σ1 = σ2 = 0.05), the solutions of model (1.2) still fluctuate around the stable limit cycle of model
(1.1), see Figure 5(a),(b); As σ1 and σ2 increase gradually, environmental noises make the dynamics
of deterministic model(1.1) very complex, see Figure 5(c) ((σ1 = σ2 = 0.1)); If σ1 and σ2 continue
to increase, according to Theorem 3.1 and Theorem 3.2, the population may become extinct. For
example, take σ1 = 0.05, σ2 = 0.65, the solutions of model (1.2) tends to the boundary equilibrium
point (K, 0) of model (1.1) and predator population will be extinct, see Figure 5(d).

Figure 5. Phase portraits of model (1.2). (a) σ1 = σ2 = 0.01; (b) σ1 = σ2 = 0.05; (c)
σ1 = σ2 = 0.1; (d) σ1 = 0.05, σ2 = 0.65.

In summary, the environmental noise makes the dynamics of the deterministic system more
complex, and the greater the intensity of the environmental noise, the less conducive to the survival of
the population.
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5. Sensitivity analysis on threshold R

In order to identify the key factors affecting populations stability, a sensitivity analysis is performed
on threshold R.

Sensitivity analysis is a method of quantitative uncertainty analysis for any complex model. Here
we analyze the sensitivity of the parameter to R by calculating the Partial Rank Correlation Coefficient
(PRCC) value of the parameter, and determine the key parameters that affect the threshold. When the
PRCC value of the parameter is positive, the parameter is positively correlated with R. Conversely, the
parameter is negatively correlated with R. We make the following provisions: if |PRCC| > 0.4, then
there is a strong correlation between the input parameter and the output variable, i.e., the parameter
has a strong influence on R; if 0.2 < |PRCC| < 0.4, this parameter has a moderate influence on R. If
|PRCC| < 0.2, then this parameter has a weak influence on R. For more details, see [41].

Take β = 0.25, σ1 = σ2 = 0.01, the sample size is 1500 and all parameters vary simultaneously.
From Figure 6, the PRCC value of r, β, K, D are positive, it shows that parameter r, β, K, D are
positively correlated with the threshold R. The increase of these parameters increases R, which is
conductive to the persistence of populations. And the PRCC value of µ, α , σ1, σ2 are negative, so µ,
α, σ1, σ2 are negatively correlated with the threshold R. The increase of these parameters decreases R,
which is harmful to the populations. Among them, |PRCC|r,σ1 > 0.4, so r, σ1 have a strong correlation
with R; 0.2 < |PRCC|µ,α,D < 0.4, so µ, α and D have a moderate influence on R; |PRCC|β,K,σ2 < 0.2,
so β, K and σ2 have a weak influence on R.
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Figure 6. PRCC values of main parameters on threshold R and scatter plot of PRCC on
parameters r, µ, α, K, β, D, σ1 and σ2.
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6. Conclusions

In this paper, a stochastic predator-prey model with group defense behavior is established. The
dynamics of stochastic model (1.2) are studied through theoretical analysis and numerical simulations.

According to Theorem 3.1 and 3.2, when the environmental noise has a great impact on prey
population, both populations will be extinct; when the environmental noise has a great impact on
predator population, the predator population will be extinct, which will destroy the stability between
two populations. By numerical simulations, we show that the environmental noise makes the dynamics
of the deterministic system more complex.

Under the influence of environmental noise, the appropriate group defense level of prey can help
the survival of two populations, and maintain the stability of the relationship between two
populations(see Figure 7(a), β = 0.25). From Theorem 2.2 in [18], if eβD < µα and K > 1

β
+ x2, then

model (1.1) has a hyperbolic stable node (K, 0). So the larger group defense level is not conducive to
the persistence of predator population, resulting in inundation of prey population (see Figure 7(b),
β = 0.39). The threshold R, which plays a crucial role in maintaining stability of the relationship
between two populations, is strongly influenced by the intrinsic growth rate of prey population r and
the intensity of environmental noise σ1.
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Figure 7. Time series of model (1.2) under different prey population group defense level. (a)
β = 0.25; (b) β = 0.39.

In this paper, we only consider the influence of group defense behavior and environmental noise on
the dynamics of stochastic predator-prey model. However, there are other more complex influences
in nature. For example, in the study of pest management with group defense behavior, the effects
of releasing natural enemies, impulsive spraying pesticide and environmental noise on agricultural
production should be considered simultaneously. We will enrich it in future work.
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