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Abstract: Image reconstruction is extremely important for computed tomography (CT) imaging, so it 
is significant to be continuously improved. The unfolding dynamics method combines a deep learning 
model with a traditional iterative algorithm. It is interpretable and has a fast reconstruction speed, but 
the essence of the algorithm is to replace the approximation operator in the optimization objective with 
a learning operator in the form of a convolutional neural network. In this paper, we firstly design a 
new iterator network (iNet), which is based on the universal approximation theorem and tries to 
simulate the functional relationship between the former and the latter in the maximum-likelihood 
expectation maximization (MLEM) algorithm. To evaluate the effectiveness of the method, we conduct 
experiments on a CT dataset, and the results show that our iNet method improves the quality of 
reconstructed images. 

Keywords: computed tomography (CT); image reconstruction; maximum-likelihood expectation 
maximization (MLEM) 
 

1. Introduction  

Computed tomography (CT) is one of the major imaging techniques that is widely used in clinical 
practice. Different types of imaging modalities have both similarities and characteristics in their 
tomographic image reconstruction theories and techniques. Recently, molecular imaging, small animal 
imaging and the new CT devices have become the focus of international peers. The success of new 
imaging devices is inseparable from the development of tomographic image reconstruction technology. 
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In the past 40 years, a variety of tomographic reconstruction algorithms have been developed. These 
algorithms are divided into three categories: mathematical reconstruction algorithms, deep learning 
reconstruction algorithms and unrolled dynamics (UD) reconstruction method [1].  

The mathematical reconstruction algorithm is modeled according to imaging principles and has a 
reliable interpretation, but it does not make use of the prior knowledge of the data. Deep learning makes 
full use of the prior knowledge of the data, but it is not interpretable. The UD reconstruction algorithm 
combines the advantages of deep learning techniques and traditional reconstruction algorithms. It has been 
widely used in medical image processing [2–8]. ISTA-net [9] is a structured deep network that learns a 
nonlinear transform in an end-to-end manner. This transform replaces the complex transform associated 
with the proximal mapping. ISTA-NET++, another end-to-end ISTA-unfolding deep network, handles a 
multi-ratio task using a single model. This kind of method improves the interpretability of the deep learning 
model and opens up a new way for medical image reconstruction. 

The application of UD methods in CT image reconstruction is also gradually increasing [1,11,12]. 
Dong et al. proposed the meta-inversion network (MetaInv-Net) [1] which is a representative UD method. 
Its backbone network architecture is composed of many submodules related to the conjugate gradient (CG) 
algorithm. Instead of imitating the iterative method, Jin et al. applied a convolutional neural network (CNN) 
to an inverse problem and proposed FBPConvNet [10]. It is another UD method for CT reconstruction, 
which is used to explore an advanced CNN architecture. Hu et al. [11] designed a UD method, called 
learned experts’ assessment-based reconstruction network (LEARN). They unfolded an iterative 
reconstruction scheme into many submodules of a neural network. However, these UD methods all have a 
common disadvantage. They all simulate regularization operators in optimization problems without the 
iterative algorithm itself. Therefore, this paper attempts to explore a deep neural network to learn the map 
of the iterative algorithm itself.  

In this paper, we propose a novel UD method for CT reconstruction, which is fundamentally 
different from the methods mentioned above. Instead of using neural networks to simulate the 
approximation operator in iterative algorithms, we design a model to simulate the map between the 
former and the latter in maximum-likelihood expectation maximization (MLEM) and we call it iNet. 
We train the network to approximate the real map as closely as possible. This model improves the 
quality of reconstructed CT images and does not require explicit iterative expressions. This method 
also has strong generalization performance. Namely, we do not have to study numerical solutions for 
optimization problems and can use neural networks to learn an iterative algorithm to solve the 
corresponding optimization problems. This work can provide new inspiration for UD methods. 

2. Related work  

2.1. MLEM algorithm 

The image reconstruction problem is modeled as follows:  

 𝐴𝑋 𝑃 (1) 

where 𝐴 ∈ 𝑅 ∗  denotes the system matrix of the inverse problem, 𝑎  represents the element in 
row 𝑖  and column 𝑗  of 𝐴 , 𝑋 𝑥 , … , 𝑥   denotes the unknown image, and 𝑃 𝑝 , … , 𝑝  
denotes the known measured data. Usually, we give an estimate of 𝑋, and then the estimate of the 

corresponding measured value is expressed as 𝑌 𝑦 , … , 𝑦 , where 𝑦 ∑ 𝑎 𝑥 . Supposing 
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𝑃 obeys Gaussian distribution with an expectation 𝜇 𝑦  and the same variance 𝜎, we can get the 
probability density of 𝑃 distribution: 

 𝑓 | , √
𝑒𝑥𝑝 𝑝 𝜇  (2) 

The likelihood function is established as follows:  

 Prob ∏ 𝑓 | ,  
√

𝑒𝑥𝑝 ∑ 𝑝 𝜇  (3) 

Take the logarithm of this likelihood function:  

 𝑙𝑛 𝑃𝑟𝑜𝑏 ∑ 𝑝 𝜇 𝑚𝑙𝑛 𝜎√2𝜋  (4) 

According to the previous assumptions, we know that the above equation is equivalent to the 
following equation: 

 𝑙𝑛 𝑃𝑟𝑜𝑏 ∑ 𝑝 𝑦 𝑚𝑙𝑛 𝜎√2𝜋  (5) 

To find the extreme value of 𝑙𝑛 𝑃𝑟𝑜𝑏 , we find the partial derivative of the above Eq (5) with 
respect to 𝑥 , 

 ∑ 𝑝 𝑦  (6) 

Bring ∑ 𝑎 𝑥 𝑎  into Eq (6), we get the following formula: 

 ∑ 𝑝 ∑ 𝑎 𝑥 𝑎  (7) 

By the corresponding Kuhn-Tucker (KT) conditions, we know that  

 𝑥 𝑥 ∑ 𝑝𝑖 ∑ 𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗 1 𝑎𝑖𝑙 0𝑚

𝑖 1  (8) 

By the fixed point theory, we achieve the update rule: 

 𝑥 𝑥
∑

∑ ∑  (9) 

Then, the final MLEM algorithm is obtained as follows: 

 𝑋 𝑋 .∗  (10) 

where 𝑋   and 𝑋   represent the results of the 𝑘 -th and 𝑘 1  -th iteration of 𝑋 . To avoid the 
case where the denominator in Eq (10) is zero, we usually introduce an arbitrary small positive number 
𝜀, and obtain the general form of Eq (10) as follows: 

 𝑋 𝑋 .∗  (11) 
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2.2. Universal approximation theorem 

Deep learning models are used to learn mapping relations in the data space, including linear and 
nonlinear mapping relations. Initially, it was thought that learning nonlinear mappings required specialized 
nonlinear models. Fortunately, the universal approximation theorem shows that a feedforward neural 
network with a linear output layer and at least one layer containing any kind of “squeezed” activation 
function can approximate a Borel measurable function from one finite dimensional space to another with 
arbitrary accuracy. Specifically, the neural network built by the hidden layers with arbitrary width 
and depth approximates continuous functions with arbitrary accuracy [12,13]. Moreover, neural 
networks with a single hidden layer, as shown in these works [14,16], can accurately approximate 
any nonlinear continuous function.  

3. Methods 

3.1. Overview 

We propose a kind of iterator network to simulate the solution form of the MLEM algorithm and 
call it iNet. This model improves the quality of reconstructed CT images and does not need explicit 
iterative expressions. To understand the iNet, we present the conceptual explanation and the 
architecture of iNet in this section.  

3.2. iNet 

We know that the iterative form of the MLEM algorithm is as follows:  

 𝑋 𝑋 .∗  (12) 

Observing the above expression, we obviously find the following conclusions:   
𝑋 𝑓 𝑋 , 𝐴 𝑌  

𝑋 𝑓 𝑋 , 𝐴 𝑌  

𝑋 𝑓 𝑋 , 𝐴 𝑌  

⋯ 

𝑋 𝑓 𝑋 , 𝐴 𝑌  

Where f represents the map of the former and the latter. We train the iNet to learn the map f instead of 
manually computing the explicit expression of the MLEM algorithm. 

3.3. Network architecture 

Figure 1 shows the detailed network structure of the proposed iNet. It is easy to find that the iNet 
consists of a convolution part, deconvolution part and skip connections. The convolution part consists 
of five convolution layers followed by Rectified Linear Unit (ReLU) activation function. The number 
of convolution kernels is 96, the size of all convolution kernels used is 3 × 3 and the fill of the 
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convolution is “valid”. Therefore, the number and the dimension of feature maps after each 
convolution are 96 and reduced by 4, respectively. The deconvolution part consists of a deconvolution 
layer, three ReLU activation functions followed by a deconvolution layer, and a deconvolution layer 
followed by ReLU. We use two skip connections between the convolution and deconvolution, which 
can avoid the loss of image detail. On the other hand, the skip connection also solves the problems 
caused by overly deep convolutional layers. It’s worth noting that the number of convolution kernels 
of the final layer is 1. To make the network structure clearer, we explained these symbols of “Adding 
of pixel level” by adding the Figure 2. 

 

Figure 1. Schematic flow chart of the proposed iNet. 

 

Figure 2. The explanation of “adding of pixel level”. 

4. Experimental descriptions 

To verify the feasibility of our iNet, we conduct experiments on a CT dataset and report qualitative 
and quantitative results. Firstly, we introduce the dataset in detail. Then, we selected some 
reconstructed images for display. Finally, we calculate the peak signal-to-noise ratio (PSNR) and 
structure similarity index measure (SSIM) of the reconstructed image. 

4.1. Dataset 

The dataset is stored in the cancer imaging archive (TCIA). It contains clinical CT images of 149 
patients scanned using the Lightspeed VCT scanner (GE Healthcare, Waukesha, WI). The data of each 
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patient contains normal-dose and simulated low-dose projection images, normal-dose CT images, and 
the corresponding clinical information. We used data from 5 patients as the training set and data from 1 
patient as the testing set. A scanned image of each patient includes about 300 2D slices, which can be 
found at the official website of TCIA. These 2D slices were then projected using a systematic matrix 
forward projection to generate corresponding sinogram data. Then the sinogram data was used to 
generate corresponding CT images with the MLEM algorithm. Figure 3 shows the schematic diagram of 
the experimental data generated using a slice. Figure 4 shows the dataset used to train and test the 
proposed method. 

Taking one of the slices as an example, we show the data reconstruction in Figure 3:  
1). For each CT slice of 512 × 512 size, interpolation is performed using resize function to obtain a CT 
slice of 256 × 256. 
2). The above slice was then projected using a systematic matrix forward projection to generate 
corresponding sinogram data. 
3). Finally, the CT image was generated using the above sinogram with the MLEM algorithm. 

 

Figure 3. Schematic diagram of the experimental data generated using a slice. 

 

Figure 4. Experimental data for network training and testing. 
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4.2. Evaluation methods 

To evaluate the effect of iNet, we compared the reconstructed image generated by iNet with by 
the three representative algorithms. They are the alternating direction method of multipliers (ADMM), 
filtered back projection (FBP) and MLEM. 

4.3. Quantitative analysis 

To quantitatively compare different CT reconstruction methods, PSNR and SSIM are calculated 
of the reconstructed CT PSNR is defined as: 

 𝑃𝑆𝑁𝑅 10𝑙𝑜𝑔  (13) 

where 𝑢   is the maximum pixel value of the image, and MSE indicates the mean square error 
between the reconstructed result and the target image. SSIM is defined as: 

  𝑆𝑆𝐼𝑀 𝑥, 𝑦   (14) 

where 𝑥  and 𝑦  represent the reconstructed image and the target image, 𝑢   and 𝑢   are the mean 
values of 𝑥 , 𝑦 , 𝜎  and 𝜎  are the standard deviations of 𝑥 , 𝑦 , respectively. 𝑐 , 𝑐   are two very 
small constants to avoid the denominator to be zero. SSIM measures the similarity between two images, 
and the closer the value is to 1, the more similar the two images are to each other.  

5. Experimental results 

We report and discuss the performance of our iNet according to experimental results. Figure 5 is 
the visualization of the three reconstructed images. The first column is the real image. The second, 
third, fourth, and last columns are the results generated by ADMM, FBP, MLEM, and the proposed 
iNet. The parts indicated by red and blue rectangle boxes represent regions of interest (ROIs) and the 
corresponding zoomed, respectively. The reconstructed image in Figure 5(b) generated by the ADMM 
algorithm has obvious blurring. The reconstructed images in Figure 5(c)–(e) have better performance. 
Compared with other methods mentioned in this work, the proposed method generated more reliable 
reconstructed images, and we also proved this conclusion with quantitative values. 

We calculated the PSNR and SSIM of reconstructed images shown in Figure 5 and listed the 
results in Table 1. It is easy to find that the PSNR and SSIM values of the image reconstructed by 
iNet are the highest. Additionally, Figure 6–8 show the profiles of the reconstructed images shown 
in Figure 5. The blue curves correspond to the label (reference) and the orange curves correspond 
to the different reconstruction methods. It can be seen that the reconstructed images of our iNet 
are closer to the reference images. 



13057 

Mathematical Biosciences and Engineering  Volume 19, Issue 12, 13050–13061. 

 

Figure 5. Three CT slices reconstructed by ADMM, FBP, MLEM, and our proposed 
method, respectively. 

Table 1. Quantitative evaluation of different methods at test dataset. 

 
Frist CT image Second CT image Third CT image 

PSNR SSIM PSNR SSIM PSNR SSIM 

ADMM 25.0550 0.6073 24.2089 0.6974 24.3659 0.7079 

FBP 25.4607 0.6673 23.3797 0.6741 23.2561 0.6380 

MLEM 35.1184 0.9500 31.1246 0.9097 31.5508 0.9214 

iNet 35.7257 0.9590 31.8738 0.9249 31.5954 0.9355 

 

Methods 

CT 
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Figure 6. Profiles of the first CT slice. 

 

Figure 7. Profiles of the second CT slice. 
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Figure 8. Profiles of the third CT slice. 

6. Discussion and conclusions 

In this work, we proposed the iNet, which is inspired by the recently popular UD reconstruction 
method. Guided by the universal approximation theorem, we show that nonlinear functional 
relationships in iterative reconstruction algorithms can be simulated using a neural network model. 
The key to this framework is its potential to learn nonlinear maps in iterative reconstruction algorithms, 
which makes it suitable for extension to any iterative algorithm. In addition, the proposed method in 
this work brings new ideas to the research of interpretability of deep learning methods. 

As a first attempt, we evaluated the performance of iNET on a clinical CT dataset. This 
improvement over standard ADMM, FBP, and MLEM is significant and promises to be used for further 
applications and theoretical studies, which we leave for future work. The applications include the 
reconstruction of larger size images, and smaller and sparser real data. The theoretical research 
includes systematizing such methods and proving them in mathematical terms in the future. 
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