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Abstract: This paper shows how biological population dynamic models in the form of coupled 
reaction-diffusion equations with nonlinear reaction terms can be applied to heterogeneous 
landscapes. The presented systems of coupled partial differential equations (PDEs) combine the 
dispersal of disease-vector mosquitoes and the spread of the disease in a human population. Realistic 
biological dispersal behavior is taken into account by applying chemotaxis terms for the attraction to 
the human host and the attraction of suitable breeding sites. These terms are capable of generating 
the complex active movement patterns of mosquitoes along the gradients of the attractants. The 
nonlinear initial boundary value problems are solved numerically for geometries of heterogeneous 
landscapes, which have been imported from geographic information system data to construct a 
general-purpose finite-element solver for systems of coupled PDEs. The method is applied to the 
dispersal of the dengue disease vector for Aedes aegypti in a small-scale rural setting consisting of 
small houses and different breeding sites, and to a large-scale section of the suburban zone of a 
metropolitan area in Vietnam. Numerical simulations illustrate how the setup of model equations and 
geographic information can be used for the assessment of control measures, including the spraying 
patterns of pesticides and biological control by inducing male sterility. 
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1. Introduction 

The modeling of dispersal through the use of reaction-diffusion equations has a long history. As 
early as 1937, it was shown that a diffusion model with logistic growth terms can generate traveling 
waves [1]. From this seminal work sprang numerous mathematical publications on the existence of 
traveling wave solutions, see, for example, Hadeler and Rothe [2] and the review articles of Volpert 
and Petrovskii [3] and Wang [4]. Coupled nonlinear reaction-diffusion equations also have a long 
tradition of application to model the spread of diseases. The classical SIR epidemiological model has 
been applied in combination with diffusion to generate epizootic waves, as has been modeled for 
rabies dispersal in England by Murray and Seward [5] and Murray et al. [6]. There exist many 
publications on the dispersal of insect-related disease vectors within the frame of reaction-diffusion 
equations. Maidana and Yang [7] analyzed the spread of dengue disease via the disease vector Aedes 
aegypti and developed criteria for the onset of traveling waves in one dimension. Almeida et al. [8] 
evaluated the use of insecticides and male sterility induction as a means of blocking traveling waves 
from the mathematical point of view in a one-dimensional setting, providing also a theoretical proof 
of the efficiency of the sterile insect technique (SIT). Also, in a one-dimensional setting, Anguelov et 
al. [9] proved that bistable traveling wave solutions exist if sterile males are introduced; they 
illustrated their theorem via numerical investigations. In other papers, the focus is on dispersal in 
realistic two-dimensional spatial settings. Lutambi et al. [10] discretized the space by introducing 
heterogeneous hexagonal patches. For each patch, a system of ordinary differential equations for the 
mosquito dynamics was setup, and it allowed for movement between neighboring patches. Yamashita 
et al. [11] carried out two-dimensional numerical simulations of a reaction-diffusion model for Aedes 
aegypti in a residential environment consisting of streets, blocks and a beach by using a finite-
volume method. Knight [12] developed a model of the mosquito-mangrove basin ecosystem, 
detailing the habitat of the saltwater mosquito Aedes vigilax of a mangrove forest in Australia. 
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Richter et al. [13] modeled the invasion of a new species by coupling geographic information system 
data on temperature using a finite-element tool.  

Recent experimental studies have shown that the heat emanating from humans [14] and 
olfactory agents from breeding sites [15] control mosquito movement patterns. It was found that host 
seeking by mosquitoes and other pathogen-spreading insects relies on the detection of host-
associated cues, including body heat [14,16–19]. Heat strongly stimulates mosquito blood feeding, as 
heat seeking is a part of a multimodal host-seeking program followed by mosquitoes in which body 
heat serves as an important cue of the host [14,17,20,21]. After a blood meal from a host, female 
mosquitoes look for suitable oviposition sites to guarantee success of the offspring. In order to 
remember its breeding site, mosquitoes need to adapt by learning to respond to odor cues from larval, 
pupal or early adult vectors [22]. Aedes aegypti mosquitoes are capable of information retention, 
which is acquired either during larval development, hatching or foraging, and that new information 
could influence their behavior [15]. Learning from its own experience could influence the vector 
behavior, such as the potential preferences in vector-host interactions [23,24]. 

Reaction-diffusion equations with simple diffusion terms do not reflect realistic dispersal 
patterns of mosquitoes, which are driven by an attraction to prey (humans) and the attraction of 
breeding sites. The application of reaction-diffusion equations for the dispersal of mosquitoes (and 
other species) therefore faces two challenges: 

1) Coupling the governing equations with geographic information on landscape heterogeneity 
e.g., types of human settlements and possible breeding sites. 

2) Accounting for animal behavior in the equations. 
It was the purpose of this study to model and analyze mosquito movement at small scales, 

including attractant behavior, and to model the dispersal of mosquitoes and spread of diseases in a 
human population at the landscape scale. To this end, the governing equations were implemented in 
the finite-element tool COMSOL Multiphysics. For the landscape scale studies, landscape data 
extracted from Sentinel satellite images were imported using a geographic information system. 

The chosen area for this model application is a suburban zone of a metropolitan area in the 
south of Vietnam. In Vietnam, mosquitoes and mosquito-borne diseases pose severe problems. They 
occur in most provinces and cities across the country, but are more common in the southern region, 
especially in accelerating urbanization zones such as the southern area of Ho Chi Minh (HCM) city 
(Figure 1). Therefore, for our study area, we chose a section of the urbanization zone in the south of 
HCM city; it has a mixture of vegetation, water bodies, rural settlements and urban residential areas. 
The study area includes District 7, Nha Be District and the Binh Khanh Ward (Figure 1). The area 
belongs to the downstream area of the Dong Nai and Saigon river system. This study area was 
previously covered by a mangrove forest and has slowly been urbanized since 1972. The 
urbanization has been accelerating since 1990. 

The target mosquito species of this study is the Aedes aegypti species, which is involved in the 
transmission of numerous viruses, including dengue, chikungunya and Zika. There are many studies 
on the mosquito habitat and life cycle in Vietnam, and the earliest work could be the work of Herbert 
et al. [25], who conducted mosquito surveys and analyzed their distribution. Later, Huber et al. [26] 
studied the ecology of Aedes aegypti, genetic differentiation, variability in competence as a vector for 
dengue virus and resistance to insecticides; this was to assess the role of the vector in the changing 
pattern of the disease in Vietnam. Jeffery et al. [27] collected and classified water containers from 
large tanks to small jars in the center of Vietnam to determine if Aedes aegypti populations were 
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spatially and temporally homogeneous. 
The objectives of the study were to perform a numerical investigation that analyzed models of 

the dynamics of mosquito populations that are driven by an attraction to prey (humans) and the 
attraction of breeding sites, as well as of the spread of vector-borne diseases in urban-wetland areas. 

 

Figure 1. Study area included District 7, the Nha Be District of HCM city and the Binh 
Khanh Ward. The area belongs to the downstream area of the Dong Nai and Saigon river 
system. The area is composed of human settlements, water bodies and vegetation. 

2. Materials and methods 

2.1. Mathematical models 

2.1.1. Basic model 

Notations 
State variables 

A: mosquitoes (aquatic phase) 
M: mosquitoes winged phase (general) 
Ms: mosquitoes (not vector of virus) 
Mi: mosquitoes (vector of virus) 
M1: mosquitoes (searching for blood meal) 
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M2: mosquitoes (searching for breeding site) 
Mij: mosquitoes in search mode i and infectious mode j 
Hs: non-infected humans  
Hi: infected humans 
Hr: removed (immune) humans 

Parameters 
c(x,y): environmental capacity (aquatic phase) 
D: diffusion coefficient 
𝜙: oviposition rate 
γ: hatching rate 
𝜇஺: mortality rate aquatic phase 
𝜇ெ: mortality rate winged phase 
𝜇௦: mortality rate due to insecticide spraying 
d: width of spraying corridor 
y0: position of spraying corridor 
r: survival of hatched larvae 
ß: contact rate for mosquito-susceptible humans (small-scale model) 
ß1: contact rate for not virus bearing mosquitoes with infectious humans 
ß2: contact rate for infectious mosquito-susceptible humans 
𝜏ିଵ: infectious period 
𝜔ଵଶ: rate of change between mosquito states  
𝑣: conservative flux convection coefficient 
The general form of a system of reaction-diffusion equations for biological populations with a 

density yi is given by 

                    (1) 

where the spatial operator has the form 

                                                   
(2) 

with the conservative flux coefficient 

𝑣 ൌ 𝑎 ൅ 𝜒ሺ𝑐ሻ𝛻𝑐                                                            (3) 

which allows for movement in the direction of a gradient of an attractant c. The reaction term fi 
accounts for the population dynamic and genetic processes [28]. Note that the system may also 
include components that are stationary, as is the case for a stage-structured population. 

For a mosquito population, the basic model consists of the aquatic phase (A) and the winged 
phase (M) [7]. The capacity term varies in space. 
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ቁ െ 𝛾𝐴 െ 𝜇஺𝐴                                       (4) 

The winged phase is coupled to the aquatic phase via the hatching term rγA, as follows: 
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డெ

డ௧
ൌ 𝛻 ∙ ሺ𝐷𝛻𝑀 െ 𝑣𝑀ሻ ൅ 𝑟𝛾𝐴 െ 𝜇ெ𝑀                                   (5) 

In Eq (5), the first through fourth terms respectively represent the random dispersal, vectored 
dispersal, hatching and mortality rate. 

2.1.2. Dispersal patterns at small scales 

This model takes into account the blood-feeding status of female mosquitoes, differing with 
respect to dispersal patterns. Unsaturated mosquitoes hover around their prey, attracted by the body 
heat. It was recently found that a receptor (IR21a) is activated when mosquitoes move toward cooler 
temperatures [14]. After the blood meal, mosquitoes search for breeding sites for oviposition, guided 
by olfactory preferences [15]. The different movement patterns are expressed by chemotaxis terms; 
for humans (in terms of temperature), the term is 

𝑣் ൌ െ𝜒்𝛻𝑇                                                                   (6) 

for breeding sites (in terms of olfactory agents), the term is 

𝑣஻ ൌ െ𝜒஻𝛻𝐵                                                                   (7) 

The chemotaxis fields are generated by a linear diffusion process with humans and breeding 
sites as sources and boundary absorption conditions. 

Mosquitoes become vectors of disease if they bite infectious humans. Therefore, in the model, 
the population is differentiated into susceptible (Index s) and infected (Index i) subpopulations.  The 
system is solved over a region G, which includes breeding sites denoted as B, human settlements and 
vegetation. 

డெభೞ

డ௧
ൌ 𝛻 ∙ ሺ𝐷𝛻𝑀ଵ௦ െ 𝑣்𝑀ଵ௦ሻ ൅ 𝑟𝛾𝐴 െ 𝜇ெ𝑀ଵ௦ െ 𝛽ሺ𝐻௦ ൅ 𝐻௜ሻ𝑀ଵ௦ ൅ 𝜔𝑀ଶ௦   (8) 

Mosquitoes in blood-seeking mode that have hatched at a breeding site (𝑟𝛾𝐴) disperse and seek 
humans (term: 𝑣்𝑀ଵ௦ ). After biting either non-infected or infected humans, they switch into the 
breeding-site seeking mode ( 𝛽ሺ𝐻௦ ൅ 𝐻௜ሻ𝑀ଵ௦ ). The last term represents the switching following 
oviposition. 

డெభ೔

డ௧
ൌ 𝛻 ∙ ሺ𝐷𝛻𝑀ଵ௜ െ 𝑣்𝑀ଵ௜ሻ െ 𝜇ெ𝑀ଵ௜ െ 𝛽ሺ𝐻௦ ൅ 𝐻௜ሻ𝑀ଵ௜ ൅ 𝜔𝑀ଶ௜             (9) 

Infected mosquitoes originate from encounters with infected humans and do not develop from 
eggs. Otherwise, their behavior is the same as that of the non-infected type. 

డெమೞ

డ௧
ൌ 𝛻 ∙ ሺ𝐷𝛻𝑀ଶ௦ െ 𝑣஻𝑀ଶ௦ሻ െ 𝜇ெ𝑀ଶ௦ ൅ 𝛽𝐻௦𝑀ଵ௦ െ 𝜔𝑀ଶ௦                   (10) 

Non-infected mosquitoes that have become saturated as a result of biting humans at a rate 
𝛽𝐻௦𝑀ଵ௦ are attracted to breeding sites (term: 𝑣஻𝑀ଶ௦) and switch back to the blood-seeking mode after 
oviposition (last term). 

డெమ೔

డ௧
ൌ 𝛻 ∙ ሺ𝐷𝛻𝑀ଶ௜ െ 𝑣஻𝑀ଶ௜ሻ െ 𝜇ெ𝑀ଶ௜ ൅ 𝛽𝐻௜𝑀ଵ௦ ൅ 𝛽ሺ𝐻௦ ൅ 𝐻௜ሻ𝑀ଵ௜ െ 𝜔𝑀ଶ௜         (11) 
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Saturated mosquitoes that have become infected as a result of biting infectious humans at a rate 
𝛽𝐻௜𝑀ଵ௦ are attracted to breeding sites (term: 𝑣஻𝑀ଶ௜) and switch back to the blood-seeking mode after 
oviposition (last term), where 

𝜔 ൌ ൜
𝜔ଵଶ 𝑖𝑓ሺ𝑥, 𝑦ሻ ∈ 𝐵
0     𝑖𝑓ሺ𝑥, 𝑦ሻ ∉ 𝐵

ൠ                                                         (12) 

where 𝐵 ⊂ 𝐺. 

2.1.3. Dispersal patterns at large scales 

At the landscape scale (areas of several square kilometers), the movement from local breeding 
sites to humans is neglected. The objective of models at this scale is to simulate the spread of the 
disease in consideration of mosquito densities and the densities of human populations. To this end, 
capacity terms are formulated to reflect the availability of typical breeding sites. Two types of 
breeding sites are distinguished according to different carrying capacities: water bodies outside 
human settlements, such as ditches, or small ponds with low carrying capacities and small water 
bodies in plastic containers, mud dishes, mud pots, ditches and discarded tires with high capacities [29]. 
The latter breeding sites are connected to the types of human settlements. Here, we distinguish rural 
settlements with lots of such breeding sites and cities with a highly developed infrastructure and not 
much littering. The governing equations are based on the work of Maidana and Yang [7], 
modifications to the chemotaxis terms and nonlinear dispersal. 

డ஺

డ௧
ൌ 𝜙ሺ𝑀௦ ൅ 𝑀௜ሻ ቀ1 െ

஺

஼ሺ௫,௬ሻ
ቁ െ 𝛾𝐴 െ 𝜇஺𝐴                            (13) 

డெೞ

డ௧
ൌ 𝛻 ∙ ሺ𝐷𝛻𝑀௦ െ 𝑣்𝑀௦ሻ ൅ 𝑟𝛾𝐴 െ 𝜇ெ𝑀௦ െ 𝛽ଵ𝐻௜𝑀௦              (14) 

డெ೔

డ௧
ൌ 𝛻 ∙ ሺ𝐷𝛻𝑀௜ െ 𝑣்𝑀௦ሻ െ 𝜇ெ𝑀௜ ൅ 𝛽ଵ𝐻௜𝑀௦                        (15) 

డுೞ

డ௧
ൌ െ𝛽ଶ𝐻௦𝑀௜                                                                  (16) 

డு೔

డ௧
ൌ 𝛽ଶ𝐻௦𝑀௦ െ 𝜏𝐻௜                                                           (17) 

డுೝ

డ௧
ൌ 𝜏𝐻௜                                                                          (18) 

Note that parameters such as the environmental capacity or contact rates are dependent on the 
infrastructure of the study area. The parameter values are shown in Table 1. 

2.1.4. Control management 

Release of sterile males. 
The effect of this method is the decrease of fertile mating by the factor f = ெೞାெ೔

ெೞାெ೔ାௌ
, where S 

denotes the density of sterile males under the condition of a sex ratio of 1:1. 
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The number of eggs is therefore reduced by this factor and Eq (13) is modified as follows. 

డ஺

డ௧
ൌ 𝜙ሺ𝑀௦ ൅ 𝑀௜ሻ ቀ1 െ

஺

஼ሺ௫,௬ሻ
ቁ 𝑓 െ 𝛾𝐴 െ 𝜇஺𝐴                            (19) 

The spread of sterile mosquitoes is modeled by a diffusion equation with a mortality term and a 
source term, which summarize the release rate Ri at each location ሺ𝑥௜, 𝑦௜ሻ. 

డௌ

డ௧
ൌ 𝛻 ∙ ሺ𝐷𝛻𝑆ሻ െ 𝜇ெ𝑆 ൅ ∑ 𝑅௜

௡
௜ୀଵ                                              (20) 

Spraying in a corridor. 
A spraying corridor parallel to the x axis is defined by the y position y0, the width d of the 

corridor and the form parameter n, which determines the reduction in pesticide action. The spraying 
introduces an additional mortality rate. 

𝑚ሺ𝑥, 𝑦ሻ ൌ 𝜇௦𝑒𝑥𝑝 ൤െ
ሺ௬ି௬଴ሻ

ௗర

ସ
൨                                                   (21) 

where 𝜇௦ denotes the maximum mortality, which decreases with distance from the centre of the corridor 
y0. 

2.1.5. Boundary conditions 

For the small-scale model, Neumann conditions were applied to the walls of the houses and the 
zero Dirichlet condition was applied to the outer boundaries. For the large-scale model, the zero 
Dirichlet condition was applied to the boundaries of the region. The results are only slightly 
influenced if the outer boundary conditions are Neumann. 

2.2. Methods 

The governing equations were implemented using the finite-element tool COMSOL 
Multiphysics version 6.0 (www.comsol.de). This tool is well adapted for the combination with 
geographical data. For time-dependent problems, the variable order backward differentiation formula 
solver in COMSOL was used. For the simulation of dispersal on the landscape scale, COMSOL was 
linked to a geographic information system that provided population density data and the landscape 
geometry. Geo-referenced data for the study area were imported from the resultant raster maps for 
vegetation density level, water body coverage and mean population density distribution. 

This information was extracted from Sentinel-2 imagery. Sentinel-2 is a high-spatial-resolution 
(10, 20, 60 m), high-temporal-resolution (5 days), multispectral (13 bands) imaging satellite carrying 
a multispectral imager (MSI) [30]. The level 1C data of an image acquired on January 17, 2021 were 
downloaded from the Copernicus Open Access Hub (https://scihub.copernicus.eu/). These data were 
pre-processed using a SNAP Desktop platform (Version 8.0.0; SNAP 2020) with the Sentinel-2 
Toolbox. This Level 1C image with top-of-atmosphere (TOA) reflectance was processed to a Level-
2A bottom-of-atmosphere (BOA) product using the European Space Agency Sentinel Application 
Platform (ESA-SNAP) Sentinel-2 Toolbox with the additional Sen2Cor plug-in for atmospheric 
correction. Sentinel-2 bands 5, 6, 7, 8a, 11 and 12 (all are short-wave infrared) were resampled to 10 
m × 10 m from their native resolution of 20 m × 20 m to match the resolution of the other bands. 
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These processed bands were used to extract the levels of vegetation cover, the water body and the 
urban-nonurban areas. The population density was obtained from the Worldpop (www.worldpop.org) 
global high-resolution population denominators project, which provides gridded population counts at 
100-m spatial resolution (3 arc-seconds). 

The data were interpolated within COMSOL by using the two-dimensional linear interpolation 
option in the function menu. The implementation scheme is shown in Figure 2. The environmental 
capacity of mosquitoes is related to the residential environment, which has been characterized by 
scores ranging from 0 to 3. In a rural setting (Score 2), the preferred breeding sites of Aedes aegypti, 
like small water containers, pots or tires, are more common than in dense urban areas (Score 3). 
Scores 0 and 1 are given to water bodies and vegetation. For numerical reasons a smooth curve was 
created to avoid abrupt changes in the parameters following transitions of infrastructural features 
(Figure 3).  

 

Figure 2. Implementation scheme. 

 

Figure 3. Allocation of weights for the aquatic phase capacity. Note that we assumed that 
the capacity for Aedes aegypti is highest in rural settlements around score 2. 
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3. Results 

We applied this model to investigate the movements of mosquito populations and the 
transmission of dengue disease to humans by infected vectors. Two scales were setup for the 
geometry settings. At the fine scale, this model can predict how mosquito populations move between 
the houses and breeding sites and how the humans are infected by the disease in the area. At the 
landscape scale, the model can simulate the dispersal of infectious mosquitos and humans and the 
effects of control measures. 

3.1. Small scale 

Here, we have constructed a typical rural setting consisting of small houses and different 
breeding sites. Between the houses (rectangular shapes), there is a dich, near the houses there are 
small breeding sites representing containers, pots, and other mosquito-preferred sites. The small 
circles represent humans and their range of movement. In the model, breeding sites and humans 
constitute the source of the respective attractants. 

The circles in the houses represent humans and their range of movement. In the model, breeding 
sites and humans constitute the source of the respective attractants. Figure 4 shows the velocity fields 
of mosquitoes in the non-saturated and saturated states. Due to the chemotaxis effects, one can 
clearly distinguish between different movement patterns. 

Along with mosquito movement, an infection is spread if infectious humans are present. This is 
shown in the simulation results in Figure 5. The small circles in the houses represent humans and 
their radius of interaction. At the beginning, one human outside of a house is infected (red circle, 
Figure 5(a)). Note that humans are fixed in space, i.e., there are no diffusion terms in the governing 
equations. After 3 days, a portion of the humans are infected (circles with colors, Figure 5(b)); after 5 
days, all humans are infected (Figure 5(c)). The movement pattern is determined by the exchange 
between breeding sites and humans (Figure 5(d)). 

 

Figure 4. (a) Velocity field of mosquitoes in the unsaturated state. They move from 
breeding sites (big circles) to the houses with humans (small circles), following the 
temperature gradient. (b) Velocity field of mosquitoes in the saturated state. They move 
from their prey sites (small circles) to the breeding sites (big circles), following olfactory 
gradients. 



12925 

Mathematical Biosciences and Engineering  Volume 19, Issue 12, 12915–12935. 

 

Figure 5. Spread of infection in humans: (a) initial infection, (b) after 3 days and (c) after 
5 days; (d) shows the movement pattern and density of non-saturated infectious 
mosquitoes after 15 days. The highest densities occur within houses inhabited by humans 
and at the breeding sites. 

3.2. Large scale 

The following simulations show the attractive effects in a real landscape. The dispersal of 
mosquito populations has been followed from a focal point in the area. Different types of dispersals 
were observed, including the free dispersal of mosquitoes under the conditions of no treatment 
regime and the spread of mosquitoes and disease transmission with the aforementioned control 
management. 

3.2.1. Uncontrolled dispersal 

The governing equations, presented as Eqs (13)–(18), are solved for the study area. Here, the 
detailed movement between breeding and feeding sites is not considered; however, the directed 
movement to humans is maintained. Figure 6 shows the movement pattern of mosquitoes for a 
section of the study area. 
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Figure 6. Movement pattern of mosquitoes, showing the attraction of human settlements. 
The arrows have been superimposed on the population density plot. 

 

Figure 7. Time sequence of a traveling wave of the spread of infected humans in a 
homogeneous environment. 
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As was to be expected from the many theoretical studies mentioned in the introduction, 
traveling waves occur if certain parameter constellations are given. Figure 7 shows a 3D 
representation of a traveling wave of infected humans, as obtained for a homogeneous domain. In a 
nonhomogeneous environment, traveling wave fronts are distorted as shown in Figure 8. 

Figure 8 shows the wave of the spread of infected humans. Distorted wave fronts reflect the 
heterogeneity of the landscape. Note that the underlying heterogeneity of the resources and human 
population density are given in Figure 1. 

Accordingly, the density of the susceptible population is decreasing in a complementary manner. 
Figure 9(a)–(d) show the spatiotemporal evolution of the susceptible population from Day 0 to Day 
250. One can clearly see that the disease progresses like a wave with an irregular wavefront, 
reflecting the landscape heterogeneity. 

 

Figure 8. Spatiotemporal evolution of the infected population from a hot spot (a), after 
80 days (b), after 150 days (c) and after 250 days (d). Because of the transition of 
infected humans to the recovered state, one can observe a progressive wave front. (For 
the underlying map of the population density and resources see Figure 1). 



12928 

Mathematical Biosciences and Engineering  Volume 19, Issue 12, 12915–12935. 

 

Figure 9. Spatiotemporal evolution of the susceptible population. (For the underlying 
map of the population density and resources see Figure 1.) 

 

Figure 10. Time courses of susceptible (blue), infected (green) and recovered (red) 
humans per square meter at two locations; they differ in their distance to the source of 
infection. 

It is also interesting to look at the time evolution of the epidemic at single points (Figure 10). 
One can recognize the typical time courses of the classical SIR model, irrespective of the time delay 
due to the spatial separation. At any given time, individual humans will be in one of three states, 
namely, S (susceptible), I (infectious) or R (recovered/immune). The infected mosquitoes in the 
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model do not have a recovered/immune state, as it has been assumed that mosquitoes remain infected 
until they die. One can see that dengue transmission peaks travel along with the traveling wave fronts. 

3.2.2. Control management 

An understanding of the movement behavior of mosquitoes and their preferable breeding sites 
enables the assessment of management strategies (method, frequency, area). Here, we show some 
simulations of control measures for illustrative purposes. Management methods were incorporated 
into the model, and they include conventional means of vector control, i.e., insecticide spraying and 
the use of sterile males to decrease the frequency of fertile mating. One question to answer was as 
follows: how can a traveling wave be stopped by spraying? In the simulation, a corridor of intensive 
spraying was implemented. This was achieved by introducing a high mortality rate to a selected strip. 
The simulations show that the success of this measure depends on the breadth of the spraying zone, 
as shown in Figure 11. 

 

Figure 11. Effects of the breadth of a spray corridor on the spread of the infection. A 
small corridor of 100 m (a) does not prevent the breakthrough of the epidemic (b). A 
larger corridor of several hundred meters (c) stops the epidemic wave (d). 

If the breadth of the corridor is too small, the traveling waves are delayed but are able to persist. 
So, there exists a threshold value for this parameter, which is related to the minimal viable population 
size, as discussed by Richter et al. [13]. The sterile-male-release technique has recently seen a 
comeback [31]. The effect of this method is a decrease in fertile mating. This control measure has 
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been incorporated into the model in a straightforward way by simply adding a further equation for 
sterile males and the locations of release (cf. Eqs (19) and (20)). The success of this measure depends 
both on the release rate and the population density at the location of the release sites. As was proved 
in the paper written by Anguelov et al. [9], the release of sterile males leads to a bistable reaction-
diffusion equation. They found that “the dynamics of our system is driven by a sterile insect 
technique (SIT)-threshold number above which the SIT control becomes effective and drives the 
system to elimination”. For the parameters of our model, this threshold was found to be higher than 
the environmental capacity. However, due to the property of bistability, elimination can be reached at 
lower release rates if the insect population is low. This behavior was also immanent in our model 
equations. Here, we show only one result of many simulations runs. 

Figure 12 shows the density of sterile males released at four locations and their effects on the 
mosquito population. 

 

Figure 12. Effects of the release of sterile males. a) Density plot for sterile males 
released in the center of the circles, as superimposed on the blood seeking mosquito 
density map. b) Density plot for mosquitoes in the aquatic phase, c) distribution of 
infected humans and d) distribution of infectious mosquitos. One can clearly recognize 
the decrease of the mosquito population in the neighborhoods of the release locations. 

4. Discussion 

For heterogeneous landscapes, there are quite a few approaches wherein the region is 
subdivided into patches, each of which with different environmental variables [10,32]; the ordinary 
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differential equations are solved for each patch, allowing for migration between patches. Such 
approaches are similar to reaction-diffusion equations. 

Although the theoretical basis of animal dispersal and the dispersal of epidemics in the form of 
reaction-diffusion equations was established decades ago, such approaches still constitute a powerful 
tool for realistic simulations, especially when finite-element methods are coupled with geographic 
information. Furthermore, the underlying mathematical theory has been well elaborated and allows 
one to decide whether the problems of the solution of the initial value boundary problems are well 
posed; it also guides us in the understanding and evaluation of the numerically obtained results. Our 
simulation experiments show that complex movement patterns of mosquitoes can be well 
incorporated into reaction-diffusion equations. The model takes into account the implication that 
female mosquitoes retain information from the larval and pupal environment from which they 
emerge as adult. This was discussed in [33,34]. The dissociation between the oviposition site and 
remote food source (human blood) requires the ability for long- or mid-range orientation, and it 
would necessitate “some form of learnt behavior” [35,36]. Breeding site preferences determine the 
movement patterns. Gaburro et al. [15] found that semiochemicals derived from Aedes aegypti larval 
rearing affect the future female choice for oviposition. If infected by the dengue virus, preferences 
for special breeding sites might be lost. Olfactory learning processes were altered during dengue 
infection. They hypothesized that dengue virus infection alters gene expression in the mosquito’s 
head and is associated with a loss of olfactory preferences, possibly modifying the oviposition site 
choice of female mosquitoes. 

Reaction-diffusion models of the kind presented here, when being coupled with breeding site 
preferences and driving variables such as the diurnal rhythms of mosquito activity and seasonal 
changes in moisture and temperature, show that predator–prey interactions can become a powerful tool 
in predicting infected mosquito behavior and the transmission of mosquito-borne disease at several 
scales. For long-term predictions, it is also important to consider the evolution of resistance against 
pesticides. 

For future development and application of the model, experiments and observational studies 
need to be carried out to contribute to model parameters, such as the transition rate between mosquito 
states, and parameters related to the dispersal and strength of attractants. A promising method for 
parameter identification is the combination of models and Bayesian statistics, as has been recently 
applied to the spread of Aedes aegypti in urban areas [37]. Once the model is fully parameterized, it 
can be used for the realistic planning of various control measures, such as the reduction of breeding 
sites and the reduction of contact rates via application of repellents and biological and genetic control 
measures. 

5. Conclusions 

Although our mathematical model for the movement patterns of mosquitoes, which is based on 
the mode of selection between blood-meal sites and breeding sites, is just at the theoretical stage, it 
has potential for real-world applications. When being coupled with other processes and observational 
data, the model can help to (i) assess the effects of fast land-use changes and sanitary conditions of 
an area from the perspective of the dynamics and life cycle of mosquito population, (ii) assess the 
effects of the heterogeneous characteristics of the landscape and of the mosquito population on the 
transmission of the vector-borne disease to humans and (iii) assess different landscape designs and 
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the treatment methods to prevent the transmission of mosquito-borne disease. Future work should 
focus on updating the methods to retrieve plausible parameter sets for the model. 

Table 1. Model parameters, set as based on the entomological parameters applied by 
Maidana and Yang [7] and Yamashita et al. [11]. The parameters related to the attractants 
were tuned. 

Parameter Notation Value 
Carrying capacity c Maximum 0.8/m² 

Diffusion coefficient D 1.25 103 m2/day 
Hatching rate 𝛾 0.38/day 

Range (0.2,0.5) 
Survival of hatched larvae r 0.5 
Oviposition rate 𝜙 25/day 

Range (10,300) 
Mortality rate (mosquitoes, winged phase) 𝜇ெ 0.029/day 
Mortality rate (mosquitoes, aquatic phase) 𝜇஺ 0.055/day 
Attraction coefficient (humans) 𝜒் 1.7 × 104 
Attraction coefficient (breeding sites) 𝜒஻ 2.4 × 104 
Diffusion coefficient for attractants DT 

DB 

1.0 × 103 m2/day 

contact rate for not virus bearing mosquitoes with infectious 
humans 

ß1 1.65 m²/day 

Contact rate for infectious mosquito-susceptible human ß2 3.75 m²/day 
Infectious period 𝜏ିଵ 7 days 
Rate of change between mosquito states (only in the small-
scale model) 

𝜔ଵଶ 90/day 

Acknowledgements 

The authors wish to thank the anonymous reviewer for his thoroughly reading the manuscript 
and for many helpful suggestions. 

Conflict of interest 

The authors declare that there is no conflict of interest.  

References 

1. R. A. Fisher, The wave of advance of advantageous genes, Ann. Eugen., 7 (1937), 355–369. 
https://doi.org/10.1111/j.1469-1809.1937.tb02153.x 

2. K. P. Hadeler, F. Rothe, Travelling fronts in nonlinear diffusion equations, J. Math. Biol., 2 
(1975), 251–263. https://doi.org/10.1007/BF00277154 

3. V. Volpert, S. Petrovskii, Reaction-diffusion waves in biology, Phys. Life Rev., 6 (2009), 267–
310. https://doi.org/10.1016/j.plrev.2009.10.002 



12933 

Mathematical Biosciences and Engineering  Volume 19, Issue 12, 12915–12935. 

4. Z. A. Wang, Mathematics of traveling waves in chemotaxis—review paper, Discrete Contin. 
Dyn. Syst. B, 18 (2013), 601. https://doi.org/10.3934/dcdsb.2013.18.601 

5. J. Murray, W. Seward, On the spatial spread of rabies among foxes with immunity, J. Theor. 
Biol., 156 (1992), 327–348. https://doi.org/10.1016/S0022-5193(05)80679-4 

6. J. D. Murray, E. A. Stanley, D. L. Brown, On the spatial spread of rabies among foxes, Proc. R. 
Soc. London, Ser. B, 229 (1986), 111–150. https://doi.org/10.1098/rspb.1986.0078 

7. N. A. Maidana, H. M. Yang, Describing the geographic spread of dengue disease by traveling 
waves, Math. Biosci., 215 (2008), 64–77. https://doi.org/10.1016/j.mbs.2008.05.008 

8. L. Almeida, A. Leculier, N. Vauchelet, Analysis of the “rolling carpet” strategy to eradicate an 
invasive species, preprint, arXiv:210611252. 

9. R. Anguelov, Y. Dumont, I. V. Y. Djeumen, On the use of traveling waves for pest/vector 
elimination using the sterile Insect technique, preprint, arXiv:201000861. 

10. A. M. Lutambi, M. A. Penny, T. Smith, N. Chitnis, Mathematical modelling of mosquito 
dispersal in a heterogeneous environment, Math. Biosci., 241 (2013), 198–216. 
https://doi.org/10.1016/j.mbs.2012.11.013 

11. W. M. Yamashita, S. S. Das, G. Chapiro, Numerical modeling of mosquito population dynamics 
of Aedes aegypti, Parasites Vectors, 11 (2018), 1–14. https://doi.org/10.1186/s13071-018-2829-
1 

12. J. M. Knight, A model of mosquito-mangrove basin ecosystems with implications for 
management, Ecosystems, 14 (2011), 1382–1395. https://doi.org/10.1007/s10021-011-9487-x 

13. O. Richter, S. Moenickes, F. Suhling, Modelling the effect of temperature on the range 
expansion of species by reaction-diffusion equations, Math. Biosci., 235 (2012), 171–181. 
https://doi.org/10.1016/j.mbs.2011.12.001 

14. C. Greppi, W. J. Laursen, G. Budelli, E. C. Chang, A. M. Daniels, L. Van Giesen, et al., 
Mosquito heat seeking is driven by an ancestral cooling receptor, Science, 367 (2020), 681–684. 
https://doi.org/10.1126/science.aay9847 

15. J. Gaburro, P. N. Paradkar, M. Klein, A. Bhatti, S. Nahavandi, J. B. Duchemin, Dengue virus 
infection changes Aedes aegypti oviposition olfactory preferences, Sci. Rep., 8 (2018), 1–11. 
https://doi.org/10.1038/s41598-018-31608-x 

16. A. W. Brown, The attraction of mosquitoes to hosts, JAMA, 196 (1966), 249–252. 
https://doi.org/10.1001/jama.1966.03100160099028 

17. R. T. Cardé, Multi-cue integration: how female mosquitoes locate a human host, Curr. Biol., 25 
(2015), R793–R795. https://doi.org/10.1016/j.cub.2015.07.057 

18. C. R. Lazzari, The thermal sense of blood-sucking insects: Why physics matters, Curr. Opin. 
Insect Sci., 34 (2019), 112–116. https://doi.org/10.1016/j.cois.2019.05.006 

19. F. Howlett, The influence of temperature upon the biting of mosquitoes, Parasitology, 3 (1910), 
479–484. https://doi.org/10.1017/S0031182000002304 

20. C. J. McMeniman, R. A. Corfas, B. J. Matthews, S. A. Ritchie, L. B.Vosshall, Multimodal 
integration of carbon dioxide and other sensory cues drives mosquito attraction to humans, Cell, 
156 (2014), 1060–1071. https://doi.org/10.1016/j.cell.2013.12.044 

21. R. A. Corfas, L. B. Vosshall, The cation channel TRPA1 tunes mosquito thermotaxis to host 
temperatures, Elife, 4 (2015), e11750. https://doi.org/10.7554/eLife.11750 

  



12934 

Mathematical Biosciences and Engineering  Volume 19, Issue 12, 12915–12935. 

22. G. Menda, J. H. Uhr, R. A. Wyttenbach, F. M. Vermeylen, D. M. Smith, L. C. Harrington, et al., 
Associative learning in the dengue vector mosquito, Aedes aegypti: avoidance of a previously 
attractive odor or surface color that is paired with an aversive stimulus, J. Exp. Biol., 216 (2013), 
218–223. https://doi.org/10.1242/jeb.074898 

23. C. Mwandawiro, M. Boots, N. Tuno, W. Suwonkerd, Y. Tsuda, M. Takagi, Heterogeneity in the 
host preference of Japanese encephalitis vectors in Chiang Mai, northern Thailand, Trans. R. Soc. 
Trop. Med. Hyg., 94 (2000), 238–242. https://doi.org/10.1016/S0035-9203(00)90303-1 

24. A. Vantaux, T. Lefèvre, K. R. Dabiré, A. Cohuet, Individual experience affects host choice in 
malaria vector mosquitoes, Parasites Vectors, 7 (2014), 1–7. https://doi.org/10.1186/1756-3305-7-
249 

25. E. Herbert, R. Meyer, P. Turbes, A comparison of mosquito catches with CDC light traps and 
CO2-baited traps in the Republic of Vietnam, Mosq. News, 32 (1972), 212–214. 

26. K. Huber, L. Le Loan, T. H. Hoang, T. K. Tien, F. Rodhain, A. B. Failloux, Aedes aegypti in 
South Vietnam: Ecology, genetic structure, vectorial competence and resistance to insecticides, 
Southeast Asian J. Trop. Med. Public Health, 34 (2003), 81–86. 

27. J. A. L. Jeffery, N. Thi Yen, V. S. Nam, L. T. Nghia, A. A. Hoffmann, B. H. Kay, et al., 
Characterizing the Aedes aegypti population in a Vietnamese village in preparation for a 
Wolbachia-based mosquito control strategy to eliminate dengue, PLoS Neglected Trop. Dis., 3 
(2009), e552. https://doi.org/10.1371/journal.pntd.0000552 

28. A. Okubo, Dynamical aspects of animal grouping: swarms, schools, flocks, and herds, Adv. 
Biophys., 22 (1986), 1–94. https://doi.org/10.1016/0065-227X(86)90003-1 

29. D. Getachew, H. Tekie, T. Gebre-Michael, M. Balkew, A. Mesfin, Breeding sites of Aedes 
aegypti: potential dengue vectors in Dire Dawa, East Ethiopia, Interdiscip. Perspect. Infect. Dis., 
2015 (2015). https://doi.org/10.1155/2015/706276 

30. Q. Wang, P. M. Atkinson, Spatio-temporal fusion for daily Sentinel-2 images, Remote Sens. 
Environ., 204 (2018), 31–42. https://doi.org/10.1016/j.rse.2017.10.046 

31. R. S. Lees, J. R. Gilles, J. Hendrichs, M. J. B. Vreysen, K. Bourtzis, Back to the future: the 
sterile insect technique against mosquito disease vectors, Curr. Opin. Insect Sci., 10 (2015), 
156–162. https://doi.org/10.1016/j.cois.2015.05.011 

32. D. Brown, A. Bruder, M. Kummel, Endogenous spatial heterogeneity in a multi-patch predator-
prey system: insights from a field-parameterized model, Theor. Ecol., 14 (2021), 107–122. 
https://doi.org/10.1007/s12080-020-00483-6 

33. M. R. Sanford, J. K. Tomberlin, Conditioning individual mosquitoes to an odor: sex, source, and 
time, PloS One, 6 (2011), e24218. https://doi.org/10.1371/journal.pone.0024218 

34. E. K. Lutz, C. Lahondere, C. Vinauger, A. Riffell, Olfactory learning and chemical ecology of 
olfaction in disease vector mosquitoes: A life history perspective, Curr. Opin. Insect Sci., 20 
(2017), 75–83. https://doi.org/10.1016/j.cois.2017.03.002 

35. J. Charlwood, P. M. Graves, T. F. de Marshall, Evidence for a “memorized” home range in 
Anopheles farauti females from Papua New Guinea, Med. Vet. Entomol., 2 (1988), 101–108. 
https://doi.org/10.1111/j.1365-2915.1988.tb00059.x 

36. P. McCall, F. Mosha, K. Njunwa, K. Sherlock, Evidence for memorized site-fidelity in 
Anopheles arabiensis, Trans. R. Soc. Trop. Med. Hyg., 95 (2001), 587–590. 
https://doi.org/10.1016/S0035-9203(01)90087-2 

  



12935 

Mathematical Biosciences and Engineering  Volume 19, Issue 12, 12915–12935. 

37. O. A. Bruzzone, M. E. Utgés, Analysis of the invasion of a city by Aedes aegypti via 
mathematical models and Bayesian statistics, Theor. Ecol., 15 (2022), 1–16. 
https://doi.org/10.1007/s12080-022-00528-y 

©2022 the Author(s), licensee AIMS Press. This is an open access 
article distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/4.0) 


