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Abstract: Physics-informed neural networks (PINN) have lately become a research hotspot in the
interdisciplinary field of machine learning and computational mathematics thanks to the flexibility in
tackling forward and inverse problems. In this work, we explore the generality of the PINN train-
ing algorithm for solving Hamilton-Jacobi equations, and propose physics-informed neural networks
based on adaptive weighted loss functions (AW-PINN) that is trained to solve unsupervised learning
tasks with fewer training data while physical information constraints are imposed during the training
process. To balance the contributions from different constrains automatically, the AW-PINN training
algorithm adaptively update the weight coefficients of different loss terms by using the logarithmic
mean to avoid additional hyperparameter. Moreover, the proposed AW-PINN algorithm imposes the
periodicity requirement on the boundary condition and its gradient. The fully connected feedforward
neural networks are considered and the optimizing procedure is taken as the Adam optimizer for some
steps followed by the L-BFGS-B optimizer. The series of numerical experiments illustrate that the
proposed algorithm effectively achieves noticeable improvements in predictive accuracy and the con-
vergence rate of the total training error, and can approximate the solution even when the Hamiltonian
is nonconvex. A comparison between the proposed algorithm and the original PINN algorithm for
Hamilton-Jacobi equations indicates that the proposed AW-PINN algorithm can train the solutions
more accurately with fewer iterations.
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1. Introduction

With the incredible success of neural networks in the field of machine learning tasks, including
image recognition, computer vision, natural speech processing, and cognitive science as well as the
prospect of harnessing the great computing power of specialized hardware, there has been much
interest in investigating their suitability also for high-performance computing tasks. The result is now
an exciting new research field known as scientific machine learning, where techniques such as deep
neural networks and statistical learning are applied to classical problems of applied mathematics.
Thanks to the general approximation property of the neural network, it is natural to consider using the
neural network to obtain the approximate solution for governing PDEs. As the predominant method
nowadays for data-driven problems, deep neural networks (DNN) are used as surrogate models of
PDE solvers to accelerate optimization. DNN is generally adopted as training a supervised machine
learning task to establish the nonlinear mapping from input to output data pairs [1–6], that is, learning
a specific model from training data and the algorithm defined in advance structure, its quality is closely
related to training data or distribution. Such models have yielded remarkable success in data-rich
domains, yet in many fields of physics and engineering, the training data is often implied some prior
knowledge, such as the flow field data of fluid mechanics problems need to satisfy the conservation of
mass and momentum, and this part of prior knowledge is not utilized in the classic machine learning
algorithms.

Physics-informed neural networks (PINNs) [6, 7], which combine data-driven machine learning
and the advantages of physical models, can train models that automatically satisfy physical constraints
with a small amount of training data. The PINN algorithm has better generalization performance
and can predict the important physical parameters of the model. The PINN can accurately solve
the forward problems by minimizing the mean squared error loss function, such that one can get
the numerical solutions of the PDEs by soving optimization problem which requires that the loss
is close to zero. The loss function of PINN contains initial and boundary loss term as well as the
residual from the governing equation given by the physics-informed part. It should be noted that
different boundary condition setting methods used in PINN training have a significant impact on the
training results. Usually, the boundary loss term is set by soft boundary in the loss function, and the
weight of boundary loss term is controlled by penalty coefficient to accelerate the convergence of
optimization problem. Furthermore, the selection of penalty coefficient often depends on experience
to adjust, improper penalty coefficient is easy to lead to abnormal solution. Wang et al. [8] proposed
an adaptive learning rate annealing algorithm, which utilizes the back-propagated gradient statistics
during model training to assign appropriate weight to each term in the composite loss functions, that
aims to balance the interplay between data-fit and regularization. This empirical parameter adjustment
technique does not explain why some times PINNs fail to train. To investigated this question, Wang
et al. utilized the neural tangent kernel (NTK) in their subsequent work [9], and proved that NTK
of PINNs converges to a deterministic kernel that stays constant during training in the infinite width
limit of fully-connected networks. They developed a novel adaptive training strategy that exploits the
eigenvalues of the NTK to adaptively calibrate the convergence rate of the total training error. When
using PINN to solve stiff ODE systems, Ji et al. [10] noticed that stiffness could cause the failure
of the regular PINN. Thus he developed stiff-PINN approach which applies PINN to non/mild-stiff
systems obtained by employing quasi-steady-state-assumptions (QSSA) to reduce the stiffness.

The neural networks can be regarded as a combination of linear transformation and nonlinear
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transformation, in which the activation function only determines the nonlinear approximation effect
of the neural networks. The activation function plays an important role in the PINN training process
as a result of the dependence of the derivative of the loss function on optimization parameters, in
fact, depends on the derivative of the activation function. In the PINN algorithm various activation
functions such as tanh, sin etc are used to solve various problems. There is no unified selection cri-
terion for the activation function since it is often related to the specific problem. For ordinary neural
networks, lots of literature [11, 12] have confirmed that well-designed adaptive activation function
can accelerate the convergence process. Jagtap et al. [13] introduced a scalable hyper-parameter in
the activation function, which can be optimized and updated synchronously with neural networks
parameters, and could dynamically adjust the derivative value of the activation function. Compared
with the fixed activation function, this method can significantly accelerate the convergence rate and
improve the accuracy of PINN training. To further accelerate the training convergence rate, different
scalable parameters are introduced into the activation function of each neural layer/neuron separately
in PINN [14]. Lu et al. [7] developed a Python library for PINN, i.e., DeepXDE, which can solve
forward problems with initial and boundary conditions, as well as inverse problems. DeepXDE con-
tributes to the rapid popularization and extensive applications of PINN, such as in the fields of fluid
mechanics [15], biomedicine [16], cardiovascular flow [17] and so on. For more applications, the in-
terested readers are referred to the review [18]. In [16], Sahli et al. improved diagnostic predictability
in diagnosing atrial fibrillation by using PINN to solve an nonlinear wave dynamics equation satisfied
by cardiac activation mapping. Kissas et al. [17] trained the PINN model on noisy and scattered clini-
cal data of flow and wall displacement to predict blood flow in the cardiovascular system. In addition
to the applications mentioned above, PINN is actively explored and improved in localized wave solu-
tions [19,20], high-dimensional integrable systems [21], porous flow [22], seepage equation [23] and
so on.

The partial differential equation governs several important phenomena in physics, engineering
and biology, and has a wide range of applications in the fields of epidemiological transmission [24],
tumor growth and wound healing [25,26], bacterial aggregation [27,28], the cardiomyocyte potential
propagation model [29, 30] and other fields. As the fundamental equation in such areas, Hamilton-
Jacobi equations are numerically solved by many high-order accurate numerical methods. These
works include, but are not limited to, central schemes [31, 32], Godunov-type central schemes [33–
35], WENO schemes [36–38]. Using neural networks to represent the viscosity solution of certain
Hamilton-Jacobi (HJ) PDEs is not by itself a new idea, and some neural network architectures have
led to promising results [39,40]. Graber et al. [39] presented optimal control problems on generalized
networks that the controllability assumptions are not satisfied around the junctions, the Value Function
is characterized as the unique solution to a system of HJ equations in a bilateral viscosity sense.
In [40], the high-dimensional Hamilton-Jacobi-Bellman (HJB) PDEs is solved by Deep Galerkin
Method which approximates the solution by a deep neural network trained to satisfy the differential
operator, boundary condition, and initial conditions. The adaptive deep learning networks is proposed
to model semi-global solutions for high-dimensional HJB PDEs in [41]. In [42, 43], the authors
proposed shallow neural network architectures to express the viscosity solution of certain HJ PDEs
with particular form of convex initial data and specific Hamiltonians, where physical constraints that
satisfy certain conditions are naturally encoded into the neural networks. Moreover, [43] investigated
that two network architectures exactly represent the Lax-Oleinik formula solution of certain HJ PDEs
whose initial data and convex Hamiltonian satisfy certain assumptions. Note that the Lax-Oleinik
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formula solution is given as the viscosity solution of the Hamiltonian which does not depend on the
state variable x and the time variable t. However, the performance of PINN is not yet fully investigated
in solving HJ PDEs which have non-convex Hamiltonian. It sparks our interest to utilize the PINN
algorithm to solve more fundamental HJ PDEs.

The paper is structured as follows. In Section 2, we will discuss the problem setup for HJ PDEs.
Section 3 explores the generality of the PINN training algorithm for solving HJ equations, exactly
embedding Dirichlet or periodic boundary conditions and physical constraints in neural networks
architecture. To further improve the predictive accuracy, a physics-informed neural networks based
on adaptive weighted loss functions (AW-PINN) is trained to solve unsupervised learning tasks for HJ
PDEs with fewer training data while physical information constraints are imposed during the training
process. In Section 4, we demonstrate the effectiveness and convergence of the AW-PINN training
algorithm for convex and non-convex Hamiltonian. The series of numerical experiments illustrate
that the proposed algorithm effectively achieves noticeable improvements in predictive accuracy and
the convergence rate of the total training error. A comparison between the proposed algorithm and the
original PINN algorithm for HJ equations indicates that the proposed AW-PINN algorithm can train
the solutions more accurately with fewer iterations. Finally, we summarize and discuss our results.

2. Hamilton-Jacobi equations

We consider the time-dependent Hamilton-Jacobi (HJ) equations
φt + H(∇xxxφ(xxx, t)) = 0, xxx ∈ Ω ∈ Rn, t ∈ (0,+∞)
φ(xxx, 0) = h(xxx), xxx ∈ Ω,

φ(xxx, t) = g(xxx, t), xxx ∈ ∂Ω, t ∈ (0,+∞)

(2.1)

with Dirichlet or periodic boundary conditions on ∂Ω. The partial derivative with respect to t and the
gradient vector with respect to xxx of solution φ(xxx, t) are denoted by φt and∇xxxφ(xxx, t) =

(
∂φ(xxx,t)
∂x1
, . . . , ∂φ(xxx,t)

∂xn

)
,

respectively. The Hamilton H depends on ∇xxxφ(xxx, t) and possibly on x and t. The solution of an HJ
equation may have a discontinuity even when the initial data is smooth. As in conservation laws,
the unique physically relevant solution can be singled out by the consideration of viscosity solutions
which provides a consistent definition of a weak solution of Eq (2.1). Thus, we want to design a
neural networks to approximate the viscosity solution of HJ equations from small training data. Here
we draw motivation from the PINN algorithm [6,8,9] and some neural network architectures to solve
some HJ PDEs [43]. We construct the PINN training method for HJ PDEs with different kinds of
Hamiltonian and boundary conditions, and then optimize the weight coefficients to each term in the
loss function such that their gradients during back-propagation are similar in magnitude. The problem
of solving a PDE is converted into the multi-objective optimization problem where certain constraints
are introduced in loss functional minimizing.

3. Physics-informed neural networks based on adaptive weighted loss functions (AW-PINN)

3.1. Network structure

We consider NL : RDi → RDo to be fully connected feed-forward neural networks of L layers and
Nk neurons in kth layer (N0 = Di, and NL = Do). The input vector is denoted by zzz ∈ RDi and the output
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vector at kth layer is denoted by Nk(zzz) and N0(zzz) = zzz. Each hidden layer of the network receives an
output Nk−1(zzz) ∈ RNk−1 from the previous layer where an affine transformation of the form

Nk(zzz) =WWWkNk−1(zzz) + bbbk, (3.1)

is performed. The weight matrix and bias vector in the kth layer (1 ≤ k ≤ L) are denoted by WWWk ∈

RNk×Nk−1 and bbbk ∈ RNk respectively, which are initialized from independent and identically distributed
samplings. Such a linear model is simple to solve but is limited in its capacity to solve complex
problems. We should use a smooth nonlinear activation function, in order to efficiently compute
arbitrary-order derivatives in the back propagation processe; in this study, we choose the hyperbolic
tangent (tanh). The nonlinear activation function σ(·) is applied to each component of the transformed
vector before sending it as an input to the next layer. Then the L layers fully connected feed-forward
neural networks is defined as

Nk(zzz) = σ
(
WWWkNk−1(zzz) + bbbk

)
, 1 ≤ k ≤ L. (3.2)

The activation function is an identity function in the last hidden-layer. By taking θθθ = {WWWk,bbbk} as the
collection of all weights and biases that represent the trainable parameters in the networks, We can
write the neural network as follows

φ̃(zzz) := NL(zzz;θθθ). (3.3)

(a) Lattice-like training points (b) Scattered training points

Figure 1. Two distributions of training points for computing equation residual.

3.2. Training data

The distribution of training points has a certain impact on the flexibility of PINN. In unsupervised
learning for solving PDEs, training data only consist of the initial and boundary conditions and the
residual point locations in the domain, which is done without using true solution information. Figure 1
shows two different ways to select the residual point locations in the domain. The lattice-like training
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points are the same as the finite difference grid points, which are equispaced in the spatio-temporal
domain. The scattered training points can be taken from certain quasi-random sequences, such as the
Sobol sequences or the Latin hypercube sampling. The available sets of measurements can also be
used to train the neural network model for some practical problems.

3.3. Loss function and optimization algorithm

Let F(xxx, t) denote the left-hand-side of the first equation in (2.1), i.e.,

F(xxx, t) := φt + H(∇xxxφ(xxx, t)). (3.4)

Following the original idea of PINN in [6], we then approximate φ(xxx, t) by the neural network denoted
by φ̃(xxx, t), in which the parameters θθθ consist of the weights WWWk and biases bbbk. The schematic diagram
for the neural network with multiple hidden layer is shown in Figure 2. The residual of (2.1) defines
as

r(xxx, t;θθθ) :=
∂

∂t
φ̃(xxx, t) + H(∇xxxφ̃(xxx, t)), (3.5)

where the partial derivatives of the neural networks with respect to the space and time coordinates can
be readily computed by automatic differentiation [44]. To learn a good set candidate parameters θθθ in
neural networks φ̃(xxx, t), we minimize the mean squared error via gradient descent for the following
composite loss function in the general form

L(θθθ) = λrLr(θθθ) +
M∑

i=1

λiLi(θθθ) (3.6)

where λr and λi are hyper-parameters, which used to balance the interplay between the different loss
terms. Here, Lr(θθθ) is a loss term that penalizes the PDE residual, and Li(θθθ), i = 1, . . . ,M, correspond
to data-fit terms (e. g., measurements, initial or boundary conditions, etc.). For a typical initial and
boundary value problem, these loss functions would take the specific form as

L0(θθθ) =
1

N0

N0∑
i=1

∣∣∣φ̃(xxxi
0, 0) − h(xxxi

0)
∣∣∣2, (3.7)

Lb(θθθ) =
1

Nb

Nb∑
i=1

∣∣∣φ̃(xxxi
b, t

i
b) − g(xxxi

b, t
i
b)
∣∣∣2, (3.8)

Lr(θθθ) =
1
Nr

Nr∑
i=1

∣∣∣r(xxxi
r, t

i
r;θθθ)
∣∣∣2, (3.9)

where {(xxxi
0, 0), h(xxxi

0)}N0
i=1 denotes the initial data, {(xxxi

b, t
i
b), g(xxxi

b)}Nb
i=1 denotes the boundary data, and

{(xxxi
r, t

i
r), 0}

Nr
i=1 denotes a set of collocation points that are randomly placed inside the domain Ω in

order to minimize the PDE residual. Consequently, Lr penalizes the equation for not being satisfied
on a finite set of collocation points, which constitutes the physics-informed part of the neural net-
works. The loss terms L0(θθθ) and Lb(θθθ) correspond to the initial and boundary data, which must be
satisfied by the neural networks solution.
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The resulting optimization problem leads to finding the minimum of a loss function by optimizing
the parameters, i.e., we seek to find

θ∗θ∗θ∗ = arg min
θθθ

(L(θθθ)). (3.10)

One can solve this minimization problem by the stochastic gradient descent (SGD) algorithm which
is widely used in the machine learning community, i.e.,

θθθn+1 = θθθn − η∇θθθL(θθθn)

= θθθn − ηλr∇θθθLr(θθθn) − η
M∑

i=1

λi∇θθθLi(θθθn).
(3.11)

Here η > 0 is the learning rate and L(θθθn) is the loss function at nth iteration while the SGD methods
can be initialized with some starting value θθθ0. We see how the constants λr and λi can effectively
introduce a rescaling of the learning rate corresponding to each loss term. In particular, the weights
are updated as

WWWn+1 =WWWn − ηλr∇WWW Lr(WWWn) − η
M∑

i=1

λi∇WWW Li(WWWn). (3.12)

The appropriate SGD optimizer such as Adam [45], AdaGrad [46] and L-BFGS [47] can be used
according to the features of the neural networks.

3.3.1. Adaptive weighted loss function

Figure 2. Schematic of the AW-PINN for the HJ PDEs. Along with neural networks,
PDE parts and initial/boundary conditions, AW-PINN training algorithm adaptively update
weights to loss terms.

The weight coefficients of loss function play an important role in improving the trainability of NN,
which can be user-defined or tuned automatically. One can obtain λi arbitrarily via a trial-and-error
procedure, yet this manual hyperparameter tuning may not produce satisfying consequences. How-
ever, the optimal weights need to be reconstructed for different governing equations, which means we
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cannot find a fixed empirical formula that is transferable across different problems. Most importantly,
the loss function needs to be tailored according to the form of PDEs. It is impractical to set the opti-
mal weights for different loss terms without enough prior knowledge. Wang et al. have made some
frontier exploration for adaptive weight by utilizing the back-propagated gradient statistics [8] and
exploited the eigenvalues of the NTK during training [9]. Meer et al. introduced a scaling parameter
as loss weight which balances the relative importance of the different constraints [48].

Here we draw motivation from the above research works and the Adam algorithm [45] to derive
an adaptive estimate for choosing the weights during the training process. The Adam algorithm
adaptively tunes the learning rate associated with each parameter in the θθθ vector, based on the track
of the first- and second-order moments of the back-propagated gradients during training. Following a
similar idea, our goal is to adaptively design appropriate weight to each loss term that their gradients
are similar in magnitude during back-propagation. We define λr = 1 such that the residual loss
generally dominate the other loss terms. For given initial and boundary loss terms Li, find λ̂i satisfying

λ̂imean{
∣∣∣∇θθθn Li(θθθn)

∣∣∣} = max{
∣∣∣∇θθθn Lr(θθθn)

∣∣∣}, i = 0, b, (3.13)

where
∣∣∣·∣∣∣ denotes the elementwise absolute value and the mean function denotes the average of all the

elementwise value for
∣∣∣∇θθθn Li(θθθn)

∣∣∣. Therefore, it follows that

λ̂i =
max{

∣∣∣∇θθθn Lr(θθθn)
∣∣∣}

mean{
∣∣∣∇θθθn Li(θθθn)

∣∣∣} , i = 0, b. (3.14)

Then update the weight coefficients λi using the logarithmic mean [49] of the form

λn+1
i =

λn
i − λ̂i

ln(λn
i ) − ln(λ̂i)

, i = 0, b, (3.15)

which include a numerically stable implementation and the details can be seen in Appendix A. What’s
more, this updating method can also avoid the additional hyperparameter. This optimal choice of λr

and λi leads to an adaptively weighted loss function

L(θθθ) =
1
Nr

Nr∑
i=1

∣∣∣r(xxxi
r, t

i
r)
∣∣∣2 + λ0

N0

N0∑
i=1

∣∣∣φ̃i − φ(xxxi
0, t

i
0)
∣∣∣2 + λb

Nb

Nb∑
i=1

∣∣∣φ̃i − φ(xxxi
b, t

i
b)
∣∣∣2. (3.16)

Thus, We propose the physics-informed neural networks based on adaptive weighted loss function,
which adaptively assign appropriate weight to each term in the loss function during model training, an
illustrative schematic is shown in Figure 2. Moreover, the logarithmic mean is employed in updating
the weights, which can avoid the additional hyperparameter than learning rate annealing for PINN
(LRA-PINN) [8].
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Algorithm 1 AW-PINN algorithm
Step 1: Specify the training set over all domain
Initial and boundary training data: {xxxi

φ, t
i
φ, φ

i}
Nφ
i=1.

Residual training points: {xxxi
r, t

i
r}

Nr
i=1.

Step 2: Construct neural networks NN(xxx, t;θθθ) with the initialization of parameters θθθ.
Step 3: Construct the residual neural network r by substituting surrogate φ̃ into the governing equations using automatic
differentiation.
Step 4: Specify the adaptively weighted loss function as shown in Eq (3.16), initialize the weight parameters λi by 1.
Then use a gradient descent algorithm to update the parameters θθθ as :
for n = 1, . . . , S do

(a)(a)(a) Compute the weights λ̂i by (3.14).
(b)(b)(b) Update the adaptive weight coefficients λi using the logarithmic mean (3.15).
(c)(c)(c) Update the parameters θθθ via gradient descent Eq (3.11).

end for

As summarized in Algorithm 1, our proposed AW-PINN algorithm assigns appropriate weight to
each term in the loss function such that the learning rate is adaptively tuned as shown in Eq (3.11),
and the gradients of each term in the loss function are similar in magnitude. The proposed AW-
PINN algorithm is a modification of the original PINN algorithm [6] and learning rate annealing for
PINN [8]. we remark that one can update the adaptive weights according to the Eqs (3.14) and (3.15)
either at every iteration of the gradient descent loop or at a frequency specified by the user. The
proposed AW-PINN algorithm can be easily extended to loss functions consisting of multiple terms
such as multiple boundary conditions for multivariate problems, while only the gradient statistics
in Eqs (3.14) and (3.15) need to be calculated. Moreover, the AW-PINN algorithm can be used to
compute the solution of HJ PDEs with different kinds of Hamiltonian H, initial data, and boundary
conditions, which further confirms the generality of physics-informed neural networks. Specifically,
if take the adaptive weights λr, λi to be 1 in (3.6), then the AW-PINN becomes the conventional one,
i.e.

L(θθθ) = Lr(θθθ) +
M∑

i=1

Li(θθθ). (3.17)

Here we also explore the generality of the PINN algorithm for solving Hamilton-Jacobi equations,
exactly embedding Dirichlet or periodic boundary conditions and physical constraints in neural net-
works architecture.

4. Numerical experiments

In this section, we provide a series of numerical examples to capture the viscosity solution and
illustrate the capacity of the proposed AW-PINN algorithm for solving HJ equations with both con-
vex and nonconvex Hamiltonian. The original method introduced in [6] will also be explored in our
experiments for comparison. For the sake of generality, only fully connected feedforward neural
networks are considered. Unless otherwise stated, the proposed AW-PINN algorithm has the follow-
ing set up of hyper-parameters: 4 hidden layers with 100 neurons in each layer, and the optimizing
procedure is the Adam optimizer with an initial learning rate of 0.001 for 50000 iterations followed
by the L-BFGS-B optimizer, in which training process would stop if the relative error between two
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neighboring training steps is less than ε = 10−8. The additional L-BFGS-B training process is used
to accelerate the convergence rate during the training process. Moreover, the AW-PINN algorithm is
initialized using the Glorot scheme [50] and implemented in TensorFlow.

4.1. One dimensional case

For one dimensional case, unless otherwise stated, all randomly sampled collocation points inside
the computational region are generated using a space filling Latin Hypercube Sampling strategy, such
as Figure 3 for Example 4.1.1.

Figure 3. Distributions of the randomly distributed training points.

Example 4.1.1 Variable coefficient linear equation along with periodic boundary condition is given
by 

φt + sin(x)φx = 0, x ∈ [0, 2π], t ∈ [0, 1],
φ(x, 0) = sin(x),
φ(0, t) = φ(2π, t).

(4.1)

The exact solution is given as

φ(x, t) = sin(2 arctan(e−t tan(
x
2

))). (4.2)

Our goal here is to use this canonical benchmark problem to systematically analyze the performance
of the AW-PINN algorithm. A neural networks φ̃ approximating the solution of (4.1) can now be
trained by minimizing the mean squared error loss

L(θθθ) = Lr(θθθ) + λ0L0(θθθ) + λbLb(θθθ), (4.3)

where L0(θθθ) and Lr(θθθ) are defined by Eqs (3.7) and (3.9). The periodic boundary condition can strictly
impose the periodicity requirement on the function and its derivative up to a finite order. Thus,the
boundary loss term Lb(θθθ) for periodic boundary condition can be defined as

Lb(θθθ) =
1

Nb

( Nb∑
i=1

∣∣∣φ̃(0, ti
b) − φ̃(2π, ti

b)
∣∣∣2 + Nb∑

i=1

∣∣∣ ∂
∂t
φ̃(0, ti

b) −
∂

∂t
φ̃(2π, ti

b)
∣∣∣2), (4.4)

where {xi
b, t

i
b}

Nb
i=1 denotes the boundary training data. The training point set consists of Nb = 50

boundary data randomly sampled from a uniform distribution δt = 0.01 in [0, 1], N0 = 50 initial data
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randomly parsed from a uniform distribution δx = 0.01 in [0, 2π], as well as Nr = 2000 randomly
sampled collocation points to enforce Eq (4.1) inside the solution domain. Figure 4 presents the
approximate solutions obtained by the proposed AW-PINN algorithm with 50000 gradient descent
iterations. The predicted solution obtained by the AW-PINN algorithm shown in Figure 4(b) is well
consistent with the exact solution in Figure 4(a). From the comparison of the exact, PINN, LRA-
PINN and AW-PINN solution at time t = 1 shown in Figure 4(c), it is observed that the predicted
solutions obtained by the three algorithms agree well with the exact one. However, after 50000
Adam iterations and 9 L-BFGS-B iterations in about 1667.092 seconds, the relative error defined
by ∥φ(x, t) − φ̃(x, t)∥L2/∥φ(x, t)∥L2 for our AW-PINN is 6.1164e-04 which is smaller than 1.4195e-
02 for traditional PINN after 50000 Adam iterations and 278 L-BFGS-B iterations in about 852.0633
seconds as shown in Table 1. The LRA-PINN algorithm achieves the relative error of 1.4967e-03 after
50000 Adam iterations and 31 L-BFGS-B iterations in about 1994.6314 seconds. Figure 4(d) shows
the loss history over the number of iterations, where the loss of the AW-PINN is decreasing faster than
others. It can be deduced that the learning capabilities of AW-PINN are better as it improves greatly
the convergence rate (accelerate the training), especially at the early stage. It is easy to see from
Figure 5(a) that the weight coefficients λ0 and λb adaptively changed with the iteration. Besides, from
the evolution of loss terms L0(θθθ), Lb(θθθ), Lr(θθθ) over the number of iterations shown in Figure 5(b), we
obtain that all of the amplitude gradually decrease with iterations and the loss term of PDE residual
is dominant. Table 2 summarizes our results with different methods and different neural network
architectures. Evidently, the relative L2 errors of the AW-PINN is smaller than the conventional PINN
and LRA-PINN. In contrast, the proposed AW-PINN algorithm appear to be better robust with respect
to network architectures.

Table 1. Iteration times and relative L2 and L∞ errors of the approximations that were
obtained by the three methods.

Conventional PINN LRA-PINN AW-PINN
Iteration times (Adam; L-BFGS-B) 50000; 278 50000; 31 50000; 9

Relative L2 error 1.4195e-02 1.4967e-03 6.1164e-04
Relative L∞ error 3.9156e-02 3.4360e-03 1.9243e-03
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Table 2. The relative L2 errors for the different methods, and for different neural architec-
tures obtained by varying the number of hidden layers and different number of neurons per
layer.

Architecture
Method

Conventional PINN LRA-PINN AW-PINN

30 neurons / 2 hidden layers 2.8067e-03 2.4658e-03 1.1468e-03
60 neurons / 2 hidden layers 1.3770e-03 3.3325e-03 1.6954e-03
120 neurons / 2 hidden layers 1.8578e-03 3.9267e-03 1.8192e-03
30 neurons / 4 hidden layers 1.5972e-03 9.1343e-04 1.1114e-03
60 neurons /4 hidden layers 7.1538e-03 6.3312e-04 3.3524e-04
120 neurons /4 hidden layers 1.3858e-02 1.6538e-03 9.3797e-04
30 neurons / 6 hidden layers 2.6337e-03 3.2978e-03 2.0124e-03
60 neurons /6 hidden layers 1.2910e-02 1.7492e-03 1.2216e-03
120 neurons /6 hidden layers 2.4746e-02 2.6474e-03 8.3961e-04

(a) Exact solution (b) Predicted solution of AW-PINN

(c) t = 1 (d) the loss value over iterations

Figure 4. Comparison of the conventional PINN and AW-PINN predicted solution and the
loss value over iterations during the training of conventional PINN and AW-PINN with 4
hidden layers and 100 neurons per layer for 50000 iterations using the Adam optimizer.
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(a) Evolution of the adaptive weights (b) Evolution of loss terms

Figure 5. Evolution of the adaptive weights λ0 and λb, and loss terms L0(θθθ), Lb(θθθ), Lr(θθθ) of
the AW-PINN algorithm with 4 hidden layers and 100 neurons per layer for 50000 iterations.

Example 4.1.2 The strictly convex Hamiltonian is given by
φt +

1
2

(φx + 1)2 = 0, x ∈ [0, 2], t ∈ [0, 1.5/π2],

φ(x, 0) = − cos(πx),
φ(0, t) = φ(2, t),

(4.5)

with periodic boundary conditions. The singularity occurs at about t = 1/π2. The change of variables,
v = φx + 1, transforms the Eq (4.5) into a conservation law, which can be easily solved via the
method of characteristics [51]. Here we randomly choose initial training subset with N0 = 50 from a
uniform distribution with nx = 201 in the space domain, boundary training subset with Nb = 50 from
a uniform distribution with nt = 101 in the time domain, and the collocation points with Nr = 2000
using a space filling Latin Hypercube Sampling strategy. Figure 6 shows the comparison of the exact
solution and the predicted solution for the strictly convex HJ PDEs (4.5) trained by the conventional
PINN, LRA-PINN and AW-PINN algorithms. Compared with the exact solution given in Figure 6(a),
the neural networks presented in Figure 6(b) trained by our AW-PINN algorithm predict the solution
very well. After the formation of the singularity at t = 1.5/π2, the comparison of exact, conventional
PINN, LRA-PINN and AW-PINN solutions is given in Figure 6(c), it can be seen that three algorithms
accurately capture singularity of the solution. Table 3 contains the Iterations and relative errors of the
approximations. Figure 6(d) shows the comparison of the loss history for the conventional PINN,
LRA-PINN and AW-PINN algorithm, the loss of the AW-PINN algorithm converges faster to the
global minimum after 20000 iterations without occasional large spikes occurring. Figure 7(a) provides
a more detailed visual evolution of the adaptive weights λ0 and λb used to scale the loss of initial and
boundary conditions during the training procedure of the AW-PINN. Figure 7(b) shows the evolution
of mean squared error loss terms L0(θθθ), Lb(θθθ), Lr(θθθ) over the number of iterations, where all loss terms
are convergent gradually. Evidently, the residual loss terms dominate the others.
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Table 3. Iteration times and relative L2 and L∞ errors of the approximations that were
obtained by the three methods.

Conventional PINN LRA-PINN AW-PINN
Iteration times (Adam; L-BFGS-B) 50000; 6349 50000; 40 50000; 22

Relative L2 error 4.7554e-03 3.6710e-03 6.7551e-03
Relative L∞ error 2.6565e-02 1.7579e-02 2.2131e-02

(a) Exact solution (b) Predicted solution of AW-PINN

(c) t = 1.5/π2 (d) the loss value over iterations

Figure 6. Comparison of the conventional PINN and AW-PINN predicted solution and the
loss value over iterations during the training procedure with 4 hidden layers and 100 neurons
per layer for 50000 iterations using the Adam optimizer.
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(a) Evolution of the adaptive weights (b) Evolution of loss terms

Figure 7. Evolution of the adaptive weights λ0 and λb and the mean squared error loss terms
L0(θθθ), Lb(θθθ), Lr(θθθ) of the AW-PINN training algorithm with 4 hidden layers and 100 neurons
per layer for 50000 iterations.

Example 4.1.3 The one-dimensional Eikonal equation is given by
φt + |φx| = 0, x ∈ [0, 2π], t ∈ [0, 1],
φ(x, 0) = sin(x),
φ(0, t) = φ(2π, t),

(4.6)

with periodic boundary conditions. Despite its origins in both geometric optics and wave propagation
theory, the Eikonal equations are widely applied in science and engineering disciplines. For example,
it is used to infer 3D surface shapes, calculate the distance fields, image denoising, segmentation in
image processing and optimal path planning in robotics. As well, the Eikonal equation is used to
compute geodesic distances in computer graphics and calculate travel time fields in seismology and
is also used for etching, deposition, and lithography simulations in semi-conductor manufacturing. It
is of great practical significance to study this equation. The viscosity solution to this equation has
a shock forming in φx at x = π/2 and a rarefaction wave at x = 3π/2. The exact solution can be
obtained via the Lax-Hopf formula [52]. Our training data is composed of the initial data N0 = 50
randomly parsed from a uniform distribution with nx = 201 in [0, 2π], the boundary points Nb = 50
randomly sampled from a uniform distribution with nt = 101 in the time domain, as well as the
collocation points Nr = 2000 using a space filling Latin Hypercube Sampling strategy. Figure 8
demonstrates the contour plot of the solution of the Eikonal equation on the x − t domain in the top
row. Figure 8(c) provides a more detailed visual comparison of exact, conventional PINN, LRA-
PINN and AW-PINN predicted solution at time t = 1. One can observe that the AW-PINN algorithm
is able to capture the kink formed at π2 and the rarefaction wave at 3π

2 . After 50000 Adam iterations
and various number of L-BFGS iterations, the relative prediction error of AW-PINN is 7.6622e-03,
improved by one order of magnitude compared to the conventional PINN (2.2495e-02) as shown in
Table 4. Figure 8(d) shows that the loss of the AW-PINN algorithm converges faster towards global
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minimum, which indicates that the proposed AW-PINN algorithm seems to have the ability to train
the superior solution more quickly, and have good stability also. Figure 9(a) provides the evolution
process for the adaptive weights λ0 and λb used to scale the initial and boundary conditions loss term
during model training in the AW-PINN Algorithm. It can be seen that the weight λ0 is larger than λb

throughout the iterations and they all change more slowly after 20000 iterations. Figure 9(b) shows
the mean squared error loss terms L0(θθθ), Lb(θθθ), Lr(θθθ) over the number of iterations. Compared with the
results obtained by the conventional PINN and LRA-PINN, the loss terms of the AW-PINN converge
to a small deterministic number as the iterations increasing. Obviously, the proposed AW-PINN
training algorithm can properly balance the interplay between the initial, boundary, and residual loss
terms, and avoid oscillations at extreme points.

(a) Exact solution (b) Predicted solution of AW-PINN

(c) t = 1 (d) the loss value over iterations

Figure 8. Comparison of the conventional PINN and AW-PINN predicted solution and the
loss value over iterations during the training procedure with 4 hidden layers and 100 neurons
per layer for 50000 iterations using the Adam optimizer.
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(a) Evolution of the adaptive weights (b) Evolution of loss terms

Figure 9. Evolution of the adaptive weights λ0 and λb and the mean squared error loss
terms L0(θθθ), Lb(θθθ), Lr(θθθ) of the AW-PINN algorithm with 4 hidden layers and 100 neurons
per layer for 50000 iterations.

Table 4. Iteration times and relative L2 and L∞ errors of the approximations that were
obtained by the three methods.

Conventional PINN LRA-PINN AW-PINN
Iteration times (Adam; L-BFGS-B) 50000; 3636 50000; 19 50000; 16
Relative L2 error 2.2495e-02 3.8931e-02 7.6622e-03
Relative L∞ error 1.2236e-01 1.8352e-01 2.9233e-02

Example 4.1.4 The nonconvex Hamiltonian is given by
φt − cos(φx + 1) = 0, x ∈ [−1, 1], t ∈ [0, 1.5/π2],
φ(x, 0) = − cos(πx),
φ(−1, t) = φ(1, t),

(4.7)

with periodic boundary conditions. We note that the exact solution can be given by φ(x, t) =
− cos(πx0) + t[(v − 1) sin v + cos v], v = 1 + π sin(πx0) using characteristic methods. We approximate
the solution by fully-connected neural networks NN(x, t;θθθ) of 8 hidden layers with 100 neurons in
each layer. Here we choose randomly sampled training points with N0 = 50, Nb = 50 and Nr = 2000
as the training set. The contour plot of the solution obtained by the AW-PINN algorithm shown in
Figure 10(b) is well consistent with the exact solution in Figure 10(a). Figure 10(c) provides a more
detailed visual comparison of the exact, conventional PINN, LRA-PINN and AW-PINN predicted
solution at time t = 1.5

π2 . The predicted solution of the AW-PINN training algorithm outperforms the
other two, and the L2 relative error is 3.7065e-03, improved by one order of magnitude compared to
the conventional PINN (5.9719e-02). The number of iterations and relative error of the three training
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algorithms are given in Table 5. In contrast, the proposed can train the solution more accurately with
fewer iterations. The loss of the AW-PINN decreases faster and accelerates convergence as shown in
Figure 10(d). Figure 11 illustrates the evolution process for the adaptive weights λ0 and λb, and the
mean squared error loss terms L0(θθθ), Lb(θθθ), Lr(θθθ). We can observe that the loss terms converge, and
the residual loss term dominates the others. This example shows that the AW-PINN algorithm can
approximate the solution even when the Hamiltonian is not convex.

Table 6 displays the relative L2 error of the AW-PINN method for different examples, and for dif-
ferent neural architectures obtained by varying the number of hidden layers and the different number
of neurons per layer. The proposed AW-PINN algorithm appear to be better robust with respect to
network architectures and show a consistent trend in improving the prediction accuracy as the number
of hidden layers and neural units is increased. As can be seen from Figure 4(d)–Figure 10(d) for the
loss value over iterations, the loss trained in the first step are very large, the possible reason is the
Xavier initialization. However, the loss decreases to a stable interval in a few steps. The numerical
examples verify that our AW-PINN algorithm is stable, and the random initialization has tiny effect
on numerical results.

Table 5. Iteration times and relative L2 and L∞ errors of the approximations that were
obtained by the three methods.

Conventional PINN LRA-PINN AW-PINN
Iteration times (Adam; L-BFGS-B) 50000; 19342 50000; 17106 50000; 9402
Relative L2 error 5.9719e-02 3.8731e-02 3.7065e-03
Relative L∞ error 2.6706e-01 2.0716e-01 2.6123e-02

Table 6. The relative L2 error of the AW-PINN method for different examples, and for dif-
ferent neural architectures obtained by varying the number of hidden layers and the different
number of neurons per layer.

Architecture
Example

Example 4.1.1 Example 4.1.2 Example 4.1.3 Example 4.1.4

30 neurons / 2 hidden layers 1.1468e-03 3.6212e-02 6.8436e-03 4.8704e-02
60 neurons / 2 hidden layers 1.6954e-03 1.1317e-02 1.6412e-02 9.2931e-03
120 neurons / 2 hidden layers 1.8192e-03 1.4429e-02 1.0010e-02 2.4058e-02
30 neurons / 4 hidden layers 1.1114e-03 5.4070e-03 1.3936e-02 8.9544e-02
60 neurons /4 hidden layers 3.3524e-04 2.6192e-03 5.8579e-03 1.5446e-02
120 neurons /4 hidden layers 9.3797e-04 3.0318e-03 9.4430e-03 5.4431e-02
30 neurons / 6 hidden layers 2.0124e-03 8.7984e-03 4.5297e-03 1.2776e-02
60 neurons /6 hidden layers 1.2216e-03 2.1817e-03 7.4221e-03 3.4884e-03
120 neurons /6 hidden layers 8.3961e-04 4.0882e-03 3.3320e-03 3.8391e-02
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(a) Exact solution (b) Predicted solution of AW-PINN

(c) t = 1.5/π2 (d) The loss value over iterations

Figure 10. Comparison of the conventional PINN and AW-PINN predicted solution and
the loss value over iterations during the training procedure with 8 hidden layers and 100
neurons per layer for 50000 iterations using the Adam optimizer.
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(a) Evolution of the adaptive weights (b) Evolution of loss terms

Figure 11. Evolution of the adaptive weights λ0 and λb and the mean squared error loss
terms L0(θθθ), Lb(θθθ), Lr(θθθ) of AW-PINN training algorithm with 8 hidden layers and 100 neu-
rons per layer for 50000 iterations.

4.2. Two dimensional case

Example 4.2.1 The two-dimensional convex Hamiltonian is given by

φt +
1
2

(φx + φy + 1)2 = 0, (x, y) ∈ Ω, t ∈ [0, 1.5/π2],

φ(x, y, 0) = − cos(π(x + y)/2), (x, y) ∈ Ω,
(4.8)

with periodic boundary conditions on the domain Ω = [0, 2π] × [0, 2π]. This problem can be reduced
to a one-dimensional problem via the coordinate transformation ζ = (x + y)/2, η = (x − y)/2, we
can thus use the one-dimensional exact solution to analyze our predicted results. We approximate the
solution by fully-connected neural networks NN(x, t;θθθ) of 5 hidden layers with 200 neurons in each
layer. Small data set consists of the uniformly spaced grid points in the domain Ω with the number
of space and time grid points to be nx = ny = 41 and nt = 41. Here we choose the randomly sampled
collocation point with N0 = 400,Nb = 4000 and Nr = 30000. We present the contour plot of the
solution after the singularity formation in Figure 12. By using the same neural architecture hyperpa-
rameter, the trained solutions obtained by the AW-PINN and the conventional PINN algorithms are
consistent with the exact one. However, the L2 relative error 9.8475e-03 for the AW-PINN is smaller
than 1.2731e-02 for the conventional PINN. What’s more, the loss decreases faster and accelerates
convergence as shown in Figure 12(d). Finally, Figure 13 presents the evolution process for the adap-
tive weights λ0 and λb, and the mean squared error loss terms L0(θθθ), Lb(θθθ), Lr(θθθ) over iterations during
the training of AW-PINN with 50000 iterations using the Adam optimizer. It can be seen from Fig-
ure 13(a) that although the weights λ0 and λb trained in the first step are very large, they decrease to a
stable interval in a few steps. Figure 13(b) shows that the residual loss term plays a dominant role in
the total loss.
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(a) Exact solution (b) Predicted solution of conventional PINN

(c) Predicted solution of AW-PINN (d) The loss value over iterations

Figure 12. Comparison of the conventional PINN and AW-PINN predicted solution at time
t = 1.5/π2, and the loss value over iterations during the training procedure with 5 hidden
layers and 200 neurons per layer for 50000 iterations using the Adam optimizer.
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(a) Evolution of the adaptive weights (b) Evolution of loss terms

Figure 13. Evolution of the adaptive weights λ0 and λb and the mean squared error loss
terms L0(θθθ), Lb(θθθ), Lr(θθθ) of the AW-PINN training algorithm with 5 hidden layers and 100
neurons per layer for 50000 iterations using the Adam optimizer.

Example 4.2.2 The two-dimensional nonlinear equation is given by

φt + φxφy = 0, (x, y) ∈ Ω, t ∈ [0, 0.5],
φ(x, y, 0) = sin(x) + cos(y), (x, y) ∈ Ω,

(4.9)

with Dirichlet boundary conditions on the domain Ω = [−π, π]2. This is a genuinely nonlin-
ear problem with a nonconvex Hamiltonian. The exact solution is given implicitly by φ(x, y, t) =
− cos(q) sin(r) + sin(q) + cos(r) where x = q − t sin(r) and y = r + t cos(q). We approximate the
solution by fully-connected neural networks NN(x, t;θθθ) of 5 hidden layers with 200 neurons in each
layer. Small data set consists of the uniformly spaced grid points in the domain Ω, where the numbers
of grid points are nx = ny = 41 and nt = 41. Here we choose N0 = 1681,Nb = 4000 and Nr = 30000
randomly sampled collocation points. We also present the detailed visual comparison of the exact
solution, predicted solution using conventional PINN and AW-PINN at time t = 0.5 in Figure 14.
Compared with the conventional PINN, the loss of the AW-PINN training algorithm decreases faster
and accelerates convergence after 30000 iterations as shown in Figure 14(d). What’s more, the L2

relative error is 1.2702e − 01, which is smaller than 1.2937e − 01 for the conventional PINN. Finally,
Figure 15 shows the evolution process for the adaptive weights λ0 and λb, and the mean squared er-
ror loss terms L0(θθθ), Lb(θθθ), Lr(θθθ) for 50000 iterations. One can obtain that the variation range of the
weights become smaller as the number of iterations increases and the residual loss term dominant the
others.
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(a) Exact solution (b) Predicted solution of conventional PINN

(c) Predicted solution of AW-PINN (d) The loss value over iterations

Figure 14. Comparison of the conventional PINN and AW-PINN predicted solution at time
t = 0.5, and the loss value over iterations during the training procedure with 5 hidden layers
and 200 neurons per layer for 50000 iterations using the Adam optimizer.
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(a) Evolution of the the adaptive weights (b) Evolution of loss terms

Figure 15. Evolution of the adaptive weights λ0 and λb and the mean squared error loss
terms L0(θθθ), Lb(θθθ), Lr(θθθ) of the AW-PINN algorithm with 5 hidden layers and 100 neurons
per layer for 50000 iterations using the Adam optimizer.

Example 4.2.3 The shape-from-shading problem is given byφt + I(x, y)
√

1 + φ2
x + φ

2
y − 1 = 0, (x, y) ∈ Ω, t ∈ [0, 1],

φ(x, y, 0) = (4096/9)xy(1 − x)(1 − y)(x − 1/2)(y − 1/2), (x, y) ∈ Ω,
(4.10)

with φ(x, y, t) = 0 at the boundary of the domain Ω = [0, 1]2. Here I(x,y) is the brightness value with
0 < I(x, y) ≤ 1, specifically, we take

I(x, y) = 1/
√

1 + (2π cos(2πx) sin(2πy))2 + (2π sin(2πx) cos(2πy))2. (4.11)

The steady-state solution of equation (4.10) is the shape function, which has the brightness I under
vertical lighting, see [53]. The shape-from-shading problem has multiple solutions to Eqs (4.10) and
(4.11), and all satisfy the homogeneous boundary condition, according to [54]. Similar to traditional
numerical methods [55], the additional “boundary conditions” are introduced at points where I(x, y) =
1. In our problem, we consider such “boundary conditions”:
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= φ
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4
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2
,

1
2

)
= 0, (4.12)

then the exact solution will be φ(x, y) = sin(2πx) sin(2πy). We approximate the solution by a fully-
connected neural networks NN(x, t;θθθ) of 5 hidden layers with 200 neurons in each layer. Small data
set consists of the uniformly spaced grid points in the domain Ω, where nx = ny = 41 and nt = 161
are the number of space and time grid points. Here we take randomly sampled collocation points
with N0 = 1681,Nb = 4000 and Nr = 30000. We also show the detailed visual comparison of the
exact solution, predicted solution using the conventional PINN and the AW-PINN at time t = 1 in
Figure 16. The loss of AW-PINN training algorithm decreases faster and accelerates convergence
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after 30000 iterations as shown in Figure 16(d), and the L2 relative error is 1.7686e − 02, improved
by one order of magnitude compared to the conventional PINN (1.5982e-01). Finally, Figure 17
presents the evolution process for the adaptive weights λ0 and λb, and the mean squared error loss
terms L0(θθθ), Lb(θθθ), Lr(θθθ) for 50000 iterations. For this problem, the residual loss term dominant the
others as usual. However, to make the total loss decreases as the number of iterations increases, the
weights for loss terms corresponding to the initial and boundary conditions change more frequently
here.

(a) Exact solution (b) Predicted solution of conventional PINN

(c) Predicted solution of AW-PINN (d) The loss value over iterations

Figure 16. Comparison of the conventional PINN and AW-PINN predicted solution at time
t = 1, and the loss value over iterations during the training procedure with 5 hidden layers
and 200 neurons per layer for 50000 iterations using the Adam optimizer.

Mathematical Biosciences and Engineering Volume 19, Issue 12, 12866–12896.



12891

(a) Evolution of the adaptive weights (b) Evolution of loss terms

Figure 17. Evolution of the adaptive weights λ0 and λb and the mean squared error loss
terms L0(θθθ), Lb(θθθ), Lr(θθθ) of the AW-PINN training algorithm with 5 hidden layers and 100
neurons per layer for 50000 iterations using the Adam optimizer.

5. Summary and discussion

Although there are some very valuable works related to developing specific neural network ar-
chitectures to solve some sets of HJ PDEs [42, 43], whose Hamiltonian is convex and the viscosity
solution can be defined by the Lax-Oleinik formula. The performance of physics-informed neural
networks algorithm is not yet fully investigated in the literature in solving time-dependent HJ PDEs
such as nonconvex Hamiltonian equations that can capture shock and rarefaction waves. The orig-
inal PINN formulation [6] is trained to solve unsupervised learning tasks by minimizing the mean
squared error loss with physics-informed constraint. This training method is suitable for solving cer-
tain types of problems, such as the curse of dimensionality problems. However, the original PINN
also has difficulties in representing an accurate approximation for nonconvex Hamiltonian. To further
improve the predictive accuracy, we have proposed the AW-PINN algorithm such that the weights
for different loss terms can be adaptively updated, in which the residual loss terms keep dominat-
ing the others. This approach is an improvement of the learning rate annealing for physics-informed
neural networks of Wang, Teng, Karniadakis [8], and updates the weights using the log average and
provides better predictive accuracy for HJ PDEs. We examined our proposed training algorithm
for solving time-dependent HJ PDEs, including variable coefficient linear equation, strictly convex
Hamiltonian, Eikonal equation, nonconvex Hamiltonian, two-dimensional Burgers-type Hamiltonian,
and two-dimensional nonlinear equation with a nonconvex Hamiltonian and the shape-from-shading
problem. The series of numerical experiments show that the proposed algorithm effectively achieves
noticeable improvements in predictive accuracy and increases the convergence rate. Although a se-
ries of numerical results have verified that this training algorithm can learn accurate approximation
solutions of HJ PDEs, and yield practical improvements, the theoretical analysis of the proposed
AW-PINN algorithm is worth further research. We will investigate many critical applications in com-
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putational science and engineering to better understand PINN. These numerical results may provide
some inspiration for the subsequent theoretical research. And we notice that the AW-PINN algo-
rithm can enforce exactly periodic boundary conditions by imposing the periodicity requirement on
the function and all its derivatives. The neural network architecture can also be modified to exactly
impose Dirichlet and periodic boundary conditions.
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Appendix A Logarithmic mean

The logarithmic mean of a is defined as

aln(l, r) =
al − ar

ln(al) − ln(ar)

However, this is not numerically well-posed when al → ar. To overcome this, let us write the loga-
rithmic mean in another form. Let ζ = al

ar
, so that

aln(l, r) =
al + ar

ln ζ
ζ − 1
ζ + 1

,

where ln(ζ) = 2
(
ζ−1
ζ+1+

1
3

(ζ−1)3

(ζ+1)3 +
1
5

(ζ−1)5

(ζ+1)5 +
1
7

(ζ−1)7

(ζ+1)7 +o((ζ−1)9)
)

is used to obtain a numerically well-formed
logarithmic mean. The subroutine for computing the logarithmic mean is as following, let

ζ =
aL

aR
, f =

ζ − 1
ζ + 1

, u = f ∗ f ,

and

F =

 1.0 + u/3.0 + u ∗ u/5.0 + u ∗ u ∗ u/7.0, if u < ε;
ln(ζ)/2.0/( f ), otherwise,

so that aln(l, r) = al+ar
2F with ε = 10−2.
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