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Abstract: The aim of this article is to analyze the delay influence on the attraction for a scalar tick
population dynamics equation accompanying two disparate delays. Taking advantage of the fluctuation
lemma and some dynamic inequalities, we derive a criterion to assure the persistence and positiveness
on the considered model. Furthermore, a time-lag-dependent condition is proposed to insure the global
attractivity for the addressed model. Besides, we give some simulation diagrams to substantiate the
validity of the theoretical outcomes.
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1. Introduction

Recently, the following delay scalar equation

E′(t) = −δE(t) + f ((1 − α)ρE(t − τ1(t)) + αρE(t − τ2(t))), (1.1)

has been presented by Zhang and Wu [1] and Zhang et al. [2] to show the qualitative properties on tick
population in a fixed region. Here E(t) describes the spawning density at time t, ρ ∈ (0, 1) designates
the survival likelihood, and δ > 0 is the death rate. The reproductive function can be expressed by

f (u) = ruγe−σu, u ≥ 0, γ ∈ (0, 1], (1.2)
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where u is the spawning density, r > 0 denotes the maximal egg production rate per unit time, γ
is a proxy for measuring returns, and σ > 0 reflects the strength of density dependence. Suppose
1 − α ∈ [0, 1] is a proportion of eggs that undergo development by standard development delay
τ1(t) ≥ 0, and the remaining portion αwith respect to the so-called “diapause-induced delay” τ2(t) ≥ 0.
For more details we direct the reader to Zhang and Wu [1].

When more disparate delays are considered in the reproductive function (1.1), the authors in [1, 2]
have constructed some examples to show that chaotic oscillations may appear. The authors in [1, 2]
also point out that it is very difficult to explore the dynamics of (1.1) with different delay functions and
two disparate delays rather than one can cause sustainable oscillations. Especially, under the following
assumptions,

τ1(t) ≡ τ, τ2(t) ≡ 2τ, γ = 1,where τ > 0 is a constant, (1.3)

the Hopf bifurcations have been respectively studied in [1] and [2] when τ and α are the bifurcation
parameters. As is known, differential equations with multiple delays have been handled as proper
applications in the fields of economics, physiology and epidemiology and engineering [3–7]. When the
delay functions take two different positive constants, some dynamic analysis is usually carried out by
using dynamic system theory [8, 9]. On the other hand, the population and ecology models with time-
varying delays are interpreted as non-autonomous delay differential equations (DDEs) which generally
do not generate a semi-flow and cannot be analyzed by the methods for DDEs accompanying constant
delays in [8, 9]. Moreover, the obtained findings on population and ecology models accompanying
two disparate time-varying delays in [10–14] have not studied to the global attractivity of the non-
autonomous tick equation with f (u) = ruγe−σu and γ ∈ (0, 1). Consequently, it is essential to further
research the dynamic characteristics of (1.1) without considering (1.3).

It has been pointed out that time delay may lead to oscillations or instability in many biomathematics
systems, and hence it is of great importance to discover the effect of time delay on the long-term
dynamic characteristics of population equations [15–20]. Nevertheless, there have been no results on
the delay-dependent attractiveness exploration of the tick population equation (1.1).

Motivated by the above considerations, assume that the reproductive function is

f (u) = ruγe−σu with γ ∈ (0, 1), (1.4)

the goal of this work is to derive some delay-dependent conditions for ensuring the global attractivity
on the equilibrium point of (1.1) without assumption (1.3). Our result is an extension of [1–3] and its
effectiveness will be verified by some numerical simulations.

Label Q(t) = σρE(t), then we can write (1.1) involving the reproductive function (1.4) as

Q′(t) = −δQ(t) + rρσ1−γe−[(1−α)Q(t−τ1(t))+αQ(t−τ2(t))]

×[(1 − α)Q(t − τ1(t)) + αQ(t − τ2(t))]γ, t ≥ t0, γ ∈ (0, 1). (1.5)

Obviously, Q∗ obeying
−δ(Q∗)1−γ + rρσ1−γe−Q∗ = 0, (1.6)

is a unique positive equilibrium point of equation (1.5). And we will show that the zero equilibrium
point is not stable in the following analysis. For i = 1, 2, let

τ+
i = sup

t∈[t0,+∞)
τi(t), σ = max

j∈{1,2}
τ+

j > 0 and C+ = C([−σ, 0], [0,+∞)). (1.7)
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GIven Q(t; t0, ϕ)(Qt(t0, ϕ)) as a solution of the system (1.5) incorporating the initial value conditions:

Q(t0 + θ) = ϕ(θ), −σ ≤ θ ≤ 0, ϕ ∈ C+ with ϕ(0) > 0, (1.8)

we let [t0, η(ϕ)) denote the right saturation interval.
This research is arranged as follows. In Section 2, we demonstrate the positiveness, boundedness

and persistence of the addressed model. In Section 3, the main result involving delay-dependent at-
tractivity is stated and guaranteed. In Sections 4 and 5, some numerical cases and conclusions are
proposed, separately.

2. Positiveness and persistence

Lemma 2.1. Q(t) = Q(t; t0, ϕ) (Qt = Qt(t0, ϕ)) possesses positiveness and boundedness on
[t0, +∞).

Proof. According to Theorem 5.2.1 in [21] , we gain that Qt ∈ C+ for each t ∈ [t0, η(ϕ)). Since
Q(t0) = ϕ(0) > 0, it follows that for arbitrary t ∈ [t0, η(ϕ)),

Q(t) = e−δ(t−t0)Q(t0) +

∫ t

t0
e−δ(t−s)rρσ1−γ[(1 − α)Q(s − τ1(s)) + αQ(s − τ2(s))]γ

×e−[(1−α)Q(s−τ1(s))+αQ(s−τ2(s))]ds

> 0,

which, together with sup
x∈[0,+∞)

xγe−x =
γγ

eγ and (1.5), indicates that for all t ∈ [t0, η(ϕ)),

Q′(t) = −δQ(t) + rρσ1−γ[(1 − α)Q(t − τ1(t)) + αQ(t − τ2(t))]γe−[(1−α)Q(t−τ1(t))+αQ(t−τ2(t))]

≤ −δQ(t) +
rρσ1−γγγ

eγ
,

and

Q(t) ≤
rρσ1−γγγ

δeγ
(1 −

1
eδ(t−t0) ) + ϕ(0)

1
eδ(t−t0) .

Consequently, Q(t) has boundedness on [t0, η(ϕ)). On the basis of Theorem 2.3.1 in [22] , we acquire
η(ϕ) = +∞. This furnishes the proof of Lemma 2.1.

Lemma 2.2. l := lim inf
t→+∞

Q(t) = lim inf
t→+∞

Q(t; t0, ϕ) > 0.
Proof. Conversely, lim inf

t→+∞
Q(t) = 0. For any t ≥ t0, define

β(t) = max
{
% ∈ [t0 − σ, t]|Q(%) = min

t0−σ≤s≤t
Q(s)
}
,

one can obtain from lim inf
t→+∞

Q(t) = 0 that

β(t)→ +∞ as t → +∞ with lim
t→+∞

Q(β(t)) = 0.

Set T∗ ≥ t0 accompany that

β(t) ≥ t0 + σ for arbitrary t ∈ [T∗ − σ, +∞). (2.1)
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Clearly, (1.5) results in

0 ≥ Q′(β(t))
= −δQ(β(t)) + rρσ1−γ[(1 − α)Q(β(t) − τ1(β(t))) + αQ(β(t) − τ2(β(t)))]γ

×e−[(1−α)Q(β(t)−τ1(β(t)))+αQ(β(t)−τ2(β(t)))], (2.2)

and

rρσ1−γ[(1 − α)Q(β(t) − τ1(β(t))) + αQ(β(t) − τ2(β(t)))]γ

×e−[(1−α)Q(β(t)−τ1(β(t)))+αρQ(β(t)−τ2(β(t)))]

≤ δQ(β(t)),where t ≥ T∗,

which, combined with lim
t→+∞

Q(β(t)) = 0, give us

lim
t→+∞

[(1 − α)Q(β(t) − τ1(β(t))) + αQ(β(t) − τ2(β(t)))] = 0. (2.3)

According to (2.3),

0 ≥ Q′(β(t))
≥ Qγ(β(t)){−δQ1−γ(β(t))

+rρσ1−γe−[(1−α)Q(β(t)−τ1(β(t)))+αQ(β(t)−τ2(β(t)))]} for all t ≥ T∗,

and
rρσ1−γ

δ
e−[(1−α)Q(β(t)−τ1(β(t)))+αQ(β(t)−τ2(β(t)))] ≤ Q1−γ(β(t)), (2.4)

letting t → +∞ leads to

0 ≥
rρσ1−γ

δ
> 0,

which is absurd and accomplishes the proof.
Remark 2.1. Obviously, Lemma 2.2 shows that the zero equilibrium point of (1.5) has instability.

3. Attractivity analysis on the tick population dynamics equation

Now, label Q(t) = Q(t; t0, ϕ), we shall derive the global attraction on Q∗.
Proposition 3.1. Presume that η(t) = Q(t) − Q∗ is ultimately nonnegative, then

lim
t→+∞

Q(t) = Q∗.

Proof. Clearly, there is T > t0 satisfying

η(t) = Q(t) − Q∗ ≥ 0 for all t ≥ T.

We claim that lim sup
t→+∞

η(t) = 0. Assume that, contrary to our claim,

lim sup
t→+∞

η(t) > 0.
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According to Lemma A.1 in [23], fluctuation lemma, it is easy to find a sequence {th}h≥1 that obeys

tk → +∞, η(th)→ lim sup
t→+∞

η(t), η′(th)→ 0 as h→ +∞.

From (1.5), we get

η′(th) = −δQ(th) + rρσ1−γ[(1 − α)Q(th − τ1(th)) + αQ(th − τ2(th))]γ

×e−[(1−α)Q(th−τ1(th))+αQ(th−τ2(th))], th ∈ (T + σ, +∞). (3.1)

More generally, we can take a subsequence of {th} (still denoted {th}) accompanying that lim
h→+∞

Q(th −

τ j(th)) exists for arbitrary j ∈ Ω := {1, 2}. Manifestly,

Q∗ ≤ lim
h→+∞

Q(th − τ j(th)) ≤ lim sup
t→+∞

η(t) + Q∗ for arbitrary j ∈ Ω.

and one of the following two cases must hold.
Case I: lim

h→+∞
[(1 − α)Q(th − τ1(th)) + αQ(th − τ2(th))] = Q∗;

Case II: Q∗ < lim
h→+∞

[(1 − α)Q(th − τ1(th)) + αQ(th − τ2(th))].

Considering that Case I occurs, by (1.6) and (3.1), taking limits yields

0 = −δ(lim sup
t→+∞

η(t) + Q∗) + rρσ1−γ(Q∗)γe−Q∗ < −δQ∗ + δQ∗ = 0,

an impossible result. Consequently, lim sup
t→+∞

η(t) = 0.

If Case II occurs, then (1.6) and (3.1) derive

0 < −δ(lim sup
t→+∞

η(t) + Q∗) + rρσ1−γ(lim sup
t→+∞

η(t) + Q∗)γe−Q∗

= (lim sup
t→+∞

η(t) + Q∗)γ[−δ(lim sup
t→+∞

η(t) + Q∗)1−γ + rρσ1−γe−Q∗]

< (lim sup
t→+∞

η(t) + Q∗)γ[−δ(Q∗)1−γ + rρσ1−γe−Q∗]

= 0.

This yields a contradiction and verifies Proposition 3.1.
Proposition 3.2. Provided that η(t) = Q(t) − Q∗ is ultimately non-positive, we acquire

lim
t→+∞

Q(t) = Q∗.

Proof. Noticeably, there is T > t0 satisfying that

η(t) = Q(t) − Q∗ ≤ 0 for arbitrary t ≥ T.

We now verify that lim inf
t→+∞

η(t) = 0. First we assume the opposite,

lim inf
t→+∞

η(t) < 0.
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By Lemma A.1 of [23] , one can pick a sequence {t̄h}h≥1 agreeing with

t̄h → +∞, η(t̄h)→ lim inf
t→+∞

η(t), η′(t̄h)→ 0 as h→ +∞.

Then (1.5) leads to

η′(t̄h) = −δQ(t̄h) + rρσ1−γ[(1 − α)Q(t̄h − τ1(t̄h)) + αQ(t̄h − τ2(t̄h))]γ

×e−[(1−α)Q(t̄h−τ1(t̄h))+αQ(t̄h−τ2(t̄h))], t̄h > T + σ. (3.2)

Without loss of generality, for all j ∈ Ω, let lim
h→+∞

Q(t̄h − τ j(t̄h)) exist. It can be derived from Lemma
2.2 that for all j ∈ Ω,

0 < Q∗ + lim inf
t→+∞

η(t) ≤ lim
h→+∞

Q(t̄h − τ j(t̄h)) ≤ Q∗,

and one of the following two situations must appear:
Case (1): lim

h→+∞
[(1 − α)Q(t̄h − τ1(t̄h)) + αQ(t̄h − τ2(t̄h))] = Q∗;

Case (2): Q∗ > lim
h→+∞

[(1 − α)Q(t̄h − τ1(t̄h)) + αQ(t̄h − τ2(t̄h))].
When Case (1) occurs, from (1.6) and (3.2), we obtain

0 = −δ(lim inf
t→+∞

η(t) + Q∗) + rρσ1−γ(Q∗)γe−Q∗ > −δQ∗ + δQ∗ = 0,

which is impossible and shows that lim inf
t→+∞

η(t) = 0.
If Case (2) emerges, then (1.6) and (3.2) imply that

0 > −δ(lim inf
t→+∞

η(t) + Q∗) + rρσ1−γ(lim inf
t→+∞

η(t) + Q∗)γe−Q∗

= (lim inf
t→+∞

η(t) + Q∗)γ[−δ(lim inf
t→+∞

η(t) + Q∗)1−γ + rρσ1−γe−Q∗]

> (lim inf
t→+∞

η(t) + Q∗)γ[−δ(Q∗)1−γ + rρσ1−γe−Q∗]

= 0,

which leads to an impossible result and substantiates Proposition 3.2.
Next, we consider the case of Q(t) with respect to oscillations about Q∗.
Proposition 3.3. Assume that

e(1 − e−δσ) < 1, Q∗(eδσ − 1) < 1,
Q∗(1 − e−δσ)

1 − e(1 − e−δσ)
< 1, (3.3)

holds, and η(t) = Q(t) − Q∗ oscillates about zero. Then lim
t→+∞

Q(t) = Q∗.
Proof. It follows from (1.5) that

η′(t) + δη(t) + δQ∗

=
rρσ1−γ[(1 − α)(η(t − τ1(t)) + Q∗) + α(η(t − τ2(t)) + Q∗)]γ

e[(1−α)(η(t−τ1(t))+Q∗)+α(η(t−τ2(t))+Q∗)] , t > t0. (3.4)

Label
λ = lim inf

t→+∞
η(t), µ = lim sup

t→+∞

η(t). (3.5)
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Note that if w(t) is oscillating about zero, we have

λ ≤ 0 ≤ µ.

Hence, all that remains is to prove that
λ = µ = 0.

In view of the oscillation of η(t), one can pick a sequence {kn}n≥1 which is strictly monotonically
increasing and obeys that

kn > σ, lim
n→+∞

kn = +∞, η(kn) = 0 for all n = 1, 2, · · · ,

and η(t) has both negative and positive values in every interval (kn, kn+1). For each positive integer n,
select tn, sn ∈ (kn, kn+1) which satisfy that

η(tn) = max
t∈[kn, kn+1]

η(t) > 0, η(sn) = min
t∈[kn, kn+1]

η(t) < 0,

which suggests that
η′(tn) = η′(sn) = 0, n ∈ {1, 2, · · · , }, (3.6)

and
lim inf

n→+∞
η(sn) = λ = lim inf

t→+∞
η(t), lim sup

n→+∞

η(tn) = µ = lim sup
t→+∞

η(t). (3.7)

Next, we claim that, for every positive integer n, one can select Tn ∈ [tn − σ, tn) ∩ [kn, tn) accompa-
nying that

η(Tn) = 0 and η(t) > 0 for arbitrary t ∈ (Tn, tn). (3.8)

Suppose the contrary and choose a positive integer n satisfying that for arbitrary t ∈ [tn − σ, tn),

kn < tn − σ < kn+1 and η(t) > 0,

which, combined with (3.4)–(3.6), yields

0 = −δ[Q∗ + η(tn)] + rρσ1−γ[(1 − α)(η(tn − τ1(tn)) + Q∗) + α(η(tn − τ2(tn)) + Q∗)]γ

×e−[(1−α)(η(tn−τ1(tn))+Q∗)+α(η(tn−τ2(tn))+Q∗)]

< −δ[Q∗ + η(tn)] + rρσ1−γ[Q∗ + η(tn)]γe−Q∗

< [Q∗ + η(tn)]γ[−δ(Q∗)1−γ + rρσ1−γe−Q∗]
= 0.

This is impossible and proves (3.8).
Similarly, it can be shown that for arbitrary positive integer n > 0, one can pick S n ∈ [sn − σ, sn) ∩

[kn, sn) that obeys
η(S n) = 0 and η(t) < 0 for arbitrary t ∈ (S n, sn). (3.9)

For all ε > 0, (3.7) shows that there exists a positive integer n∗ that satisfies for t ∈ (min{tn∗ , sn∗} −

σ, +∞),
λ − ε < η(t) < µ + ε. (3.10)
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Furthermore, we can assume that

0 < ε < Q∗ + λ with 0 < Q∗ + (λ − ε), (3.11)

because 0 < lim
n→+∞

Q(sn) = Q∗ + lim
n→+∞

η(sn) = Q∗ + λ.

Moreover, from (1.5), (3.9), (3.10) and

[η(t)eδt]′ = −δQ∗eδt + rρσ1−γ[(1 − α)(η(t − τ1(t)) + Q∗) + α(η(t − τ2(t)) + Q∗)]γ

×
eδt

e[(1−α)(η(t−τ1(t))+Q∗)+α(η(t−τ2(t))+Q∗)] , t > t0, (3.12)

we get

η(sn)eδsn = −Q∗(eδsn − eδS n)

+rρσ1−γ
∫ sn

S n

[(1 − α)(η(t − τ1(t)) + Q∗) + α(η(t − τ2(t)) + Q∗)]γ

×
eδt

e[(1−α)(η(t−τ1(t))+Q∗)+α(η(t−τ2(t))+Q∗)] dt

> −Q∗(eδsn − eδS n)

+rρσ1−γ
∫ sn

S n

[(1 − α)((λ − ε) + Q∗) + α((λ − ε) + Q∗)]γ

×e−[(1−α)((µ+ε)+Q∗)+α((µ+ε)+Q∗)]eδtdt

= −Q∗(eδsn − eδS n)

+rρσ1−γ
∫ sn

S n

(Q∗)γ(
(λ − ε) + Q∗

Q∗
)γe−((µ+ε)+Q∗)eδtdt

> −Q∗(eδsn − eδS n)

+rρσ1−γ
∫ sn

S n

(Q∗)γ
(λ − ε) + Q∗

Q∗
e−((µ+ε)+Q∗)eδtdt

= −Q∗(eδsn − eδS n) + rρσ1−γ(Q∗)γ−1((λ − ε) + Q∗)e−((µ+ε)+Q∗) eδsn − eδS n

δ

= Q∗(eδsn − eδS n)[
rρσ1−γ(Q∗)γ−1e−Q∗e−(µ+ε)

δ
− 1]

+rρσ1−γ(Q∗)γ−1e−Q∗e−(µ+ε) eδsn − eδS n

δ
(λ − ε)

> (λ − ε)(eδsn − eδS n) + [e−(µ+ε) − 1]Q∗(eδsn − eδS n),

and

η(sn) + (e−δσ − 1)(λ − ε) ≥ η(sn) + (λ − ε)(eδ(S n−sn) − 1)
> Q∗[e−(µ+ε) − 1](1 − eδ(S n−sn))
≥ [e−(µ+ε) − 1]Q∗(1 − e−δσ), (3.13)

where n > n∗.
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Allowing n→ ∞ and ε→ 0+, one can obtain from (3.3) and (3.13) that

λ ≥ (e−µ − 1)Q∗(eδσ − 1) ≥ e−µ − 1 ≥ −1. (3.14)

From (1.5) and (3.9)–(3.12), it can be seen that

η(tn)eδtn = −Q∗(eδtn − eδTn)

+rρσ1−γ
∫ tn

Tn

[(1 − α)(η(t − τ1(t)) + Q∗) + α(η(t − τ2(t)) + Q∗)]γ

×
eδt

e[(1−α)(η(t−τ1(t))+Q∗)+α(η(t−τ2(t))+Q∗)] dt

< −Q∗(eδtn − eδTn)

+rρσ1−γ
∫ tn

Tn

[Q∗ + (µ + ε)]γe−Q∗e−(λ−ε)eδtdt

= −Q∗(eδtn − eδTn)

+rρσ1−γ
∫ tn

Tn

(Q∗)γ[
Q∗ + (µ + ε)

Q∗
]γe−Q∗e−(λ−ε)eδtdt

< −Q∗(eδtn − eδTn)

+rρσ1−γ
∫ tn

Tn

(Q∗)γ
Q∗ + (µ + ε)

Q∗
e−Q∗e−(λ−ε)eδtdt

= −Q∗(eδtn − eδTn)

+rρσ1−γ[(Q∗)γ−1e−Q∗e−(λ−ε)(Q∗ + (µ + ε))]
eδtn − eδTn

δ

= Q∗(eδtn − eδTn)[
rρσ1−γ(Q∗)γ−1e−Q∗e−(λ−ε)

δ
− 1]

+rρσ1−γ(Q∗)γ−1e−Q∗ e
δtn − eδTn

δ
(µ + ε)e−(λ−ε)

≤ [e−(λ−ε) − 1]Q∗(eδtn − eδTn) + e1+ε(eδtn − eδTn)(µ + ε), where n > n∗,

and

η(tn) < [e−(λ−ε) − 1]Q∗(1 − eδ(Tn−tn)) + (µ + ε)e1+ε(1 − eδ(Tn−tn))
≤ [e−(λ−ε) − 1]Q∗(1 − e−δσ) + e1+ε(1 − e−δσ)(µ + ε), where n > n∗. (3.15)

By (3.3) and (3.15), permitting n→ ∞ and ε→ 0+ lead to

µ ≤ (e−λ − 1)
Q∗(1 − e−δσ)

1 − e(1 − e−δσ)
≤ e−λ − 1. (3.16)

Hence, (3.14) and (3.16) give us
e−λ − 1 ≥ µ ≥ λ ≥ e−µ − 1. (3.17)

Define B(x) = e1−e−x
−1− x on [0, +∞), we can easily check its monotonicity on [0, +∞). Then, (3.17)

yields

B(0) = 0, 0 ≤ e−λ − 1 − µ ≤ B(µ), and B′(x) = e1−x−e−x
− 1 < 0 for all x ∈ (0, +∞),
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which indicates that µ = 0 and λ = 0. The proof is complete.
According to Propositions 3.1–3.3, we get the main theorem on the global attractivity of Q∗.
Theorem 3.1. Under (3.3), Q∗ is a global attractor of (1.5) and (1.8).
Remark 3.2. It can be discovered from Propositions 3.1 and 3.2 that the delays τ1(t) and τ2(t) have

no influence on the attractivity of the non-oscillatory solutions about N∗. From the facts that

lim
σ→0+

Q∗(eδσ − 1) = 0 and lim
σ→0+

Q∗(1 − e−δσ)
1 − e(1 − e−δσ)

= 0,

we know that condition (3.3) is naturally valid when the delays are small enough and hence Q∗ is a
global attractor of (1.5) accompanying small lags. However, the attractivity of the oscillatory solu-
tions about Q∗ is closely related to two time-varying delays. In other words, the two disparate delays
undertake a significant role in characterizing the attractivity of (1.5). Furthermore,

lim
σ→+∞

Q∗(eδσ − 1) = +∞

suggests that condition (3.3) is not satisfied when the delays are large enough in (1.5).

4. A numerical case

In order to validate the effectiveness of the results of qualitative analysis model (1.1), we also
carried out numerical simulation via MATLAB. Consider a scalar tick population equation involving
two disparate time-varying delays,

E′(t) = −0.09E(t) + e
3
2 [(1 − 0.4) × 0.9E(t − τ1(t)) + 0.4 × 0.9E(t − τ2(t))]0.5

×e−0.7[(1−0.4)×0.9E(t−τ1(t))+0.4×0.9E(t−τ2(t))], t ≥ t0 = 0, (4.1)

where r = e
3
2 , α = 0.4, δ = 0.09, ρ = 0.9, γ = 0.5 and σ = 0.7.

Let
τ1(t) = 0.05, τ2(t) = 0.1, (4.2)

we can easily obtain that (3.3) is obeyed. From Theorem 3.1, E∗ = 1
σρ

Q∗ ≈ 4.8571 has global
attractivity, which is strongly substantiated by Figure 1. Here {ϕ ∈ C([− 1

10 , 0],R+)|ϕ(0) > 0} is the
attraction domain.

Nevertheless, if we pick
τ1(t) = 100, τ2(t) = 200, (4.3)

then (3.3) is not satisfied. Here, the assumptions adopted in Theorem 3.1 can not be obeyed. Figure 2
shows that the positive equilibrium point does not possesses attractivity.

Remark 4.1. According to the above MATLAB simulations, the following observations can be
obtained. The positive equilibrium point is attractive involving small delays. But big delays will cause
complex dynamic behavior. Moreover, the assumption mentioned in (1.3) does not hold in (4.1), and
the global attractivity of the non-autonomous tick equation accompanying two disparate time-varying
delays has not been considered in [1, 2, 8–10, 24–29]. Consequently, our results in this paper are
essentially novel and complement previous studies to some extent.
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Figure 1. Numerical curves of (4.1) incorporating time lags (4.2) and different initial values,
and x(t) = E(t).
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Figure 2. Numerical curves of (4.1) incorporating time lags (4.3) and different initial values,
and x(t) = E(t).

5. Conclusions

This article investigated a non-autonomous tick population dynamics equation involving two dif-
ferent time-varying lags. Combining fluctuation lemma and novel techniques of differential inequality,
the positiveness, persistence and the global attractivity of all solutions have firstly been derived for the
addressed equation. The established outcomes show that if the delays in the development are small
enough, the global attractiveness of the positive equilibrium can be ensured by controlling the sur-
vival probability, mortality, maximum spawning number, the strength of density dependence and the
proxy of measuring return. The strategy proposed in this paper can also be applied to other dynamic
problems on delayed population models incorporating two or more disparate delays in the identical
breeding function.
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