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Abstract: Nowadays, object detection methods based on deep neural networks have been widely 
applied in autonomous driving and intelligent robot systems. However, weakly perceived objects with 
a small size in the complex scenes own too few features to be detected, resulting in the decrease of the 
detection accuracy. To improve the performance of the detection model in complex scenes, the detector 
of an improved CenterNet was developed via this work to enhance the feature representation of weakly 
perceived objects. Specifically, we replace the ResNet50 with ResNext50 as the backbone network to 
enhance the ability of feature extraction of the model. Then, we append the lateral connection structure 
and the dilated convolution to improve the feature enhancement layer of the CenterNet, leading to 
enriched features and enlarged receptive fields for the weakly sensed objects. Finally, we apply the 
attention mechanism in the detection head of the network to enhance the key information of the weakly 
perceived objects. To demonstrate the effectiveness, we evaluate the proposed model on the KITTI 
dataset and COCO dataset. Compared with the original model, the average precision of multiple 
categories of the improved CenterNet for the vehicles and pedestrians in the KITTI dataset increased 
by 5.37%, whereas the average precision of weakly perceived pedestrians increased by 9.30%. 
Moreover, the average precision of small objects (AP_S) of the weakly perceived small objects in the 
COCO dataset increase 7.4%. Experiments show that the improved CenterNet can significantly 
improve the average detection precision for weakly perceived objects. 

Keywords: object detection; anchor-free; CenterNet; attention mechanism; multi-scale feature 
enhancement 
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1. Introduction  

With the popularization of artificial intelligence technology, automatic driving technology continues 
to develop rapidly [1]. For automatic driving systems, object detection technology plays a vital role in 
environmental awareness tasks [2]. Nowadays, the traditional object detection algorithms based on 
handcrafted features are being gradually replaced by detection technology based on a deep neural network.  

Region-Convolutional Neural Network (R-CNN) is the first object detection framework based on 
the application of convolutional neural networks (CNN) [3], and it improves the ability of feature 
representation via CNN operation for detection. The faster R-CNN [4] generates regional proposals 
via a region proposal network (RPN) and introduces an anchor mechanism to regress the objects; it 
establishes the framework of the anchor-based detection algorithm to improve the detection performance. 
Since the anchor mechanism has been proposed, it has gradually played a critical role in popular detectors, 
such as YOLOv2 [5], YOLOv3 [6], YOLOv4 [7], Libra R-CNN [8] and Cascade RCNN [9].  

However, owing to the development of object detection technology, the drawbacks of the anchor 
mechanism cannot be ignored. For instance, the detection performance of the anchor-based model is 
greatly affected by the size, aspect ratio and number of anchor boxes [10]. Moreover, due to the fixed 
size and aspect ratio of the anchor boxes, it is difficult for the anchor-based models to detect objects 
with large-scale variations; thus, the models need to reset the anchor boxes with different sizes and 
aspect ratios for the new detection task. In addition, the anchor-based models need to put dense anchor 
boxes on the input image to obtain a higher recall rate, which brings large amounts of hyperparameters 
and increases the computational complexity of the model [11]; meanwhile, most anchor boxes are 
considered as negative samples and only a few are considered as positive samples, which aggravates 
the imbalance between positive and negative samples. 

Therefore, object detection algorithms that are anchor-free have attracted lots of attention in 
recent years, and they do not rely on pre-set anchor boxes. Compared with the traditional anchor-based 
method, the anchor-free detector with the simpler structure has no hyperparameters related to the 
anchor boxes, and it has the potential to surpass anchor-based methods in detection speed and accuracy. 

The anchor-free detectors are usually divided into key point-based methods and center-based 
approaches. The key point-based approach first locates pre-defined or self-learned key points and then 
generates bounding boxes to detect objects, such as CPNDet [12], RepPoints [13] and YOLOX [14]. 
And, the center-based method regards the central area (center point or area) of the object as the 
foreground area and then predicts their distance to the four sides of the object, such as LSNet [15], 
GA-RPN [16] and FSAF [17]. 

Though those approaches achieve great detection performance, the detection performance falls 
when confronting complex scenes with lots of weakly perceived small objects. Therefore, we propose 
a novel and effective detector based on the anchor-free mechanism to detect weakly perceived objects 
accurately. Concretely, we first replace the backbone ResNet50 of CenterNet with ResNext50 to 
acquire various levels of features, and then we integrate the multi-level features of the bottom-up 
pathway into the corresponding features with the same scale in the top-down pathway by using the 
lateral connections of a feature pyramid network (FPN) [18], obtaining plentiful information on weakly 
sensed small objects. Simultaneously, we add the dilated encoder following the input features in the 
top-down pathway to enlarge the receptive fields of the weakly sensed small objects. Finally, we 
append the squeeze-and-excitation (SE) attention module in the detection head to enhance the key 
point knowledge of the weakly sensed objects.  
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In summary, the main contributions in this work can be summarized as follows: 
1) We propose an improved anchor-free detector based on the CenterNet to elevate the detection 

performance for weakly perceived objects in complicated scenes.  
2) We improve the feature enhancement layer of the CenterNet by adding the lateral connection 

structure and the dilated convolution to enrich the information of the features and amplify the reception 
fields for weakly sensed small objects.  

3) We modify the detection head of the CenterNet with the SE attention module to enhance the 
key information of weakly sensed objects with small sizes. 

2. Related Work 

Anchor-free detectors. The anchor-free detectors require no pre-set anchor box, which makes 
the network structure simpler and the model more generalized. Anchor-free detectors mainly consist 
of two streams of center-based detectors [19] and key point-based detectors. The center-based detectors 
use the central region or the central point of the object to determine the positive sample and then regress 
its distance to the bounding box. The typical center-based works are FCOS [20], SAPD [21], etc. 
Another stream of key point-based detectors identifies the key points of the object to regress the 
bounding boxes of the objects. For instance, CornerNet [22] converts the object detection problem into 
the detection of a pair of key points for the object without anchors and then uses a top-left corner and 
a bottom-right corner of the object to predict the bounding box of the object. Referring to CornerNet, 
ExtremeNet [23] detects four extreme points (top-most, left-most, bottom-most, right-most) and one 
center point of the object to generate the bounding box. Different from the above models that detect 
multiple key points, CenterNet [24] regards the object as a key point to determine the center coordinates 
of the object through Gaussian operation and then regresses the size and position of the object. 

Multi-scale feature-enhancement methods. SSD [25] is the first detector to adopt the multi-
scale feature-enhancement method and multi-level feature stratification to detect objects of various 
sizes, and it allocates multi-scale objects to corresponding feature layers according to the size of the 
object. Each layer is responsible for the prediction of the object with the corresponding scale. The 
features of shallow layers with more detailed information are suitable for learning small objects. And, 
the features of deep layers with more global semantic information are appropriate for predicting large 
objects. DSSD [26] supposes that the insufficient semantic information and plenty of noise derived 
from shallow layers in SSD will weaken the classification ability of the detection network. Thus, DSSD 
adopts ResNet101 to integrate the global semantic information of deep layers into shallow layers. Liu 
et al. [27] presented the RFBNet based on SSD with a receptive field module to improve the detection 
performance of weakly sensed small objects. The receptive field module is composed of multi-branch 
convolution and expansion convolution, which expands the width of the network and enhances the 
adaptability of the network to multi-scale objects.  

Attention mechanism. Since each channel of the feature contributes differently to the detection 
performance, Hu et al. [28] proposed a channel-attention model, SENet, to learn the weights of 
different channels, leading to the network paying more attention to the key channel information by 
weighting. Inspired by the SENet, ECANet [29] adopts 1D convolution to implement the local cross-
channel interaction and maintain the detection performance while reducing the parameters of the model. 
Different from SENet and ECANet, CBAM [30] exploits both spatial- and channel-wise attention 
mechanisms to heighten the focus of important parts, and it contains two main components: a channel 
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attention module and spatial attention module. The channel attention module pays attention to the 
important channels of the feature, and the spatial attention module focuses on the key location 
information of objects. Mnih et al. [31] imported the attention mechanism to extract more small-scale 
features to strengthen the focus of small-scale objects and improve the detection performance of 
small objects. 

3. CenterNet 

As an anchor-free detector, CenterNet directly predicts the category and coordinates of the object 
on feature maps without numerous pre-setting anchor boxes, leading to fewer hyperparameters. In 
addition, the CenterNet determines center points via key point estimation and then regresses the object 
properties of location and size.  
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Figure 1. Architecture of CenterNet. 

As shown in Figure 1, the CenterNet is composed of three parts: backbone network, feature 
enhancement layer and detection head. First, CenterNet extracts the preliminary features from the input 
image via the backbone network, and then it uses a feature enhancement layer to strengthen the 
semantic contexts of the features to obtain high-resolution features. Finally, the high-resolution features 
are applied to classify and regress in the detection head to predict the bounding boxes of objects. 

4. Improvements of CenterNet 

4.1. Backbone network 

The standard CenterNet model takes ResNet50 as the backbone network for feature extraction. 
ResNet introduces residual learning into the deep network, which brings the shallow information into 
the deep layers of the network by performing an identity mapping operation, solving the problem of 
deep network degradation. However, the feature extraction effect of ResNet50 is still insufficient; thus, 
the grouped convolution [32] is introduced into ResNext50 [33] to extract multiple levels of features.  

Concretely, ResNext50 divides the input feature into several groups and applies the block 
constituted with several 1 × 1 and 3 × 3 convolutions to update each group feature; then, these updated 
features are concatenated to enhance the feature information and the shortcut connection referring to 
the ResNet structure is performed to prevent network degradation. The whole construction schemes of 
the ResNet50 and ResNext50 are illustrated in Figure 2, where Figure 2a) is the block of ResNet50 
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and Figure 2b) is the block of ResNext50. As shown in Figure 2b), ResNext50 divides input 
features into 32 groups by grouped convolution to widen the network and applies the 1 × 1 convolution 
operation to the grouped features to reduce its channel dimensions; then, it adds one 3 × 3 convolution 
to refine semantic contexts and a 1 × 1 convolution to raise the channel dimensions. Finally, the 
features of each group and the original input features are aggregated to get the output feature of the 
residual block.  
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Figure 2. Comparison blocks of ResNet50 and ResNext50. 

ResNext50 extracts the rich features of different levels of the network by increasing the network 
width, which improves the performance of the network, keeping the parameters at the same level as 
ResNet50. Meanwhile, considering that weakly sensed objects require sufficient information for 
detection, we employ the ResNext50 as the backbone network to improve the feature-extraction 
capability of the CenterNet model. 

4.2. Improvement of the feature-enhancement layer 

After obtaining the preliminary feature 
1 1 1

5C W H C R  from the ResNext50 backbone, the feature-

enhancement layer of the basic CenterNet in Figure 1 enhances the preliminary feature in three 

upsampling layers to generate a high-resolution feature 
2 2 2

2
W H CP  R  . However, the high-resolution 

feature 𝑃  is only originated from the preliminary feature 𝐶 , and the stacked sampling layers of the 

basic CenterNet in Figure 1 will cause information loss, resulting in insufficient detailed information 

on weakly sensed objects in the feature map P2. To solve the problem, inspired by the FPN structure, 

we improved the structure of the feature-enhancement layer with lateral connections to aggregate the 

features with different scales in the bottom-up pathway and achieve abundant detailed knowledge of 

weakly perceived objects in the top-down pathway. Then, we integrate the dilated encoder module [34] 

to enlarge the receptive field of the features and acquire more global semantic contexts for weakly 

sensed objects.  
The architecture of the improved feature-enhancement layer is shown in Figure 3; it involves a 

bottom-up pathway, a dilated encoder, a top-down pathway and the lateral connections referring to the 
FPN structure. 

The bottom-up pathway with numerous convolution layers is the feed-forward computation of 
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the ResNext50 backbone, which computes a feature hierarchy consisting of the features with different 
scales. We deem that the layers producing output maps of the same size belong to the same network 
stage. Thus, for the bottom-up pathway on the ResNext50 backbone, we define the four stages of S2, 

S3, S4 and S5 according to the sizes of the output maps. And, we denote the output features of each 
stage in {S2, S3, S4, S5} as C2, C3, C4, C5, and they are input to the top-down pathway of the improved 
CenterNet model, forming a multiple-in structure, which is different from the top-down pathway of 
the original CenterNet model with the single-input structure. The multiple-in structure of the improved 
CenterNet with the multi-scale features of C2, C3, C4, C5 can merge various input features for the top-
down pathway to obtain sufficient knowledge. 
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Figure 3. Structure of the improved feature-enhancement layer. 

Similar to the bottom-up pathway, we detect four feature maps with different scales in the top-
down pathway and define them as {P2, P3, P4, P5}. P5 is first produced by the preliminary feature map 
C5 of the ResNext50 backbone, followed by a dilated encoder, which enlarges the receptive field of 
Feature C5 to acquire more context from the semantic information. And then, following the FPN 
structure, we merge the feature maps {C2, C3, C4} of the bottom-up pathway into the features with the 
same spatial size in the top-down pathway to enrich the detailed information of the output feature in 
the top-down pathway. Specifically, the bottom-up features C2, C3 and C4, followed by a 1 × 1 
convolution, are integrated into the corresponding feature maps in the top-down pathway via the top-
down connections of the FPN, producing features of P2, P3 and P4, as shown in Figure 3. With the 
adoption of the dilated encoder and lateral connections, the detailed information of the features with 
various scales in the top-down pathway is strengthened and the corresponding receptive fields are 
enlarged. As a result, the feature P2 with a large receptive field and rich contextual semantic global 
knowledge is obtained as the output feature of the top-down pathway. 

The dilated encoder in the top-down pathway contains two main components: the projector and 
the residual blocks, as shown in Figure 4. The projection layer first applies a 1 × 1 convolution to 
reduce the channel dimensions, and utilizes a 3 × 3 convolution to refine semantic contexts. Then, the 
output of the projector is fed into the residual blocks consisting of 1 × 1 convolutions and 3 × 3 dilated 
convolutions with different dilation rates to obtain the multiple receptive fields. Specifically, in each 
residual block, the channel dimension of the projector output is reduced via a 1 × 1 convolution, and 
a 3 × 3 dilated convolution is applied to improve the receptive field of the features; then, a 1 × 1 
convolution is adopted to increase the channel dimensions. And then, the four successive dilated 
residual blocks are stacked to generate output features with multiple receptive fields. 

Meanwhile, to reduce the calculation cost of the network, we retain the output structure of the 
feature-enhancement layer of the original CenterNet model and output only Feature P2 for the 
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classification and regression of the detection head; then, the non-maximal suppression and other post-
processing steps are eliminated to reduce the calculation cost of the model. 
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Figure 4. Dilated encoder architecture. 

4.3. Embedding of attention mechanism 

In the task of object detection for weakly perceived objects, the texture features play an important 
role. To strengthen the network’s attention to the texture features of weakly sensed objects, we applied 
the channel attention mechanism [28] of SE module shown in Figure 5 to the CenterNet model. 
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Figure 5. Attention mechanism. 

 

Figure 6. Architecture of the improved CenterNet. 

Concretely, the output feature 
2 2 2

2
W H CP  R  with a width  W2 and height H2 from the feature‐

enhancement layer is input to the SE module. And, the feature P2 is first updated by a global pooling 

operation to produce an embedding vector representing the global distribution of channel feature 

responses. Then, the number of channels of the embedding vector is decreased via a 1 × 1 convolution 

to reduce the computations. The full connection layer is utilized to keep the number of channels of the 

embedding vector consistent with the number of channels of the input feature P2. Subsequently, the 
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sigmoid function takes the embedding vector as input and produces a series of channel-wise weights. 

We multiply these weights with the input feature P2 to generate the attention-weighted feature P as the 

output of the SE block to guide the network to focus on key channels; the overall structure of the 

improved CenterNet is shown in Figure 6. 
Finally, the attention-weighted feature  P is input to the detection head for classification and 

regression to generate the refined object bounding boxes. The detection head includes three branches: 
a heatmap branch, an offset branch and the size branch. For the heatmap branch, the key point heatmaps 
are generated by applying the Gaussian operation to the feature P, and then the heatmaps are used to 
predict the categories of objects and center coordinates of objects. For the offset branch, the offsets of 
the center coordinates are estimated. And, the sizes of the bounding boxes of objects are regressed in 
the size branch. 

4.4. Loss function 

The improved CenterNet proposed in this work is trained with the total loss, which consists of 
three parts: the key point loss (Lk), offset loss (Loff) and size loss (Lsize), corresponding to the three 
branches of the detection head, respectively. And, the total loss is formulated as 

det size off0.1  kL L L L                                                                      (1) 

The key point loss is realized via the key point heatmaps to learn the categories and center 
coordinates for objects, as folllows: 

   
     
1- log                   ˆ ˆ 1

ˆ ˆ

1

1- log 1-  






  







xyc xyc xyc

k
xyc

xyc xyc xyc

Y Y if Y
L

N Y Y Y otherwise
                                                    (2) 

where  xycY  represents the ground-truth feature value at the (x, y) coordinates for Category C on the key 
point heatmaps, which is generated by Gaussian operation on the input feature of the heatmap branch, 

and  cx̂yY   represents the predicted value obtained via the network, while the prediction  cˆ 1xyY   

represents a detected key point taken as the center point at the (x,y) coordinates for Category C; cˆ 0xyY   

denotes the value of the background point. Meanwhile, α and β are the hyperparameters of the focal 
loss, where α is 2 and β is 4. N is the number of key points in the heatmaps.  

Further, to recover the bias caused by the downsampling of the convolution operation, we utilize 
the offset loss to learn the offsets of the center coordinates, and it is constructed with L1 loss, as follows: 

 *

*ˆ1
off p

p

pL O pRN
  

                                                                                (3) 
where P is the center of the original input image of the network, p* is the center of the scaled-down 
feature map achieved by the convolution operation and R is the stride of the convolution operation; 

then, we can obtain the real bias of  *p pR 
, and the bias of network prediction is illustrated as *ˆ

pO . 

In addition, for the k-th object, its bounding box is denoted as 
( ) ( ) ( ) ( )
1 1 2 2( , , , )k k k kx y x y , and we can 

get the ground-truth object size of 
( ) ( ) ( ) ( )
2 1 2 1( , )k k k k

kS x x y y   ; then, the size loss based on the L1 loss 
function is applied to regress the size of the object bounding boxes, as follows:  
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ˆ1



  k

N

size p k
k

L S s
N

                                                                                           (4) 

where 
ˆ

kpS  is the predicted regression value. 

5. Experiment 

5.1. Dataset 

We evaluate our proposed weakly sensed object detection network on the KITTI dataset [35] and 
COCO dataset [36], respectively. KITTI is one of the popular datasets in the autonomous driving field 
and it provides a large number of images of complex environments, including urban areas, roads, rural 
scenes, etc. The KITTI dataset contains a total of 7481 images, including 33,252 vehicles and 6340 
pedestrians. There are eight categories in the KITTI dataset, including Car, Van, Truck, Pedestrian, 
Person-sitting, Cyclist, Tram and Misc. The fact is that pedestrians have a small size and lack of 
abundant feature information; thus, they are usually regarded as weakly sensed small objects. At the 
same time, lots of weakly sensed small vehicles caused by distance, truncation and occlusion are 
difficult to be perceived and detected. Therefore, we chose two categories in the KITTI dataset, 
including pedestrians (Pedestrian, Person-sitting and Cyclist) and vehicles (Car, Van, Truck and Tram) 
to evaluate the effectiveness of our improved CenterNet for weakly perceived objects. Meanwhile, 
we divided the dataset into the training set, the verification set and the test set in the proportions 
of 0.8, 0.1 and 0.1, respectively.  

Different from the KITTI dataset, the MS COCO dataset has more samples, providing 330,000 
images, 1.5 million object instances and 80 object categories. The images in the COCO dataset 
were mainly captured from complex daily scenes in real environments, containing numerous 
objects of various types; each image contains 3.5 object categories on average. Meanwhile, COCO 
divides objects into three scales: the large objects with sizes greater than 96 × 96 pixels, the 
medium objects with sizes ranging from 32 × 32 pixels to 96 × 96 pixels and the small objects with 
sizes less than 32 × 32 pixels to measure the average precision (AP) of multiple categories (mAP) 
values, respectively, where the large objects account for 24%, the medium objects account for 34% 
and the small objects account for 41%; that is, almost half of the objects in the COCO dataset are small, 
and they lack sufficient information to be perceived. Therefore, it is recommended to leverage the MS 
COCO dataset containing numerous small objects to evaluate our detection performance of weakly 
sensed objects. To clearly demonstrate the improvement of the detection performance of our proposed 
detector for weakly perceived objects, we evaluated our detector on the large objects (L), the medium 
objects (M) and the small objects (S) in the COCO dataset, respectively; we discuss the ability of our 
detector to detect weakly sensed objects based on the detection accuracy of the small objects (S). 

5.2. Training details and evaluation metrics 

We trained our proposed model in an end-to-end manner with the Adam optimizer; the pre-
training weights of ResNet50 and ResNext50 were obtained from ImageNet. 

The overall training process includes the frozen stage and unfrozen stage. During the first 50 
epochs of training, the parameters of the backbone in the network are frozen and will not be updated, 
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while the parameters of the other parts of the network are updated. For the KITTI dataset, we trained 
the entire network with a batch size of 8 and learning rate of 0.001 using a GTX 1660Ti GPU. For the 
COCO dataset, the network was trained with a batch size of 16 and learning rate of 0.001 using two 
GTX 2080 Ti GPUs. After 50 epochs, the parameters of the overall network were updated. For the 
KITTI dataset, the network was updated with a batch size of 4 and learning rate of 0.0001. For the 
COCO dataset, the network was trained with a batch size of 8 and learning rate of 0.0001. 

To illustrate the effectiveness of our proposed detection network, we adopted the evaluation 
metrics of the AP and mAP to evaluate the performance of the model. The AP is the average precision 
of a single category, and it is the index to measure the model performance. And, mAP is the average 
value of the AP for multiple categories; it measures the performance of the model for all categories. The 
AP is denoted as 

 
1

0
AP u vdv                                                                                                (5) 

where u demonstrates accuracy and v denotes the recall rate. 

5.3. Evaluation and analysis 

To select the appropriate components to compose our proposed improved CenterNet, we 
conducted a series of experiments using the KITTI dataset; then, we trained our proposed network and 
evaluated it on the KITTI and COCO datasets, respectively.  
Backbone. For the selection of a suitable backbone network, we compared the performance of 
CenterNet on ResNext50 and ResNet50, respectively. As shown in Table 1, compared with ResNet50, 
the mAP of the CenterNet on ResNext50 was increased by 1.81%, achieving gains of 0.96% for 
vehicles and 2.66% for the weakly perceived small objects of pedestrians. Obviously, the performance 
of the CenterNet on ResNext50 was better than that of the CenterNet on ResNet50. Thus, we selected 
the ResNext50 as the backbone for further experiments. 

Table 1. Comparison of the models on ResNet50 and ResNext50 using the KITTI dataset. 
The evaluation metric is the APm with an Intersection over Union (IoU) threshold of 0.5 
for pedestrians and vehicles. 

Method Backbone AP (pedestrian)  AP (vehicle) mAP 
CenterNet ResNet50 [37] 72.70 93.31 83.01
CenterNet ResNext50 [33] 75.36 94.27 84.82

Table 2. Comparison of the models with different feature-enhancement layers (“+”: with 
improved feature-enhancement layer, “-”: original feature-enhancement layer). 

Backbone Feature enhancement layer AP (pedestrian) AP (vehicle) mAP
ResNext50 - 75.36 94.27 84.82
ResNext50 + 79.30 94.86 87.08

Feature-enhancement layer. Based on the backbone of ResNext50, we compared the improved 
feature-enhancement layer with the original structure of the CenterNet. The experimental results 
shown in Table 2 indicate that the improved structure achieved 2.26% mAP gains, whereas the AP of 
vehicles increased by 0.59% and the AP of the weakly perceived small objects of pedestrians increased 
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by 3.94%. It can be seen that the detection accuracy of the weakly perceived small objects of 
pedestrians has been significantly promoted by improving the feature enhancement layer.  
Attention module. According to the results in Table 2, we selected ResNext50 with the improved 
feature-enhancement layer as a baseline to append various attention modules for comparative 
experiments. Specifically, we added the SE module, convolutional block attention module (CBAM) 
and efficient channel attention (ECA) module into the detection head of the baseline, respectively, to 
verify the effect of the attention mechanism on the model. As displayed in Table 3, the AP of the weakly 
perceived small objects of pedestrians of the CenterNet with the SE module ranked first among all of 
the models. Moreover, compared with the baseline model, the mAP of the CenterNet model with the 
SE module was increased by 1.30%, where the AP of the weakly perceived pedestrians achieved a 2.7% 
increase, but the AP of vehicles slightly dropped.  

Table 3. Comparison of models with improved feature-enhancement structure and 
attention modules (“×”: without the attention module). 

Backbone Feature-enhancement layer  Attention AP (pedestrian) AP (vehicle) mAP 
ResNext50 + × 79.30 94.86 87.08
ResNext50 
ResNext50 
ResNext50 

+ 
+ 
+ 

SE [28] 
CBAM [30] 
ECA [29]

82.00 
80.65 
78.39

94.77 
95.09 
94.31 

88.38 
87.87 
86.35

According to the above discussion, we propose our improved CenterNet consisting of the 
backbone of ResNext50, the improved feature-enhancement layer and the detection head with the SE 
module. Meanwhile, the pedestrians are usually small in size and possess too little information to be 
perceived, resulting in hard detection; a series of detectors with multi-scale structures are proposed to 
strengthen the features of the small weakly sensed objects for detection, such as FCOS, YOLOV4, 
YOLOV3, YOLOX and SSD. Therefore, to verify the effect of our proposed detector for the weakly 
sensed objects of pedestrians from the KITTI dataset, we compared our proposed improved CenterNet 
with different state-of-the-art detectors of multi-scale structure, such as the anchor-free detectors of 
FCOS and YOLOX, the representative anchor-based detectors of SSD, YOLOV3 and YOLOV4 and 
the latest anchor-based algorithms of YOLOV3-SPP, YOLOV3-SPP-ASFF, YOLOV3-SPP-ASFF-SE 
and ResNext-SSD; the results are shown in Table 4.  

Table 4. Performance comparison for various algorithms on the KITTI dataset. The 
evaluation metric is the AP, with an IoU threshold of 0.5 for pedestrians and vehicles. 

Detector Backbone AP (pedestrian) AP (vehicle) mAP 
FCOS [20] ResNet50 71.63 93.63 82.63
YOLOV3 [6] Darknet53 72.80 93.90 83.35
YOLOV3-SPP [38] Darknet53 78.10 95.80 86.95 
YOLOV3-SPP-ASFF [38] Darknet53 79.70 95.50 87.60
YOLOV3-SPP-ASFF-SE [38] Darknet53 80.00 95.60 87.80
YOLOV4 [7] CSPDarknet53 82.40 89.93 86.16
YOLOX [14] CSPDarknet 72.19 91.40 81.80 
SSD [25] ResNet50 69.8 86.5 78.15
ResNext-SSD [39] ResNext50 81.10 92.40 86.75
CenterNet [24] ResNet50 72.70 93.31 83.01
Ours ResNext50 82.00 94.77 88.38 



12844 

Mathematical Biosciences and Engineering  Volume 19, Issue 12, 12833–12851. 

Table 4 shows that our improved CenterNet achieves an improvement of 5.37% for the mAP value 
relative to the basic CenterNet, the AP gain of vehicles was 1.46%, and the AP value for weakly sensed 
pedestrians was remarkably increased by 9.3%. Besides, compared with previous state-of-the-art 
multi-scale detectors, our proposed model obtained the highest mAP value for vehicles and pedestrians, 
where the AP value of weakly perceived pedestrians was higher than that for most detectors, except 
for YOLOV4; and, it achieved a 0.9% gain at least. Although our AP for pedestrians dropped slightly 
by 0.4%, contrasting with YOLOV4, the overall detection performance of the mAP value showed 
a 2.22% improvement. In summary, our proposed model appears to achieve excellent performance for 
the detection of weakly perceived small pedestrians in the KITTI dataset, which has numerous small 
pedestrians and certain weakly sensed vehicles of small sizes. 

To further validate the effectiveness of our detector in detecting weakly perceived small objects, 
we evaluated our method on the objects of the three scales of large (L), medium (M) and small (S) in 
the COCO dataset, respectively; the experimental results are shown in Table 5. Meanwhile, Table 5 
shows the detection accuracy of other state-of-the-art detectors on the three scales of objects.  

Table 5. Performance comparison for various detectors on the COCO dataset. The 
evaluation metric is the AP, which is the average of 10 detection precision values given 10 
IoU thresholds (0.5:0.05:0.95). And, the AP_S, AP_M and AP_L represent the AP of the 
small objects (S), medium objects (M) and large objects (L), respectively. 

Detector Backbone AP AP_S AP_M AP_L 
SSD [25] VGG16 28.8 10.9 31.8 43.5
YOLOv3 [6] Darknet53 31.0 15.2 33.2 42.8
YOLOv3-SPP+ASFF [38] Darknet53 38.1 16.1 41.6 53.6 
YOLOv3-SPP [38] Darknet53 36.0 20.6 37.4 46.1
YOLOv4 [7] CSPDarknet53 43.5 26.7 46.7 53.3
RFBNet [27] HarDNet68 33.9 14.7 36.6 50.5
ATSS [40] ResNet101 43.6 26.1 47.0 53.6
RDSNet [41] ResNet101 36.0 17.4 39.6 49.7 
CenterNet [24] ResNet50 40.7 20.3 47.1 54.2
Ours ResNext50 43.9 27.7 48.2 55.4

As shown in Table 5, the AP value of our proposed improved CenterNet ranked first among all of 
the methods, leading to a 3.2% AP gain over the basic CenterNet. Meanwhile, for the detection of 
small objects, our proposed detector achieved a 7.4% AP_S gain over the standard CenterNet, and at 
least 1% AP_S improvement over other detectors, which demonstrates that our detectors can 
effectively promote the detection performance for weakly sensed objects of small size. Furthermore, 
for the detection of the objects with large scales and medium scales, the AP_M and AP_L of our 
framework have slight improvements over the basic CenterNet, achieving 1.1 and 1.2% gains, 
respectively. We deem that the added attention module in the detection head and the proposed 
improved feature-enhancement layer allow weakly sensed small objects with insufficient information 
to yield abundant knowledge and attract more attention for detection. By contrast, the large-scale and 
the medium-scale objects already have rich features; hence, our improvements on CenterNet yield little 
effect on these objects. Overall, the proposed detection framework in this paper effectively improves 
the detection precision and achieves great detection performance for weakly sensed small objects from 
the COCO dataset. 
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5.4. Ablation study 

By summarizing the above experimental results, we designed the ablation experiments using the 
KITTI dataset to verify the effectiveness of various components in the improved CenterNet. In the 
ablation experiments, the backbone network, feature-enhancement layer and attention module in the 
detection head of the improved CenterNet were analyzed; the experimental results are shown in Table 6, 
where “+” indicates the model with the improved feature-enhancement layer and “√” represents the 
model using the SE attention module in the detection head.  

Table 6 shows that the improved feature-enhancement layer can promote the performance of the 
original CenterNet model better than the improvements of the backbone network and SE module. 
Specifically, based on the backbone of ResNet50 and ResNext50, the mAP of the CenterNet model 
with an improved feature-enhancement layer was increased by 3.86 and 4.07%, respectively; however, 
the mAP of the CenterNet model with the SE module was only increased by 0.49 and 2.24%, 
respectively. Combining with the improved feature-enhancement layer and SE module in the detection 
head, for the backbone of ResNet50 and ResNext50, the improved model achieved 4.65 and 5.37% 
mAP gains, respectively. Meanwhile, the results in Table 5 show that the detection performances of 
different improved models with ResNext50 were better than those with ResNet50.  

Table 6. Results of ablation study using the KITTI dataset (“√”: adding the attention 
module). The evaluation metric is the AP, with an IoU threshold of 0.5 for pedestrians and 
vehicles; the maximum AP value or mAP value in each column is bolded. 

Case Backbone Feature-enhancement layer Attention AP (pedestrian) AP (vehicle) mAP 
Origin ResNet50 - × 72.70 93.31 83.01
Case 1 ResNet50 + × 78.98 94.77 86.87
Case 2 ResNet50 - √ 73.61 93.40 83.50
Case 3 ResNet50 + √ 80.24 95.08 87.66
Case 4 ResNext50 - × 75.36 94.27 84.82
Case 5 ResNext50 + × 79.30 94.86 87.08
Case ResNext50 - √ 75.72 94.77 85.25
Case 7 ResNext50 + √ 82.00 94.77 88.38

 

Figure 7. Comparison of training loss. 

Subsequently, as shown in Figure 7, we compared the training losses for various models listed in 
Table 6; the loss of each improved model from Cases 1 to 7 was lower than that for the original model, 
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and the losses of the models with the improved feature-enhancement layer for Cases 1, 3, 5 and 7 
decreased faster than other models. It proves that the improved feature-enhancement layer can 
effectively accelerate the rate of convergence of the CenterNet model. And. the model in Case 7 gained 
the least training loss, which proves its powerful learning ability. 

    
       a) PR curve of vehicle                                         b) PR curve of pedestrian 

Figure 8. Precision-recall (PR) curves for all models. 

In Figure 8, we present the precision-recall (PR) curves for the various models displayed in 
Table 6; the PR curves for the vehicles are displayed in Figure 8 a), and the PR curves of pedestrians 
are shown in Figure 8b). And, all of the PR curves indicate that the precision and recall values for 
all models from Cases 1 to 7 listed in Table 6 have been significantly promoted relative to the original 
CenterNet. And, among all of the cases in Table 6, the improved model of Case 7 with the improved 
feature-enhancement layer and the SE block had the largest area of the PR curve and achieved the 
best performance. 

5.5. Qualitative results 

Some qualitative results for the KITTI dataset and COCO dataset that were obtained via our 
proposed detector and the standard CenterNet for weakly perceived objects are displayed in Figure 9. 
As shown in Figure 9a), our detector effectively detected the weakly perceived objects of the small 
pedestrians due to distance in the complex environment, while it was undetected by the original 
CenterNet. The weak pedestrian with poor illumination in the shadow on the left of Figure 9b) was 
ignored by the original model, while it could be detected by our detector. In Figure 9c), our detector 
could accurately detect the weakly perceived object of the occluded vehicle, which was missed by the 
original detector.  Moreover, in the case of the COCO dataset, for the weakly sensed objects of the 
occluded persons of Figure 9d), the original model ignored them, while they were detected by our 
detector. And, in Figure 9e),f), our detector successfully located the objects with small sizes due to the 
occlusion or distance, which failed to be detected via the basic CenterNet. 

In summary, our proposed detector given as the improved CenterNet can detect weakly 
perceived pedestrians and other weakly perceived objects with small sizes caused by occlusion, 
truncation and distance. 
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a) Distant pedestrians with small size in the KITTI dataset 

 

b) Small pedestrians in poor light in the KITTI dataset 

 

c) Small vehicle with occlusion in the KITTI dataset 

 

d) Small objects in the COCO dataset 

 

e) Small objects with occlusion in the COCO dataset 

 

f) Distant objects with small size in the COCO dataset 

Figure 9. Qualitative results of the proposed improved CenterNet on the KITTI and COCO 
datasets. For the images in each group, the left plot shows the result of the original 
CenterNet model, and the result of our detector is displayed in the right image. The 
detected objects are shown with the bounding boxes. 

6. Conclusions 

Aiming at the problem of missed detection for weakly perceived small objects in complex 
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environments, we have proposed an improved CenterNet based on the anchor-free mechanism. First, 
ResNext50, instead of ResNet50, was adopted to be a backbone network, as it improves the ability of 
the feature extraction. Second, the feature-enhancement layer has been improved to strengthen the 
semantic information and enlarge the reception fields for the weakly sensed objects by combining the 
FPN structure and dilated convolution module. Finally, by appending the attention module in the 
detection head, the key information of the weakly sensed small objects is enhanced. The experimental 
results show that our improved model can elevate the detection precision of the model and accelerate 
the convergence speed of the original model, achieving a good effect on the detection of weakly 
sensed objects. 
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