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Abstract: In this paper, we investigate the prespecified-time bipartite synchronization (PTBS) of cou-
pled reaction-diffusion memristive neural networks (CRDMNNs) with both competitive and coopera-
tive interactions. Two types of bipartite synchronization are considered: leaderless PTBS and leader-
following PTBS. With the help of a structural balance condition, the criteria for PTBS for CRDMNNs
are derived by designing suitable Lyapunov functionals and novel control protocols. Different from
the traditional finite-time or fixed-time synchronization, the settling time obtained in this paper is in-
dependent of control gains and initial values, which can be pre-set according to the task requirements.
Lastly, numerical simulations are given to verify the obtained results.
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1. Introduction

The memristor is the fourth basic circuit element, and it was firstly proposed by Chua in 1971 [1].
The first memristor device was realized in 2008 [2], and since then it has received much attention from
research area, such as neural networks, signal processing and artificial intelligence. As a particular
type of neural networks, memristive neural networks (MNNs) have become an interesting topic for
researchers [3–6]. MNNs can be regarded as a switch system since the memristive connection weights
switch according to the system states. Compared with the traditional network model, MNNs have
more equilibrium points and can better modify the dynamics of neurons in human brains. Lately, the
dynamical analysis of MNNs has attracted great attention [7–9].
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As we know, reaction-diffusion influences are important and common in chemistry, biology and
neuroscience. Since the electrons in circuits move in a nonuniform electric field, the state of the
electrons dose not only depend on time but also on the spatial information. Due to this reason, MNNs
with reaction-diffusion terms can better modify the real-world systems than the traditional MNNs.
Recently, the research on dynamics of reaction-diffusion MNNs has made great progress, such as
stability [10], passivity [11, 12], and asymptotical synchronization [13, 14]. However, most of these
results only focus on the cooperative interactions between neurons, while the competitive relationships
have not been considered yet.

In the real world, competition and cooperation relationships coexist in many dynamic systems. For
instance, in biological systems, interactions between cells may be cooperative or competitive; in social
networks, relationships between people may be hostile or friendly. Hence, it is meaningful and neces-
sary to consider the model of coopetition networks, in which the competition and cooperation relation-
ships coexist [15–21]. Due to the existence of competition relationships, the traditional synchronization
cannot be realized, and instead we will consider bipartite synchronization. In Reference [15], the idea
of bipartite consensus in coopetition networks was first proposed, it requires that all nodes’ states will
reach the consensus in modulus but may not in sign. Recently, bipartite synchronization of coopeti-
tion networks has attracted the attention of many scholars [18–21]. In Reference [19], by designing an
adaptive control strategy, the bipartite synchronization of coupled coopetition MNNs is investigated. In
Reference [20], the model of inertial MNNs with antagonistic interactions is considered, and the crite-
ria for bipartite synchronization are derived in both the leaderless and leader-following case. However,
the above works only focus on the asymptotic or exponential synchronization, and how to improve the
convergence speed in bipartite synchronization still remains an open topic.

Synchronization is an important phenomenon in engineering and biological systems. As we know,
the convergence speed is an important issue in synchronization. To overcome the constraints of long
convergence time, the issue of finite-time synchronization (FTS) is proposed [24]. Different from
asymptotic synchronization [22, 23], FTS guarantees the system will reach synchronization in a finite
time. However, the convergence time of FTS is related to the initial conditions [24–27], which may
be unmeasurable in practice. To solve this problem, the idea of fixed-time synchronization (FxT) is
introduced [28]. Although the FxTS control removes the limitation of initial dependence, its settling
time is related to the control parameters [28–31]. Hence, the settling time of traditional FTS and FxTS
control still depend on the initial conditions and system parameters, which is a great limitation for
some practical applications. To solve this problem, prespecified-time synchronization (PTS) control is
proposed [32–35], in which the settling time is independent of both initial value and control parame-
ters. As we know, the investigation of prespecified-time control is still very limited, especially for the
coupled networks with competitive interactions.

This paper is intended to explore the prespecified-time bipartite synchronization (PTBS) of
CRDMNNs with both cooperative and competitive relationships. The main contributions of this work
are as follows:

1) Different from most previous results that only focus on cooperative interactions, this paper con-
siders the model of CRDMNNs with both cooperative and competitive relationships between neurons.

2) By designing a novel control protocol, criteria for leader-following PTBS and leaderless PTBS
of CRDMNNs are derived. It is shown that under the proposed protocol, all nodes’ states will reach
synchronization in modulus (but might not in sign) within a prescribed time.
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3) Different from the traditional FTS and FxTS methods, the prespecified-time control method in
this work can lead to a predetermined settling time, which is independent of both initial values and
system parameters.

Notations. In this paper, sgn(·) denotes the signum function. The symbol T denotes vector trans-
position. C1 denotes the set of continuous functions. λmax(A) is the maximal eigenvalue of matrix A.
⊗ denotes the Kronecker product. Ω = {x = (x1, · · · , xϑ)T |hm

k ≤ |xk| ≤ hM
k , k = 1, · · · , ϑ} is a bounded

compact set with smooth boundary ∂Ω.

2. Preliminaries and model formulation

A signed graph is represented by G = {P, J,G}, where P = {p1, p2, · · · , pN} is the node set, J ⊂
P × P = {(pi, p j)|pi, p j ∈ P} denotes the edge set, G = [Gi j] ∈ RN×N is the adjacent matrix satisfying
that Gi j , 0 if (pi, p j) ∈ J, and Gi j = 0 otherwise. It is assumed that Gii = 0. If the relationship between
nodes pi and p j is competitive (cooperative), then Gi j < 0 (Gi j > 0). Due to the existence of negative
edges, the elements in the Laplacian matrix L of a signed graph are given as

lik =

{ ∑
j∈Ni
|Gi j|, k = i,

Gik, k , i.

Definition 1. For a signed graph, it is called structurally balanced if the node set P can be divided into
two subgroups P1 and P2, where P1∪P2 = P and P1∩P2 = ∅, such that Gi j ≥ 0 for ∀pi, p j ∈ Pl(l ∈ {1, 2})
and Gi j ≤ 0 for ∀pi ∈ Pl, p j ∈ Pk(k , l, k, l ∈ {1, 2}) [15].

Lemma 1. Suppose L is the Laplacian matrix of a signed graph G. If G is structurally balanced, then
there is a gauge transformation matrix S = diag(s1, · · · , sN) with si ∈ {−1, 1}, such that S LS has all
nonnegative entries [15].

The model of CRDMNNs with competitive interactions is:

∂zp(t, x)
∂t

=D∆zp(t, x) −Czp(t, x) + A(zp(t, x)) f (zp(t, x))

+ σ
∑
q∈Np

|Gpq|Γ
(
sgn(Gpq)zq(t, x) − zp(t, x)

)
+ up(t, x), p = 1, · · · , n (2.1)

where zp(t, x) = (zp1(t, x), · · · , zpn(t, x))T ∈ Rn denotes the state of the pth neural network at time t and
space x ∈ Ω ⊆ Rz. f (zp(t, x)) = ( f1(zp1(t, x)), · · · , fn(zpn(t, x)))T ∈ Rn denotes the activation function.
∆ =
∑ϑ

k=1( ∂2

∂x2
k
) is the Laplace diffusion operator. D = diag(d1, · · · , dn) > 0. C = diag(c1, c2, · · · , cn) >

0. A(zp(t, x)) = [ak j(zp j(t, x))]n×n stands for the memristive connection weight matrix. σ is a positive
number denoting the coupling strength, andNp is the neighbor set of node p. Γ = diag(γ1, γ2, · · · , γn) ∈
Rn×n is the inner coupling matrix. up(t, x) is the control input to be designed. G = (Gpq)N×N is the
symmetric weighted adjacency matrix of the signed graph, representing the competitive-cooperation
relationship between neurons. The memristive connection weights ak j(zp j(t, x)) can be described as

ak j(zp j(t, x)) =
{

ák j, |zp j(t, x)| ≤ T j,

àk j, |zp j(t, x)| > T j,
(2.2)
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where T j > 0 is the switching jump, and ák j, àk j are real numbers. Define

ak j = min{ák j, àk j}, āk j = max{ák j, àk j}, a+k j = max{|ák j|, |àk j|}.

The initial condition and Dirichlet boundary condition of zp(t, x) arezp(t0, x) = ψp(x), x ∈ Ω,
zp(t, x) = 0, (t, x) ∈ [t0,+∞) × ∂Ω.

(2.3)

Remark 1. In this article, the reaction-diffusion term is contained in the MNNs model, and it is closer
to the real networks because spatial location is considered. So, our results are more general than
previous results in [19, 20].

Next, we make the following assumptions.

Assumption 1. The cooperative-competitive network G is structurally balanced and connected.

Assumption 2. The activation function fp(·) is bounded, and there exist constants σp and Υ such that

| fp(x) − sq fp(y)| ≤ σp|x − sqy|,∀x, y ∈ R,

| fp(x)| ≤ Υ,∀x ∈ R.

In addition, define F = diag(σ1, · · · , σn) ∈ Rn×n.

Lemma 2. If η(x) = η(x1, · · · , xϑ) : Ω→ R satisfies that η(x) ∈ C1(Ω) and η(x)|∂Ω = 0, then [12]∫
Ω

ϑ∑
k=1

(
η(x)

∂2η(x)
∂x2

k

)
dx ≤ −

ϑ∑
k=1

π2

(hM
k − hm

k )2

∫
Ω

η2(x)dx.

Based on the feature of Laplacian matrix L of the signed graph, we have:∑
q∈Np

|Gpq|Γ
(
sgn(Gpq)zq(t, x) − zp(t, x)

)
=
∑
q∈Np

GpqΓzq(t, x) −
∑
q∈Np

|Gpq|Γzq(t, x) =
N∑

q=1

lpqΓzq(t, x). (2.4)

Hence, CRDMNN (2.1) can be written as

∂zp(t, x)
∂t

=D∆zp(t, x) −Czp(t, x) + A(zp(t, x)) f (zp(t, x))

+ σ

N∑
q=1

lpqΓzq(t, x) + up(t, x). (2.5)

Definition 2. The CRDMNNs System (2.5) is said to reach leaderless PTBS, if there exists a time T ,
which is a prespecified constant for any initial values, such that

lim
t→T−
∥spzp(t, x) − sqzq(t, x)∥ = 0, p, q = 1, · · · ,N,

∥spzp(t, x) − sqzq(t, x)∥ ≡ 0, ∀t > T.
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Remark 2. In this work, we use zq(t, x) − zp(t, x) to represent the cooperation relationship between
nodes p and q, and we use zq(t, x)+ zp(t, x) to depict the competitive relationship between nodes p and
q.

The System (2.5) can be rewritten as the following matrix form:

∂z(t, x)
∂t

=Ď∆z(t, x) − Čz(t, x) + Ǎ(z(t, x)) f (z(t, x))

+ σ(L ⊗ Γ)z(t, x) + u(t, x). (2.6)

where

z(t, x) = (zT
1 (t, x), · · · , zT

N(t, x))T , Ď = IN ⊗ D,

u(t, x) = (uT
1 (t, x), · · · , uT

N(t, x))T , Č = IN ⊗C,

Ǎ(z(t, x)) = diag(A(z1(t, x)), · · · , A(zN(t, x))),
f (z(t, x)) = ( f T (z1(t, x)), · · · , f T (zN(t, x)))T

To achieve the main results, two classes of matrices are given. Define

M =



s1 −s2 0 0 · · · 0 0
0 s2 −s3 0 · · · 0 0
0 0 s3 −s4 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 . . . sN−1 −sN


(N−1)×N

J =



s1 s1 s1 · · · s1 s1

0 s2 s2 · · · s2 s2

0 0 s3 s3 · · · s3
...

...
...

...
...

...

0 0 0 . . . 0 sN−1

0 0 0 . . . 0 0


N×(N−1)

Definition 3. For the CRDMNN System (2.6), define:

d(z) = ∥Mz(t, x)∥2 =
∫
Ω

zT (t, x)MT Mz(t, x)dx,

where M = M ⊗ In. Then, the networks’ states can reach leaderless PTBS, if there exists a time T ,
which is a prescribed constant for any initial values, such that

lim
t→T−

d(z) = 0, d(z) ≡ 0,∀t > T.

Lemma 3. For the Laplacian matrix L ∈ RN×N , there is a matrix H ∈ R(N−1)×(N−1) given by H = MLJ,
so that the following condition is satisfied:

HM = ML, Hi j =

j∑
k=1

sisklik − si+1skli+1,k
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For convenience, define

Ā = IN ⊗ Ā, Ā1 = IN−1 ⊗ Ā, H = H ⊗ Γ,

Ĉ1 = IN−1 ⊗C, D̂1 = IN−1 ⊗ D, F = IN−1 ⊗ F,

D∗ =
ϑ∑

k=1

π2

(hM
k − hm

k )2
D̂1

3. Main results

To achieve leaderless PTBS, the following controller for System (2.5) is introduced:

up(t, x) = − Ksp

N−1∑
j=p

sgn(s jz j(t, x) − s j+1z j+1(t, x))

− ξpzp(t, x) − ψ
r
T
µ(t)zp(t, x) (3.1)

where K = diag(k1, k2, · · · , kn) > 0, ξp > 0 and ψ > 0 are control gains to be designed. r is a positive
constant, and T > 0 is a prespecified time chosen by users. Let tb = t0 + T , and µ(t) is a function
defined as:

µ(t) =
{ T

tb−t , t ∈ [t0, tb),
1, t ∈ [tb,+∞).

(3.2)

The derivative of µ(t) can be calculated:

µ̇(t) =
{ 1

T µ
2(t), t ∈ [t0, tb),

0, t ∈ [tb,+∞).
(3.3)

With the control protocol (3.1), the theorem can be achieved.

Theorem 1. Under Assumptions 1 and 2, if the control gains constants k j, ξp satisfy the following
conditions

k j ≥ 2
n∑

s=1

(ā js − a js)Υ, j = 1, 2, · · · , n,

− ξ̃ + λmax(−D∗ − Ĉ1 + Ā1ĀT
1 + F2 + σH) ≤ −

ϕ

2

where ξ̃ = minp{ξp}, and ϕ > 0 is a positive constant, then the leaderless bipartite prespecified-time
synchronization for CRDMNN (2.6) can be achieved with controller (3.1).

Proof. Before proceeding, let y(t, x) =Mz(t, x), and then we get yi(t, x) = sizi(t, x)− si+1zi+1(t, x), i =
1, · · · ,N − 1. Consider the Lyapunov functional

V(t) =
1
2

∫
Ω

zT (t, x)MT Mz(t, x)dx. (3.4)
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Computing the derivative along (2.6), it follows that

dV(t)
dt
=

∫
Ω

zT (t, x)MT Mż(t, x)dx

=

∫
Ω

zT (t, x)MT M
(
Ď∆z(t, x) − Čz(t, x)

+ Ǎ(z(t, x)) f (z(t, x)) + σ(L ⊗ Γ)z(t, x) + u(t, x)
)
dx. (3.5)

From Lemma 2, we get ∫
Ω

zT (t, x)MT MĎ∆z(t, x)dx

=

∫
Ω

zT (t, x)MT D̂1M∆z(t, x)dx

=

∫
Ω

N−1∑
i=1

yT
i (t, x)D∆yi(t, x)dx

≤ −

ϑ∑
k=1

π2

(hM
k − hm

k )2

∫
Ω

N−1∑
i=1

yT
i (t, x)Dyi(t, x)dx

= −

ϑ∑
k=1

π2

(hM
k − hm

k )2

∫
Ω

zT (t, x)MT D̂1Mz(t, x)dx

=

∫
Ω

zT (t, x)MT D∗Mz(t, x)dx. (3.6)

Note that

MÂ(z(t, x)) f (z(t, x))
=MĀ f (z(t, x)) +M(Ǎ(z(t, x)) − Ā) f (z(t, x)). (3.7)

Based on Assumption 2, we have

zT (t, x)MT M
(
Ǎ(z(t, x)) − Ā

)
f (z(t, x))

=

N−1∑
i=1

yT
i (t, x)

(
si(A(zi(t, x)) − Ā) f (zi(t, x))

− si+1(A(zi+1(t, x)) − Ā) f (zi+1(t, x))
)

=

N−1∑
i=1

n∑
j=1

yi j(t, x)
n∑

s=1

[(a js(zis) − ā js)si fs(zis(t, x))

− (a js(zi+1,s) − ā js)si+1 fs(zi+1,s(t, x))]

≤

N−1∑
i=1

n∑
j=1

2
n∑

s=1

(ā js − a js)Υ|yi j(t, x)|. (3.8)
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Similarly, we get

zT (t, x)MT MĀ f (z(t, x))
=zT (t, x)MT Ā1M f (z(t, x))

=

N−1∑
i=1

(sizi(t, x) − si+1zi+1(t, x))T Ā(si f (zi(t, x)) − si+1 f (zi+1(t, x)))

≤

N−1∑
i=1

yT
i (t, x)ĀĀT yi(t, x) +

N−1∑
i=1

yT
i (t, x)F2yi(t, x)

=zT (t, x)MT Ā1ĀT
1 Mz(t, x) + zT (t, x)MT F2Mz(t, x). (3.9)

By Lemma 3, we get

zT (t, x)MT M(L ⊗ Γ)z(t, x)
=zT (t, x)MT (M ⊗ In)(L ⊗ Γ)z(t, x)
=zT (t, x)MT (ML ⊗ Γ)z(t, x)
=zT (t, x)MT (HM ⊗ Γ)z(t, x)
=zT (t, x)MT (H ⊗ Γ)(M ⊗ In)z(t, x)
=zT (t, x)MT HMz(t, x), (3.10)

and

zT (t, x)MT Mu(t, x)

= −

N−1∑
i=1

n∑
j=1

k jyi j(t, x)sgn(yi j(t, x)) − ξ̃zT (t, x)MT Mz(t, x)

− ψ
r
T
µ(t)zT (t, x)MT Mz(t, x)

= −

N−1∑
i=1

n∑
j=1

k j|yi j(t, x)| − (ξ̃ + ψ
r
T
µ(t))zT (t, x)MT Mz(t, x). (3.11)

From the condition in Theorem 1, we derive that

V̇(t) ≤
∫
Ω

zT (t, x)MT (−ξ̃ − D∗ − Ĉ1 + Ā1ĀT
1 + F2

+ σH)Mz(t, x)dx − 2ψ
r
T
µ(t)V(t)

≤ − ϕV(t) − 2ψ
r
T
µ(t)V(t). (3.12)

According to the definition of µ(t), defining Ω(t) = µr(t) yields

r
T
µ(t) =

Ω̇(t)
Ω(t)

, t ∈ [t0, tb). (3.13)
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Multiplying Ω2ψ(t) on both sides of (3.12) yields

d[Ω2ψ(t)V(t)]
dt

≤ −ϕ[Ω2ψ(t)V(t)]. (3.14)

Solving the above inequality yields

Ω2ψ(t)V(t) ≤ e−ϕ(t−t0)Ω2ψ(t0)V(t0). (3.15)

Then, we have

V(t) ≤ e−ϕ(t−t0)µ(t)−2rψµ(t0)2rψV(t0). (3.16)

Note that

µ(t0)2rψ = 1, lim
t→t−b

µ(t)−2rψ = 0. (3.17)

which yields

lim
t→t−b

V(t) = 0. (3.18)

Hence, limt→t−b
∥y(t, x)∥ = 0, and the systems can reach synchronization in prespecified time T .

Next, we prove that the synchronization can be maintained on [tb,+∞).

V̇(t) ≤ −(ϕ + 2ψ
r
T

)V(t) = −θ̂V(t), t ∈ [tb,+∞). (3.19)

where θ̂ = ϕ + 2ψ r
T > 0.

Then, we can get

0 ≤ V(t) ≤ V(tb) = 0, t ∈ [tb,+∞). (3.20)

So, we obtain that V(t) ≡ 0 over [tb,+∞). Hence, ∥y(t, x)∥ ≡ 0 on [tb,+∞). Based on Definition 3,
leaderless PTBS for Systems (2.6) can be realized with controller (3.1). The proof is complete.

Remark 3. Different from [33–35], the competitive relationship between network nodes is consid-
ered in this paper, which is described by negative edges in the signed graph. It can be seen that the
prescribed-time synchronization in the above papers is a special case of the bipartite prescribed-time
synchronization in this work. On the other hand, compared with the asymptotic bipartite synchroniza-
tion criteria in [19,20], our approach ensures that the CRDMNNs can reach bipartite synchronization
within prespecified time tb, which is independent of initial values and control parameters.

Remark 4. Since there are switching parameters in the memristor system, the first term of controller
(3.1) is designed to remove the influence of the memristor parameters. Then, the terms −ξpzp(t, x)
and −ψ r

T µ(t)zp(t, x) are devoted to realizing the convergence in a prespecified time. The function µ(t)
plays an important role to ensure the prespecified-time synchronization. It can be seen from (3.17) that
µ(t0)2rψ = 1, limt→t−b

µ(t)−2rψ = 0. In practical applications, there may exist a leader in the community.
In this case, leader-following synchronization is a meaningful issue to be considered.
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Next, we aim to investigate leader-following PTBS of CRDMNNs. Considering the following
system with coupling delays:

∂zp(t, x)
∂t

=D∆zp(t, x) −Czp(t, x) + A(zp(t, x)) f (zp(t, x))

+ σ
∑
q∈Np

|Gpq|Γ
(
sgn(Gpq)zq(t − τ, x) − zp(t − τ, x)

)
+ up(t, x). (3.21)

The reference target system is:

∂z0(t, x)
∂t

=D∆z0(t, x) −Cz0(t, x) + A(z0(t, x)) f (z0(t, x)). (3.22)

where z0(t, x) = (z01(t, x), z02(t, x), · · · , z0n(t, x))T ∈ Rn is the leader node.

Definition 4. For the CRDMNN System (3.21), it is said that the network can reach leader-following
PTBS, if there exists a prespecified constant T , which is independent of any initial values or control
parameters, such that

lim
t→T−
∥zp(t, x) − spz0(t, x)∥ = 0,

∥zp(t, x) − spz0(t, x)∥ ≡ 0,∀t > T,

where sp = 1 if p ∈ P1, and sp = −1 if p ∈ P2.

Define synchronization error δp(t, x) = zp(t, x) − spz0(t, x), and since
∑N

q=1 lpqsq = 0, we have

σ
∑
q∈Np

|Gpq|Γ
(
sgn(Gpq)zq(t − τ, x) − zp(t − τ, x)

)
=σ

N∑
q=1

lpqΓ
(
zq(t − τ, x) − sqz0(t − τ, x) + sqz0(t − τ, x)

)
=σ
∑
q∈Np

|Gpq|Γ
(
sgn(Gpq)δq(t − τ, x) − δp(t − τ, x)

)
(3.23)

Then, the error system can be obtained:

∂δp(t, x)
∂t

=D∆δp(t, x) −Cδp(t, x) + A(zp(t, x)) f (zp(t, x))

− spA(z0(t, x)) f (z0(t, x))

+ σ

N∑
q=1

lpqΓδq(t − τ, x) + up(t, x). (3.24)

Define the norm

∥δp(t, x)∥2 =
( ∫
Ω

δT
p (t, x)δp(t, x)dx

) 1
2
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The prespecified-time controller up(t, x) is designed as

up =



− Ksgn(δp(t, x)) − ξpδp(t, x) − 2ψ
r
T
µ(t)δp(t, x)

− ϕ
δp(t, x)
∥δp(t, x)∥22

∫ t

t−τ
δT

p (θ, x)δp(θ, x)dθ

− 2ψ
r
T
µ(t)

δp(t, x)
∥δp(t, x)∥22

∫ t

t−τ
δT

p (θ, x)δp(θ, x)dθ,

if δp(t, x) , 0,
0, otherwise,

(3.25)

where K = diag(k1, k2, · · · , kn) with ki > 0, ξp, ϕ, ψ > 0 are the control gains. sgn(δp(t, x)) =
(sgn(δp1(t, x)), · · · , sgn(δpn(t, x)))T ∈ Rn. T , r and µ(t) are defined the same as in controller (3.1).

Theorem 2. Under Assumptions 1 and 2, suppose the following conditions hold:

ki > 2
n∑

s=1

a+isΥ, i = 1, 2, · · · , n,

− ξ̃ − cmin −

ϑ∑
k=1

π2dmin

(hM
k − hm

k )2
+ σ2λmax[(L ⊗ Γ)2] ≤ −

ϕ

2

where ϕ > 0 is given in controller (3.25), ξ̃ = minp{ξp}, cmin = min{c1, c2, · · · , cn}, and dmin =

min{d1, d2, · · · , dn}. Then, leader-following PTBS for Systems (3.21) and (3.22) can be achieved under
controller (3.25).

Proof. Design the Lyapunov functional

V(t) =
1
2

N∑
p=1

∫
Ω

δT
p (t, x)δp(t, x)dx

+

∫
Ω

∫ t

t−τ
δT (θ, x)δ(θ, x)dθdx.

Computing the derivative along (3.24), we get

dV(t)
dt
=

N∑
p=1

∫
Ω

δT
p (t, x)δ̇p(t, x)dx +

∫
Ω

δT (t, x)δ(t, x)dx

−

∫
Ω

δT (t − τ, x)δ(t − τ, x)dx

=

N∑
p=1

∫
Ω

δT
p (t, x)

(
−Cδp(t, x) + D∆δp(t, x)

+ A(zp(t, x)) f (zp(t, x)) − spA(z0(t, x)) f (z0(t, x))
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+ σ

N∑
q=1

lpqΓδq(t − τ, x) + up(t, x)
)
dx

+

∫
Ω

δT (t, x)δ(t, x)dx −
∫
Ω

δT (t − τ, x)δ(t − τ, x)dx. (3.26)

Based on Lemma 2, we get ∫
Ω

δT
p (t, x)D∆δp(t, x)dx

≤ −

ϑ∑
k=1

π2

(hM
k − hm

k )2

∫
Ω

δT
p (t, x)Dδp(t, x)dx

≤ −

ϑ∑
k=1

π2dmin

(hM
k − hm

k )2

∫
Ω

δT
p (t, x)δp(t, x)dx. (3.27)

According to Assumption 2, we have

N∑
p=1

δT
p (t, x)

(
A(zp) f (zp(t, x)) − spA(z0) f (z0(t, x))

)
=

N∑
p=1

n∑
i=1

δpi(t, x)
n∑

s=1

(
ais(zps) fs(zps(t, x)) − spais(z0s) fs(z0s(t, x))

)
≤

N∑
p=1

n∑
i=1

2
n∑

s=1

a+isΥ|δpi(t, x)|. (3.28)

For the coupling terms, it can be yielded that

σ

N∑
p=1

δT
p (t, x)

N∑
q=1

lpqΓδq(t − τ, x)

=σδT (t, x)(L ⊗ Γ)δ(t − τ, x)
≤δT (t − τ, x)δ(t − τ, x) + σ2δT (t, x)(L ⊗ Γ)2δ(t, x)
≤δT (t − τ, x)δ(t − τ, x) + σ2λmax[(L ⊗ Γ)2]δT (t, x)δ(t, x) (3.29)

For the control term (3.25), we get

N∑
p=1

δT
p (t, x)up(t, x)

=

N∑
p=1

δT
p (t, x)

(
− Ksgn(δp(t, x)) − ξpδp(t, x)

− ψ
r
T
µ(t)δp(t, x) −

ϕδp(t, x)
∥δp(t, x)∥22

∣∣∣∣ ∫ t

t−τ
δT

p (θ, x)δp(θ, x)dθ
∣∣∣∣
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− 2ψ
r
T
µ(t)

δp(t, x)
∥δp(t, x)∥22

∣∣∣∣ ∫ t

t−τ
δT

p (θ, x))δp(θ, x)dθ
∣∣∣∣)

= −

N∑
p=1

n∑
i=1

ki|δpi(t, x)| −
N∑

p=1

ξpδ
T
p (t, x)δp(t, x)

−

N∑
p=1

ϕ

∫ t

t−τ
δT

p (θ, x)δp(θ, x)dθ − 2ψ
r
T
µ(t)

N∑
p=1

1
2
δT

p (t, x)δp(t, x)

− 2ψ
r
T
µ(t)

N∑
p=1

∫ t

t−τ
δT

p (θ, x)δp(θ, x)dθ. (3.30)

By combining the above inequalities, one has

dV(t)
dt
=

∫
Ω

δT (t, x)
(
− ξ̃ − cmin −

ϑ∑
k=1

π2dmin

(hM
k − hm

k )2

+ λmax[(L ⊗ Γ)2]
)
δ(t, x)dx

− ϕ

N∑
p=1

∫
Ω

∫ t

t−τ
δT

p (θ, x))δp(θ, x)dθdx

− 2ψ
r
T
µ(t) ·

1
2

N∑
p=1

∫
Ω

δT
p (t, x)δp(t, x)dx

− 2ψ
r
T
µ(t)

N∑
p=1

∫
Ω

∫ t

t−τ
δT

p (θ, x)δp(θ, x)dθdx

≤ − ϕV(t) − 2ψ
r
T
µ(t)V(t). (3.31)

Following the discussion in Theorem 1, we derive limt→t−b
∥zp(t, x) − spz0(t, x)∥2 = 0 and ∥zp(t, x) −

spz0(t, x)∥2 ≡ 0 on [tb,+∞). Thus, leader-following PTBS for Systems (3.21) and (3.22) can be realized
with controller (3.25).

Remark 5. Different from [12–14], the competitive relationship and coupling delay are considered
in this paper, which can better modify the real network model. Due to the existence of antagonistic
interactions and coupling delays, the traditional synchronization methods in [12–14] cannot be di-
rectly used to realize PTBS. Moreover, the convergence speed is required to be prescribed instead of
asymptotic in this work, and thus the Theorem in our work greatly generalizes the previous results on
bipartite synchronization.

Remark 6. In Reference [27], by applying nonsmooth analysis and some novel inequality techniques in
the complex field, several nonseparation method-based fixed-time synchronization criteria are derived.
In Reference [30], the FXTS of dynamic systems are reconsidered in this article based on special
functions from the view of improving the estimate accuracy for settling time and reducing the chattering
caused by the sign function. In this paper, the convergence time is prescribed in advance according to
actual requirements, and thus our criteria are less conservative and more flexible.
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4. Numerical examples

To verify our theorem, two simulation examples are proposed in this section. We consider a network
with 3 nodes, and since the structural balance condition is satisfied, the node set V can be separated
into V1 = {1, 2} and V2 = {3}. Then, one has s1 = s2 = 1 and s3 = −1. We first consider Theorem 1.

Example 1. Choose the CRDMNNs with 2 neurons as below:

∂zp(t, x)
∂t

=D∆zp(t, x) −Czp(t, x) + A(zp(t, x)) f (zp(t, x))

+ σ
∑
q∈Np

|Gpq|Γ
(
sgn(Gpq)zq(t, x) − zp(t, x)

)
+ up(t, x) (4.1)

where zp(t, x) = (zp1(t, x), zp2(t, x))T , D = diag(1, 1),C = diag(2, 2), and Ω = {x| − 1 ≤ x ≤ 1}. The
memristive matrix A(zp(t, x)) switches between Ǎ and Â, where

Â =
[

0.4 0.1
0.1 0.1

]
, Ǎ =

[
0.1 −0.1
−0.1 −0.1

]
(4.2)

The activation functions are chosen as

fp(x) = 0.5(|x + 1| − |x − 1|). (4.3)

It can be checked that F = 0.5I2 and Υ = 0.5. Hence, the conditions in Assumption 2 are satisfied.
Choose Γ = I2 and σ = 1. The Laplacian matrix is

L =


2 −1 −1
0 2 −1
1 −1 1

 .
The controller is

up(t, x) = − Ksp

N−1∑
j=p

sgn(s jz j(t, x) − s j+1z j+1(t, x))

− ξpzp(t, x) − ψ
r
T
µ(t)zp(t, x). (4.4)

Choose feedback matrix K = 0.6I2, ξp = 0.5, ψ = 1.5, r = 2, ϕ = 1. Let t0 = 0, and set the prespecified
time tb = 2. It can be checked that

k j ≥ 2
2∑

s=1

(ā js − a js)Υ, j = 1, 2

− ξ̃ + λmax(−D∗ − Ĉ1 + Ā1ĀT
1 + F2 + σH) ≤ −

ϕ

2

Thus, the conditions in Theorem 1 are satisfied. Choosing initial values in [−3, 3], Figures 1 and 2
depict the evolutions of states zp1(t, x) and zp2(t, x). It can be seen that system (4.1) can reach leaderless
PTBS in prespecified time tb under control law (4.4).
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Next, we consider the leader-following PTBS in Theorem 2.

Example 2. Consider the following 2-node CRDMNN with coupling delays:

∂zp(t, x)
∂t

=D∆zp(t, x) −Czp(t, x) + A(zp(t, x)) f (zp(t, x))

+ σ
∑
q∈Np

|Gpq|Γ
(
sgn(Gpq)zq(t − τ, x)

− zp(t − τ, x)
)
+ up(t, x) (4.5)

where τ = 0.5. Other parameters are the same as in Example 1. The desired reference target is

∂z0(t, x)
∂t

=D∆z0(t, x) −Cz0(t, x) + A(z0(t, x)) f (z0(t, x)). (4.6)

Let εp(t, x) = zp(t, x) − spz0(t, x), and the error system is

∂εp(t, x)
∂t

=D∆εp(t, x) −Cεp(t, x) + A(zp(t, x)) f (zp(t, x))

− spA(z0(t, x)) f (z0(t, x))

+ σ

N∑
q=1

lpqΓεq(t − τ, x) + up(t, x). (4.7)

The prespecified-time controller up(t, x) is chosen as (3.25). Choose ki = 2, ξp = 2. Other parameters
are the same as in Example 1. It can be checked that

ki > 2
2∑

s=1

a+isΥ,

− ξ̃ − cmin −

ϑ∑
k=1

π2dmin

(hM
k − hm

k )2
+ σ2λmax[(L ⊗ Γ)2] ≤ −

ϕ

2

Thus, the condition in Theorem 2 holds, and the leader-following PTBS is achieved. Take initial ran-
dom conditions in the interval [−3, 3], and Figure 3 describes the synchronization error εp(t, x) between
system (4.5) and (4.6) with controller (3.25). From the simulations, leader-following synchronization
can be achieved in prescribed time tb = 2.
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Figure 1. The trajectories zp1(t, x) of system (4.1) under controller (4.4).
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Figure 2. The trajectories zp2(t, x) of system (4.1) under controller (4.4).
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Figure 3. The trajectories ep1(t, x) of system (4.5) under controller (3.25).

5. Conclusions

This paper investigates the prespecified-time bipartite synchronization (PTBS) of CRDMNNs with
both cooperative and competitive interactions. Two types of PTBS are considered in our work: lead-
erless PTBS and leader-following PTBS. In addition, the coupling delays are considered in the leader-
following case. By designing suitable Lyapunov functionals and novel control protocols, two criteria
are derived for leaderless PTBS and leader-following PTBS based on a structural balance condition.
Compared with FTS and FxTS, the settling time in our theorem can be predetermined according to the
task, which is independent of the initial values and control parameters.

Our future study will focus on 1) PTBS control of neural networks under time-scale and 2) PTBS
control of quaternion-valued neural networks.
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