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Abstract: The spread of SARS-CoV-2 in the Canadian province of Ontario has resulted in millions of
infections and tens of thousands of deaths to date. Correspondingly, the implementation of modeling
to inform public health policies has proven to be exceptionally important. In this work, we expand a
previous model of the spread of SARS-CoV-2 in Ontario, ”Modeling the impact of a public response
on the COVID-19 pandemic in Ontario,” to include the discretized, Caputo fractional derivative in the
susceptible compartment. We perform identifiability and sensitivity analysis on both the integer-order
and fractional-order SEIRD model and contrast the quality of the fits. We note that both methods
produce fits of similar qualitative strength, though the inclusion of the fractional derivative operator
quantitatively improves the fits by almost 27% corroborating the appropriateness of fractional operators
for the purposes of phenomenological disease forecasting. In contrasting the fit procedures, we note
potential simplifications for future study. Finally, we use all four models to provide an estimate of the
time-dependent basic reproduction number for the spread of SARS-CoV-2 in Ontario between January
2020 and February 2021.

Keywords: identifiability analysis; numerical simulation; Caputo fractional derivative; L1-2
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1. Introduction

On January 25th, 2020, the first case of COVID-19 was confirmed in Toronto, Ontario [1]. As
of November 2021, SARS-CoV-2, the virus that causes the disease COVID-19, has infected over 1.7
million Canadians [2]. Throughout the course of this pandemic, the general public has been burdened
with the responsibility of reducing transmission through various public health efforts. Public health
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officials have successfully lobbied the general public to participate in transmission reduction by em-
ploying tools such as face masks, social distance, ventilation upgrades, and vaccinations. It is largely
by employing these public health guidelines that further epidemic waves are avoided in local contexts.

Mathematical models of the spread and evolution of COVID-19 have been utilized to help answer
questions of public health policy, vaccine deployment, and allocation of treatment resources. Indeed,
the successes of compartmental models in epidemiological contexts are hard to overstate. Such mathe-
matical models are incredibly powerful at producing short-term forecasts of the evolution of epidemic
waves. More importantly, however, these models create a test-bed by which various public health pol-
icy questions can be answered. As such, various situations can be simulated in order to gain insight into
the possible effects that changes in the behavior of the populace can create. In either case, whether the
model is utilized for prediction or for experimentation, any insights gained by the model are limited by
the capacity for the underlying model to describe the spread of the disease within the local population.

Fractional calculus has been employed in various contexts where classical (integer-order) deriva-
tives have met success. Namely, since fractional derivatives are calculated by utilizing global, inte-
gral operators, the use of fractional derivatives in differential equations results in a dynamical system
capable of capturing the effects of state memory and other non-local information that integer-order
methods are incapable of utilizing [3, 4]. As a result, fractional-order methods have met great suc-
cess in biological systems in general such as in the modelling of cancers [5], modelling the spread of
COVID-19 [6–9], and describing the dynamics of HIV [10, 11]. More specifically, fractional-order
methods have found great success in epidemiological compartmental systems in particular [12–15].
Fractional derivative operators are not the only derivative operators capable of producing memory ef-
fects, for instance, delay differential equations can introduce memory effects as well [16]. In principle,
a delayed differential operator could be employed as well. However, given the success of fractional
operators in the biological literature (and specifically the theoretical epidemiology literature), we focus
on fractional derivative operators in this report. From a particular perspective, time series prediction
can be accomplished via the use of iterative techniques, machine learning, and deep learning network
approaches [17–20]. While these are popular methods for time series forecasting, we are focused on
increasing the interpolative and predictive strength of phenomenological modeling of epidemics via
modifications of classical compartmental models.

From a practical standpoint, there are multiple choices of how to implement a fractional deriva-
tive. Of these choices, it is likely the Riemann–Liouville derivative and the Caputo derivative are
the most popular. There are certain particulars to consider when choosing between implementing a
Riemann-Liouville derivative or a Caputo derivative. For instance, the Riemann–Liouville has certain
disadvantages for modeling physical or biological systems. The Riemann–Liouville derivative of a
constant is not zero. In addition, if the Riemann-Liouville derivative is used in a dynamical system,
then the initial conditions must contain the limit values of Riemann-Liouville derivatives at time t = 0.
This is concerning when modeling physical or biological systems as the initial conditions become
decoupled from physical or biological interpretation. These disadvantages reduce the field of applica-
tion of the Riemann–Liouville fractional derivative. On the other hand, some of the great advantages
of the Caputo fractional derivative are that the Caputo fractional derivative of a constant vanishes, and
those dynamical systems under the Caputo fractional operator allow for traditional initial and boundary
conditions to be included in the formulation of the problem [21].

It is often the case in mathematical biology contexts that the model of the phenomenon being con-
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sidered contains certain tune-able, unknown parameters that must be calibrated to data in order for the
model to produce meaningful descriptions of the physical behavior. The process of determining these
unknown parameters is non-trivial, and it is often the case that some of these parameters can not be de-
termined simultaneously, even in the presence of sufficiently large data sets [22–25]. These questions
of the identifiability of unknown parameters, both structural and practical, are important theoretical
considerations for any calibrated model. Here, by performing an identifiability analysis, our previous
model of infectious disease in the Canadian province of Ontario can be investigated. Moreover, we
compare this model with a modified fractional-order model and demonstrate to accurately describe the
dynamics of multiple waves of epidemic infection.

Our manuscript is laid out as follows. In Section 2, we first introduce the integer-order model
of SARS-CoV-2 spread in the Canadian province of Ontario that we consider. Then, we extend this
model to the context of the fractional Caputo derivative in Section 2.2. Next, we discuss the calibration
methodology used to fit the model to the epidemiological data in Section 2.3. We begin the Results and
Discussion by presenting and discussing the results of the model calibration process in Section 3.2.
We then utilize the results of the fitting procedure in order to perform sensitivity and identifiability
analysis post-hoc validating the results of the calibration process. Then, we compare the results of the
integer and fractional models in Section 3.3, comparing not only the capacity by which either model
can describe the data but also comparing the predicted public response function θ(t) and its effects on
the time-dependent reproduction number Rt. Finally, we summarize our conclusions in Section 4.

2. Materials and methods

2.1. Integer-Order Mathematical Model

We consider the Distancing-SEIRD model from Eastman et al. [26]. This compartmental epidemic
model stratifies the population into five distinct subgroups. Individuals in group S represent those
susceptible individuals who have not yet been exposed to the virus, individuals in group E represent
those who have been exposed to enough viral pathogen as to eventually become infectious themselves
after some incubation period, and individuals in group I represent those who are infected with the
disease and are infectious to others, while individuals in groups R and D represent those who have
either recovered from the disease or have perished mode of COVID-19.

Moreover, it is assumed that the population can further be stratified into two groups: those that
actively follow public health guidelines to reduce transmission and those that do not. Rather than re-
stratify the existing five compartments into ten compartments total, the authors decide to model the
proportion of the population that is reducing transmission as a time-dependent proportion θ(t). When
θ(t) is near 1, most of the population is attempting to reduce transmission. In contrast, when θ(t) is
near 0, most of the population eschews public health guidelines for transmission reduction.
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dS
dt

= −β
(
θ(t)

)
S I︸        ︷︷        ︸

Contact with Infection

,

dE
dt

= β
(
θ(t)

)
S I︸      ︷︷      ︸

Contact with Infection

−
(
γD θ(t) + γM

(
1 − θ(t)

))
E︸                            ︷︷                            ︸

Disease Progression

,

dI
dt

=
(
γD θ(t) + γM

(
1 − θ(t)

))
E︸                            ︷︷                            ︸

Disease Progression

−
(
αD θ(t) + αM

(
1 − θ(t)

)
+ δD θ(t) + δM

(
1 − θ(t)

))
I︸                                                             ︷︷                                                             ︸

Recovery/Death

,

dR
dt

=
(
αD θ(t) + αM

(
1 − θ(t)

))
I︸                           ︷︷                           ︸

Recovery

,

dD
dt

=
(
δD θ(t) + δM

(
1 − θ(t)

))
I︸                          ︷︷                          ︸

Death

,

(2.1)

along with initial data

S (0) = S 0, E(0) = E0, I(0) = I0, R(0) = R0, D(0) = D0, (2.2)

where
β
(
θ(t)

)
= βDD θ(t)2 + (βDM + βMD) θ(t)

(
1 − θ(t)

)
+ βMM

(
1 − θ(t)

)2
, (2.3)

is a time-dependent transmission rate determined by θ(t). Furthermore, in order for the model to be
biologically relevant, we consider Equations (2.1) only under non-negative initial data.

Note that while, in principle, following transmission reduction guidelines may not mechanistically
cause a change in disease recovery or disease mortality, there still may be a difference in these effects
between groups due to the population effects of individuals who follow these behaviors. For instance,
an individual who spends less time in public or interacting with friends may recover quicker solely
because they spend more time resting as a result or to demographic effects of those more likely to follow
transmission reduction guidelines. In any case, as in Eastman et al. [26], we make the simplifying
assumption that disease-specific parameters are unaffected by the transmission reduction behavior of
the host: in effect, we assume that αD = αM, δD = δM, γD = γM, and βDM = βMD in Equations (2.1) for
simplicity.

2.2. Fractional-Order Mathematical Model

To model the fractional-order derivative of the epidemic model, we shall introduce a modified frac-
tional differential operator as proposed by Caputo in his work on the theory of viscoelasticity [27].
While other fractional derivative operators could be considered [28–30], there is an abundance of lit-
erature in the physical sciences that use the Caputo operator. See for instance [31–34]. Indeed the
Caputo operator has found great success in the modeling of infectious diseases [35–38].

Definition 1. The Caputo-fractional derivative of order a ∈ (k − 1, k) of f is defined as

C
0 Da

t f (t) ≡
1

Γ(k − a)

∫ t

0
(t − τ)k−a−1 dk f (τ)

dτk dτ,
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for t > 0 (where Γ(·) refers to Gamma function). In the case a ∈ (0, 1) we have

C
0 Da

t f (t) ≡
1

Γ(1 − a)

∫ t

0
(t − τ)−a d f (τ)

dτ
dτ. (2.4)

2.2.1. Discretization Options

From a computational point of view, we do not have any closed form for calculating the Caputo
derivative Equation (2.4) a-priori. To overcome these issues, we consider a popular numerical dis-
cretization of the Caputo derivative operator. The most well-known approximation of Equation (2.4)
is given by the so-called L1-formula as in the notation of Lin and Xu [39], the L1-discretization of
Equation (2.5) over a uniform time mesh {0 = t0, t1, . . . , tn} with step size ∆t

C
0 Da

t f (tn) =
∆t1−a

Γ(2 − a)

n−1∑
i=0

bi
f (tn−i) − f (tn−1−i)

∆t
+ ζt( f ), 0 < a < 1, (2.5)

where bi = (i+1)1−a− i1−a. We define ζt( f ) as the truncation error, then ζt( f ) satisfies the order-estimate

‖ζt( f )‖= O(∆t2−a).

Hence, given a ∈ (0, 1), the L1 discretization results in at-least linear order accuracy. In order to
affect more accurate results, we can consider a higher-order approximation, such as the L1-2 formula
presented due to Gao et al. [40]

C
0 Da

t f (tn) =
∆t1−a

Γ(2 − a)

n∑
i=1

a(a)
n−iδt fi− 1

2
+

∆t2−a

Γ(2 − a)

n∑
i=2

b(a)
n−iδ

2
t fi−1 + ζt( f ), (2.6)

where a(a)
i = (i + 1)1−a − i1−a, 0 ≤ i ≤ n − 1,

b(a)
i =

[(i+1)2−a−i2−a]
(2−a) −

[(i+1)1−a+i1−a]
2 , 0 ≤ i.

Gao et al. [40] demonstrated that the truncation error satisfies the following order estimate ‖ζt( f )‖=
O(∆t3−a). Hence, the L1-2 discretization represents an increase of a single order of magnitude over the
L1 discretization alone (and hence for a ∈ (0, 1), the L1-2 discretization is at least quadratic).

For algebraic simplicity, we first transform the L1-2 discretization from (2.6) to the following form:

C
0 Da

t f (tn) =
∆t−a

Γ(2 − a)

c(a)
0 f (tn) −

n−1∑
i=1

(
c(a)

n−1−i − c(a)
n−i

)
f (ti) − c(a)

n−1 f (t0)

 + ζt( f ), (2.7)

in which c(a)
0 = a(a)

0 = 1 for i = 1, and for i ≥ 2

c(a)
i =



a(a)
0 + b(a)

0 , i = 0,

a(a)
i + b(a)

i − b(a)
i−1, 1 ≤ i ≤ n − 2,

a(a)
i − b(a)

i−1, i = n − 1.
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For the numerical simulations of the fractional model in this work we consider the approximation of
the Caputo fractional operator given by C

0 Da
t f (tn) − ζt( f ) as in Equation (2.7).

2.2.2. Fractional-Distancing-SEIRD Model

Since the Caputo fractional derivative preserves the integer-order initial data, we can apply the
Caputo fractional derivative in place of each derivative operator in Equations (2.1). Moreover, these 5
different applications of the Caputo fractional derivative can all be of unique order aS , aE, aI , aR, and
aD.

∆taS−1

Γ(aS + 1)
C
0 DaS

t S = −β(θ(t)) S I,

∆taE−1

Γ(aE + 1)
C
0 DaE

t E = β(θ(t)) S I − γE,

∆taI−1

Γ(aI + 1)
C
0 DaI

t I = γE − (α + δ)I,

∆taR−1

Γ(aR + 1)
C
0 DaR

t R = αI,

∆taD−1

Γ(aD + 1)
C
0 DaD

t D = δI,

(2.8)

along with initial data in Equation (2.2) and β(θ(t)) is defined as in Equation (2.3). The presence of
the ∆tai−1/Γ(ai + 1) factor in front of the derivative operator in Model 2.9 is a result of the fractional-
order Taylor expansion, where ∆t is a characteristic time. In numerical simulations, we took ∆t to
be the time step size of the model. For a full derivation, please see (for instance) [17]. We first
note that initially in the epidemic model, the majority of the population mass is within the susceptible
compartment. Moreover, according to the data from Berry et al. [2], the sum of the susceptible and
exposed has only decreased in size by around 4% between January 25th, 2020 and, November 1st,
2021. Since reports that the latent period of the disease is on the order of days, we assume that the
relative size of the susceptible compartment remains quite large over the course of the time frames
being considered [41]. Since the relative size of S is the largest amongst the compartments, we suspect
that replacing the derivative operator in the S equation with the Caputo fractional derivative operator
will have the largest effect on the qualitative dynamics of the system. As a result, we consider 0 <

aS < 1 with aE = aI = aR = aD = 1. Having only one equation in the system be described as a
fractional-order operator and the rest by an integer-order operator is computationally efficient in our
approach. In [42, 43] the authors consider a similar mixed fractional and integer-order scheme. Hence
the modified Fractional-Distancing-SEIRD model that we consider is defined as
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∆taS−1

Γ(aS + 1)
C
0 DaS

t S = −β(θ(t)) S I,

dE
dt

= β(θ(t)) S I − γE,

dI
dt

= γE − (α + δ)I,

dR
dt

= αI,

dD
dt

= δI,

(2.9)

along with initial data in Equation (2.2) and β(θ(t)) is defined as in Equation (2.3).

2.3. Fitting procedure

To calibrate the models in Equations (2.9) and Equations (2.1), we utilize the data collected by the
COVID-19 Canada Open Data Working Group for the Canadian province of Ontario [2]. This data-
set contains data of the form {It,Rt,Dt} where It represents the cumulative known infections at time
t, Rt represents the cumulative known recoveries at time t, and Dt represents the cumulative known
fatalities at time t. As in Eastman et al. [26] we consider θ(t) as the simple linear spline. Hence θ(t) is
the linear interpolant of the paired data {(0, θ0), (τ0, θ0), (τ1, θ1), . . . , (τ20, θ20)}, where θ0, τ0, . . ., τ20 are
as in Table 2.

To quantify the quality of the fit, we consider a simple weighted sum of squared errors of infection,
recovered, and fatality data as in Equation (2.10)

χ(ξ) = 1
n (WI + WR + WD)−1

WI

n∑
i=0

(
xv I(ti) − Iti

)2
+ WR

n∑
i=0

(
R(ti) − Rti

)2
+ WD

n∑
i=0

(
D(ti) − Dti

)2

 .
(2.10)

We then minimized this function in both the integer and fractional-order case by solving Equa-
tions (2.1) and Equations (2.9) for a given parameter set and calculating the value of Equation (2.10).
This cost function value is then minimized via Matlab’s implementation of the genetic algorithm [44].
We initialized the population used in the genetic algorithm with a stochastic scheme. For each of the
parameters γ, α, βDD, βDM, and βMM in each of the initial population vectors, we initialized the value
to be either a randomly selected value or the corresponding value from Eastman et al. [26]. Given
that those values were selected by the authors for fitting the first wave of SARS-CoV-2 in Ontario,
we would expect similar values to apply in this case. All other parameters were initially randomly
selected. In both the fractional and integer-order case, we ran the genetic algorithm on a population
of 1500 vectors for a maximum of 30,000 generations stopping early if the average relative fitness
value has not changed by more than 10−6 for at least 100 generations. Finally, the fits are polished via
Nelder-Mead’s simplex algorithm to ensure convergence.

For the integer-order case, Equations (2.1) were solved via Runge-Kutte of order 4/5. For the
fractional-order case, Equations (2.9) were solved via the L1-2 operator in Equation (2.7) for the S
compartment and the Runge-Kutte 4/5 operator in the remaining compartments. Both were solved
over the time mesh (t0, t1, . . . , tn) = (0, 1, . . . , 376).
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2.3.1. Sensitivity and Identifiability Analysis Procedures

The model calibration method, as outlined in Section 2.3, contains a large number of unknown
parameters. In this section, we outline the process by which we verify that the fitting procedure can
leverage sufficient information in order for the method to uniquely identify optimizing parameters. As
such, we borrow the definition of practical identifiability from Miao et al. [45]

Definition 2 ( [45]). A dynamical system parameterized by ξ is practically identifiable if ξ can be
uniquely determined from the measurable system output {y(ti)}.

There are various methods by which one can determine the set of practically identifiable param-
eters for a given model. Moreover, these different methods are not guaranteed to produce the same
set of identifiable parameters. For instance, in [22], López et al. consider such practical identifi-
ability analysis methods such as the variance method, SVD method, QR method, and Monte-Carlo
method. Moreover, the authors note that while the various methods rarely produce the same number
of identifiable parameters, combinations of methods are often able to produce an identifiable subset of
appropriate dimensions.

For a given output signal y, the sensitivity matrix is defined as

χ =
∂y
∂ξ

=

[
∂y(ti)
∂ξ j

]
i j

, (2.11)

from which the Fisher information matrix is defined F = χT χ.
We follow the SVD and QR methods from [22] (though these methods are not unique to these

authors, see for instance, [23, 24, 45–47]). Both the QR method and the SVD method depend upon
the sensitivity matrix from Equation (2.11). In particular, both methods fail if the Fisher information
matrix is singular. Given the output signal

y =
wI xv I + wR R + wD D

wI + wR + wD
. (2.12)

There are certain choices of weights WI , WR, and WD that result in duplicate columns in χ (and hence,
a singular Fisher information matrix).

Lemma 3. Let (S , E, I,R,D) be a solution to Equations (2.1), then

∂I
∂α

=
∂I
∂δ
.

Proof. First, let S α =
∂S
∂α

, Eα =
∂E
∂α

, and Iα =
∂I
∂α

then

dIα
dt

=
∂

∂α

(
dI
dt

)
=

∂

∂α
(γ E − (α + δ) I)

= γ Eα − I − (α + δ) Iα.
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Similarly,

dS α

dt
= −β(θ(t)) S α I − β(θ(t)) S Iα,

and
dEα

dt
= β(θ(t)) S α I + β(θ(t)) S Iα − γ Eα.

If we define S δ, Eδ, and Iδ analogously, then by a similar argument we find

dS δ

dt
= −β(θ(t)) S δ I − β(θ(t)) S Iδ, (2.13)

dEδ

dt
= β(θ(t)) S δ I + β(θ(t)) S Iδ − γ Eδ, (2.14)

dIδ
dt

= γ Eδ − I − (α + δ) Iδ. (2.15)

Now the system

dy1

dt
= −β(θ(t)) y1 I − β(θ(t)) S y3, (2.16)

dy2

dt
= β(θ(t)) y1 I + β(θ(t)) S y3 − γ y2, (2.17)

dy3

dt
= γ y2 − I − (α + δ) y3, (2.18)

has a unique solution and so S α = S δ, Iα = Iδ, and Eα = Eδ �

Lemma 4. Let (S , E, I,R,D) be a solution to Equations (2.1). For y =
wI xv I + wR R + wD D

wI + wR + wD
then

∂y
∂α

=
∂y
∂δ

, if and only if, wR = wD.

Proof. Let ŵI = wI
wI+wR+wD

and let ŵR and ŵD be defined analogously. Then,

∂y
∂α

= ŵI xv
∂I
∂α

+ ŵR

∫ (
I + α

∂I
∂α

)
dt + ŵD

∫
δ
∂I
∂α

dt.

similarly,
∂y
∂δ

= ŵI xv
∂I
∂δ

+ ŵR

∫
α
∂I
∂δ

dt + ŵD

∫ (
I + δ

∂I
∂δ

)
dt.

Hence, by Lemma 3,
∂y
∂α
−
∂y
∂δ

= (ŵR − ŵD)
∫

I dt,

from which the result follows. �

Hence, we consider the SVD and QR method on the model output in Equation (2.12) under the
additional assumption WR , WD. Moreover, we notice without loss of generality; we can take any
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weight in Equation (2.12) to be unitary. As a result, we set WR = 1 and consider WD , 1 with WI

arbitrary.
The sensitivity matrix in Equation (2.11) can only be known exactly for systems that are simple

enough to yield an analytic solution to the differential equations. For the purposes of our model,
we approximate χ by performing a central difference derivative with step size h. When solving the
differential systems under the perturbed parameters, we use a relative error tolerance of h2 in order to
ensure the numerical stability of the scheme [23].

3. Results and discussion

3.1. Practical identifiability analysis

The identifiability analysis procedure outlined in Section 2.3.1 is dependent upon the choice of
weights (WI ,WR,WD) used in the weighting of the model output function in Equation (2.12). As
observed at the end of Section 2.3.1: to avoid duplicate columns in the sensitivity matrix in Equa-
tion (2.11) and to avoid duplication of the model output function in Equation (2.12), we consider
WR = 1, WD , 1, with WI arbitrary. We performed the SVD and QR method across a lattice of
weight choices where WI ∈ {1, 2, . . . , 100} and WD ∈ {2, 3, . . . , 100}. After this search, we selected a
(non-unique) weight choice that gave the largest set of identifiable parameters in WI = 100, WR = 1,
WD = 10. We also note that this choice of weighting overemphasizes the importance of accurately
fitting the active infections and ranks fitting the fatalities as more important than fitting the recoveries.
While this is not the only choice of weights one could consider, we believe it represents a reasonable
decision to fixate on the importance of tracking active cases and accurately reporting fatalities.

Table 1. Results of Performing the SVD and QR Method with the model output function in
Equation (2.12) (with WI = 100, WR = 1, and WD = 10) on the integer-order and fractional-
order systems from Equations (2.1) and 2.9. Note that in the integer case xv and θ20 are
common unidentifiable parameters. Similarly, for the fractional-order case xv, θ20, and aS are
unidentifiable parameters.

Method Dimension of Identifiable Subset Unidentifiable Parameters
Integer-Order Equations (2.1)

QR 22 {θ3, θ10, θ11, θ20, xv}

SVD 21 {θ16, θ17, θ18, θ19, θ20, xv}

Fractional-Order Equations (2.9)
QR 24 {θ6, θ20, aS, xv}

SVD 22 {βDD, βDM, βMM, θ20, aS, xv}

We present the results of the identifiability analysis in Table 1. Notably, for the integer-order case,
there are two commonly unidentifiable parameters (namely xv and θ20). Eastman et al. [26] had formu-
lated xv to represent the “visible proportion of the infected population.” Notably, this phenomenological
factor was introduced to account for those individuals with active cases that have not been tested but
nonetheless are seeding secondary cases. Given the difficulty of measuring this in another capacity, we
simply set xv = 1 for the purposes of performing the fitting procedure. Now, θ20 represents the final
interpolating point in the public response function being considered. Given that τ20 corresponds with
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early February 2021, a time period wherein Ontario was in province-wide lockdown; we set θ20 = 1 to
force a maximal reduction in transmission by the general populace. Similarly, for the fractional-order
case, we note that xv, θ20, and aS are the common unidentifiable parameters. As such we consider
xv = θ20 = 1 as in the integer-order case. For aS , we consider three possibilities: aS = 0.7, aS = 0.8,
and aS = 0.9 and cross-compare the results in Section 3.3. We chose these values of aS between
0.7 and 1 as has been observed elsewhere in the literature (for instance, a value of aS = 0.725 was
found optimal in Rajagopal et al. [48] and various values of fractional-order between 0.85 and 1 were
considered in Khan et al. [49] for similar compartmental models of COVID-19).

3.2. Model calibration results

We present the result of the integer-order fitting procedure in Figure 1. In particular, this fit was
obtained by setting xv = 1 = θ20 with θ0 = 0, as in Table 2. The values of the parameters discovered by
the fitting process used to construct this figure can be found in Table 3.
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Figure 1. A comparison of Ontario time-series data with the predictions of the Distancing-
SEIRD model obtained using the fit parameters for the integer-order model in Table 3 and
the common fixed parameters in Table 2.

Next, we present the fits of the fractional-order fitting procedure. These fits were likewise obtained
by setting xv = 1 = θ20 with θ0 = 0. However, we also considered varying aS amongst aS = 0.7,
aS = 0.8, and aS = 0.9. The results of the fit with aS = 0.7 are presented in Figure 2. As the plots
are visually quite similar between the fractional-order cases with any deviations being difficult to see
with the naked eye, we relegate plotting the results with aS = 0.8 and the results with aS = 0.9 to
the supplement. The values of the parameters used to acquire these fits are reported in the appropriate
columns of Table 3 for all three fractional-order fits.
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Table 2. A Table of fixed parameter values common to both the integer-order model in
Equations (2.1) as well as the three parametrizations of the fractional-order model in Equa-
tions (2.9).

Chosen Parameter Value Unit
N 14 711 827 person
E0 20 person
I0 1 person
xv 1 —
θ0 0 —
θ20 1 —
τ0 52 day
τ1 67 day
τ2 82 day
τ3 97 day
τ4 112 day
τ5 127 day
τ6 142 day
τ7 157 day
τ8 172 day
τ9 187 day
τ10 202 day
τ11 217 day
τ12 232 day
τ13 250 day
τ14 268 day
τ15 286 day
τ16 304 day
τ17 322 day
τ18 340 day
τ19 358 day
τ20 376 day
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Table 3. Parameters determined by the fitting process for all four fits. The second column
corresponds to parameters discovered to fit the integer-order model in Equations (2.1). The
third, fourth, and fifth columns correspond to the parameters discovered to fit the fractional-
order model in Equations (2.9) under the fractional-order aS = 0.7, aS = 0.8, aS = 0.9.

Parameter Integer Frac (aS = 0.7) Frac (aS = 0.8) Frac (aS = 0.9) Unit
γ 4.550e-01 1.429e-01 1.429e-01 1.429e-01 (day−1)
α 8.160e-02 7.585e-02 7.585e-02 7.585e-02 (day−1)
δ 2.768e-03 2.593e-03 2.593e-03 2.593e-03 (day−1)
βDD 2.734e-09 1.836e-09 1.841e-09 1.840e-09 (person−1)(day−1)
βDM 7.200e-09 1.836e-09 1.841e-09 1.840e-09 (person−1)(day−1)
βMM 1.227e-08 1.680e-08 1.680e-08 1.680e-08 (person−1)(day−1)
θ1 5.241e-03 3.445e-10 7.804e-10 3.086e-10 (day−1)
θ2 1.519e-01 8.157e-02 8.157e-01 8.156e-01 (day−1)
θ3 9.163e-01 1.000e+00 1.000e+00 1.000e+00 (day−1)
θ4 3.947e-01 7.847e-01 7.850e-01 7.848e-01 (day−1)
θ5 6.251e-01 9.257e-01 9.256e-01 9.256e-01 (day−1)
θ6 6.903e-01 9.624e-01 9.626e-01 9.625e-01 (day−1)
θ7 7.882e-01 8.940e-01 8.940e-01 8.939e-01 (day−1)
θ8 4.813e-01 8.562e-01 8.563e-01 8.561e-01 (day−1)
θ9 4.956e-01 9.594e-01 9.595e-01 9.595e-01 (day−1)
θ10 9.054e-01 8.258e-01 8.260e-01 8.255e-01 (day−1)
θ11 1.278e-01 8.716e-01 8.715e-01 8.716e-01 (day−1)
θ12 2.715e-01 5.422e-01 5.420e-01 5.412e-01 (day−1)
θ13 3.243e-01 8.495e-01 8.495e-01 8.492e-01 (day−1)
θ14 4.657e-01 8.052e-01 8.052e-01 8.048e-01 (day−1)
θ15 3.190e-01 7.648e-01 7.645e-01 7.640e-01 (day−1)
θ16 4.058e-01 8.193e-01 8.191e-01 8.186e-01 (day−1)
θ17 5.145e-01 8.630e-01 8.629e-01 8.624e-01 (day−1)
θ18 2.511e-01 7.111e-01 7.104e-01 7.091e-01 (day−1)
θ19 6.623e-01 9.792e-01 9.792e-01 9.787e-01 (day−1)
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Figure 2. The results of the fractional-order fitting method with aS = 0.7 as compared
with time series data in Ontario. The plots for the other fractional-orders considered are
visually very similar. Note the tighter fit of the compartments to the data compared to Figure
1. Especially we note that while both the integer order and fractional-order method fit the
second wave of infection quite closely, the fractional-order method provides a tighter fit to
the first wave as well. This suggests that while the predictive power of both methodologies
is similar, the fractional-order method does a better job of describing the entire history of the
epidemic curves.

3.3. Comparisons between Integer and fractional-order methods

In qualitatively assessing the fits, we note the integer-order model struggles to hug both waves
considered as evidenced by how consistently the infections line falls below the data between April
2020 and Sept 2020 in Figure 1. Moreover, our fitting method is biased towards fitting infections more
closely when the infections are largest, as was the case in the wave of the pandemic in the months of
November 2020-February 2021. Despite this, the fractional-order fits visually fit the infection curves
to the data in both waves much more closely while still maintaining the appropriate curvature in the
recovered curves. All models have difficulty fully matching all three curves at once, as evidenced by
the gap between the fatalities curves and the data. By tuning the weights, different qualities of fit can be
achieved for different purposes. For the purposes of this manuscript, we considered fitting infections
as the most important.

As we can see from Table 3, the fractional-order fitting procedures all converged to the same form
of the public response function θ(t). Moreover, Figure 3 shows a comparison of the exact values of
the function θ(t) between the integer-order model and the fractional-order model. As we discussed in
Section 3.3, the similarities between the fractional-order columns of Table 1 is an unsurprising result
due to the practical unidentifiability of aS . In this case, some parameters remain constant when the
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Figure 3. Comparisons of the public response function θ(t) for the four fit procedures con-
sidered. Note that, for the fractional-order case, due to the practical unidentifiability of αS ,
any differences between the form of θ(t) are minor and all three plots, in this case, are stacked
(almost exactly) atop one another.

unidentifiable parameter is varied. Indeed, the results of Table 3 suggest that the unidentifiability of aS

is due to a correlation between aS and βDD (or, equivalently, βDD) in the fractional-order model.
Moreover, the fractional-order fitting procedures all discovered values of βDD that were very close to

those of βDM (with changes only appearing in the fifth significant figure at the 10−14 level), suggesting
that, at least in the fractional case, the model may be simplified by assuming βDD = βDM. We also
note that the values of γ, α, and δ varied only trivially for different values of aS . For comparison
with the integer-order method, we note that α and δ are very similar values between all four methods
corresponding to a value of 1/(α+δ) ≈ 12 days between all four methods suggesting that an individual
is infectious for, on average, 12 days. Note that due to the way recovered tests are processed in Ontario
(namely, cases without any medical follow-up are marked as “recovered” if 14 days have passed since
symptom onset), this value is artificially biased towards a value of 14. One change between the integer-
order fit and the fractional-order fits can be found in the value of γ. For the fractional-order fits, this
value suggests a mean incubation period of approximately one week, while for the integer-order fits,
this value suggests a mean incubation period of approximately 2-3 days.

While the exact values of the public response function θ(t) differ between the integer-order model
and the fractional-order model, many of the qualitative features of the function are maintained, as is ev-
idenced in Figure 3. In particular, considering the fractional-order θ(t) between April 2020 and August
2020, the value seems to oscillate around some baseline values. This suggests that the public response
function could be replaced either with a constant value on this domain or a constant value with appro-
priately scaled sinusoidal oscillations. A similar phenomenon can be observed for the integer-order
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model in the same time frame, albeit with a different baseline through a similar oscillatory frequency.
Both methods predict a drop in the public response function heading out of Summer 2020 into Autumn
2020, potentially due to the return of school. In the fractional-order case, the assumption that θ20 = 1
appears to be more realistic than in the integer-order case, as evidenced by θ19 being near 1 in the
former but not the latter.

3.4. Comparisons for prediction

For the purposes of ascertaining which of the models has the strongest predictive strength, we
included additional historical data corresponding to an additional 42 days of time series data. This
additional data was not used for fitting but only for evaluating the predictive power of the fit. To that
end, the model was fit on the first 376 data points and evaluated on the remaining 42 data points. Now,
the model requires a particular form of θ(t) for these additional data values. For the purposes of this
comparison, we considered two such future θ(t) schedules: one where θ(t > 376) = θ(376) (i.e., θ(t)
was fixed at θ = 1 for t ≥ 376) and another where θ(t) was fixed at θ = 1 for half of the new time
points (376 ≤ t ≤ 397) and θ = 0 for half of the new time points (397 ≤ t). The motivation for these
θ schedules is as follows: for the first schedule, we simply projected the last fit value of θ naively
forward, and for the second schedule, we recognize that a stay-at-home order in Ontario was set to be
lifted by mid-February 2021 as a result we would predict a reduced θ value corresponding to greater
degrees of social mixing. For both of these schedules, we judged the quality of the prediction by
considering the value under the cost function (2.10) for only the new time points. In both experiments,
the fractional model corresponding to αs = 0.8 performed the best, and so it is the only one we report.
For the first θ, schedule χfrac ≈ 0.26 χint,and for the second χfrac ≈ 1.02 χint. This suggests that both
the integer and fractional-order models are both similarly sensitive to the form of θ(t). As a result,
the model presented is only appropriate for predicting over short time intervals (as sensitivities to the
particular form of θ(t) prescribed for prediction begin to dominate shortly thereafter). However, in the
first schedule considered where θ(t) is changing, the fractional-order model appears to do a better job
at qualitatively describing the dynamics of the system. The results of these predictions are summarized
in Figure 4. Note the similarities in the bottom plot suggesting that both methods perform similarly
poorly when the prescribed form of θ(t) is a poor match to the data. Moreover, note that the presence
of the so-called memory effect of fractional operators could be responsible for the increased predictive
power for short-term predictions when the form of θ(t) is not perturbed. However, we also note that
it is evident that the trajectories will soon begin to diverge from the data if the projection is carried
forward in the top left figure in Figure 4.

3.5. Time-dependent reproduction number

Modeling the spread of an epidemic allows one to calculate metrics that are useful for targeting
control of the disease spread. Other than standard epidemiological data like active infections, recov-
eries, and deaths, another important metric to track is that of the reproduction number. Famously, the
basic reproduction number (denoted R0) represents the number of expected secondary cases that would
be seeded by a single infectious individual in an otherwise wholly susceptible population. This num-
ber is a function not only of the disease being considered but also represents behavioral quirks of the
citizenry under investigation. As the pandemic has progressed, behavior patterns of the general pub-
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Figure 4. Predictions for the fractional-order model (left) and the integer-order model (right).
The two possible θ schedules considered were θ = 1 for all future time (top) and θ = 1 for the
first half of the prediction time and θ = 0 for the second half of the prediction time (bottom).
The time interval for prediction is highlighted in red.

lic have changed to embrace transmission reduction protocols through the implementation of remote
work, maintenance of social distance, the wearing of face masks, etc. As a result, even if the virus itself
does not change, the number of secondary cases can change due to changing public behavior. Hence,
while R0 is an important number to calculate, the time-dependent effective reproduction number Rt

is often of greater interest. This is especially true later in a pandemic as the decrease in transmission
due to the boost in immunity from previous infection and vaccination is captured by Rt but not by R0.
In fact, Rt is often argued to be the most important number to track in order to manage an epidemic
outbreak. Broadly, Rt represents the expected number of secondary cases seeded by a single infectious
individual at time t during the pandemic. If Rt < 1 is maintained for a prolonged period of time, then
one can expect that transmission of the virus is slowing. If the actions of the public keep Rt below 1
for long enough, then the virus will eventually die out in the population. In contrast, if Rt > 1, then the
transmission is increasing within the population.

Here we used a Bayesian method that was developed by Bettencourt and Riberio [50] to estimate
the effective reproduction number Rt from each of the trajectories of the four fit procedures. We then
plot the mean value of these four procedures along with the union of the 95% confidence intervals of
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each procedure. This visualization is presented in Figure 5.
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Figure 5. The time-dependent basic reproductive number Rt derived from the four fit pro-
cedures considered. The black line represents the mean value of Rt between all procedures
and the grey band represents the union of the 95% confidence intervals of Rt across all fitting
procedures.

Following Bettencourt and Riberio, we assumed that new infection cases arise according to a Pois-
son distribution with a mean value equal to 0.25. This corresponds to a serial interval of 4 days for
COVID-19 [51]. Further, it is assumed that the distribution of Rt is a Gaussian centered around Rt−1

with a standard deviation σ = 0.1. As the visualization in Figure 5 demonstrates, Rt remained above
the bifurcation value of 1 for most of the Spring of 2020 and the Autumn of 2020 before falling below
1 briefly in the early months of 2021.

4. Conclusion

We considered a modified model of SARS-CoV-2 spread in the Canadian province of Ontario. Un-
der this expanded model, we demonstrated that a large number of the parameters were practically
identifiable from the data. We then fit these parameter values using a combination of a genetic al-
gorithm and a simplex method for the identifiable parameters and assigned reasonable choices to the
unidentifiable parameters. Moreover, we expand our model to accurately describe the dynamics of
multiple waves of epidemic infection with a modified fractional-order model. Thus, the fitting process
was repeated for an integer-order model as well as three fractional-order models using the discretized
Caputo operator. While the Caputo operator has been observed to be beneficial in mathematical biolog-
ical systems, the results of the fitting procedures between these methods are qualitatively quite similar,
though a modest decrease in cost function value of approximately 27% was observed by considering
the fractional-order operator over the integer-order one. Future research should consider the effects of
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vaccination in our model. Moreover, our proposed model could be extended to account for hospital-
ized, quarantined, or home isolation individuals. With respect to the fractional-order model, comparing
the effects of different definitions of the fractional derivative operator on the physical behavior of the
model trajectories would be of interest.
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6. F. Özköse, M. Yavuz, M. T. Şenel, R. Habbireeh, Fractional Order Modelling of Omicron SARS-
CoV-2 Variant Containing Heart Attack Effect Using Real Data from the United Kingdom, Chaos
Soliton. Fract., 157 (2022), 111954. https://doi.org/10.1016/j.chaos.2022.111954

7. D. Fanelli, F. Piazza, Analysis and forecast of COVID-19 spreading in China, Italy and France,
Chaos Soliton. Fract., 134 (2020), 109761. https://doi.org/10.1016/j.chaos.2020.109761

8. A. J. Kucharski, T. W. Russell, C. Diamond, Y. Liu, J. Edmunds, S. Funk, et al., Early dynamics
of transmission and control of COVID-19: a mathematical modelling study, Lancet Infect. Dis.,
20 (2020), 553–558. https://doi.org/10.1016/S1473-3099(20)30144-4

9. Z. Zhang, R. Gul, A. Zeb, Global sensitivity analysis of COVID-19 mathematical model, Alex.
Eng. J., 60 (2021), 565–572. https://doi.org/10.1016/j.aej.2020.09.035

10. C. M. A. Pinto, A. R. M. Carvalho, A latency fractional order model for HIV dynamics, J.
Comput. Appl. Math., 312 (2017), 240–256. https://doi.org/10.1016/j.cam.2016.05.019

11. K. N. Nabi, P. Kumar, V. S. Erturk, Projections and fractional dynamics of
COVID-19 with optimal control strategies, Chaos Soliton. Fract., 145 (2021), 110689.
https://doi.org/10.1016/j.chaos.2021.110689

Mathematical Biosciences and Engineering Volume 19, Issue 12, 12792–12813.

http://dx.doi.org/https://doi.org/10.1503/cmaj.75262
http://dx.doi.org/https://doi.org/10.1007/s11242-009-9456-4
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2018.02.027
http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2022.111954
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2020.109761
http://dx.doi.org/https://doi.org/10.1016/S1473-3099(20)30144-4
http://dx.doi.org/https://doi.org/10.1016/j.aej.2020.09.035
http://dx.doi.org/https://doi.org/10.1016/j.cam.2016.05.019
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2021.110689


12811

12. C. N. Angstmann, B. I. Henry, A. V. McGann, A fractional order recovery SIR model from a
stochastic process, Bull. Math. Biol., 78 (2016), 468–499. https://doi.org/10.1007/s11538-016-
0151-7

13. I. Area, H. Batarfi, J. Losada, J. J. Nieto, W. Shammakh, Á. Torres, On a fractional order Ebola
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