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Abstract: In winter and spring, for greenhouses with larger areas and stereoscopic cultivation, 

distributed light environment regulation based on photosynthetic rate prediction model can better 

ensure good crop growth. In this paper, strawberries at flowering-fruit stage were used as the test crop, 

and the LI-6800 portable photosynthesis system was used to control the leaf chamber environment and 

obtain sample data by nested photosynthetic rate combination experiments under temperature, light 

and CO2 concentration conditions to study the photosynthetic rate prediction model construction 

method. For a small-sample, nonlinear real experimental data set validated by grey relational analysis, 

a photosynthetic rate prediction model was developed based on Support vector regression (SVR), and 

the particle swarm algorithm (PSO) was used to search the influence of the empirical values of 

parameters, such as the penalty parameter C, accuracy 𝜀  and kernel constant g, on the model 

prediction performance. The modeling and prediction results show that the PSO-SVR method 

outperforms the commonly used algorithms such as MLR, BP, SVR and RF in terms of prediction 

performance and generalization on a small sample data set. The research in this paper achieves accurate 

prediction of photosynthetic rate of strawberry and lays the foundation for subsequent distributed 

regulation of greenhouse strawberry light environment. 

Keywords: greenhouse; light environment; distributed regulation; photosynthetic rate model; PSO-

SVR; strawberry 

 

1. Introduction  

Greenhouses create a good growing environment for crops and meet the growing demand of 
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society for yield, quality, variety, season, and origin of fruits and vegetables. Photosynthesis is the 

material basis of planting production, and it is affected by a variety of environmental factors, such as 

temperature, humidity, CO2 concentration, and light intensity. The influence of the light environment 

is especially important for facility cultivation in the middle and high latitudes of the northern 

hemisphere [1], especially in winter and spring and in some regions during the rainy season, when low 

temperature, low light, and high humidity make it difficult to optimize the photosynthesis of crops, 

resulting in longer crop growth cycles, lower yields, and increased probability of pests, diseases, and 

other problems[2]. Y. Kong took peas as an example to prove that winter supplemental light has a great 

influence on the improvement of crop yield and quality [3]. Taking cherry tomatoes as an example, 

Y.C. Xu demonstrated that adding LED supplementary light under bright conditions can significantly 

increase the growth rate of crops [4]. Therefore, it is urgent to supplement light for protected crops to 

improve their photosynthetic effect. 

Research on light environment regulation for facility cultivation is divided into two parts. The first 

is supplemental light equipment and control aspects, including supplemental light morphology 

improvement and the selection of fixed positions. Y.J. Zheng proved through experiments that different 

blue light intensities can regulate the growth of pakchoi in greenhouse [6]. L. Xu installed LED lights 

at the top, middle and bottom of plant canopy to provide additional photosynthetic effective radiation [7]. 

O.D. Palmitessa, taking tomato as an example, summarizes the present situation of LED application 

and development, focusing on the requirements related to latitude [8]. F.F. He put forward an expert 

system technology database to store the empirical values of real-time light intensity values, so as to 

identify the best position where LED lights need to be turned on and the best position where LED 

arrays lit by driving circuits need to be located, identify the number of LED supplementary lights and 

solve the problem of light intensity optimization [9]. C.Y. Li constructed the database of greenhouse 

light intensity optimization control model under limited light resources, and optimized the distribution 

of light resources [10]. As well as the optimization of greenhouse construction with the goal of 

reducing costs and maximizing economic benefits, which provide the physical basis for light 

environment regulation. M. Carlini analyzed the multi-parameters of the solar greenhouse to obtain 

the best development conditions for the growth of the sample crops [11]. N. Choab discussed the 

performance data of greenhouse covering materials and the comparison of several cladding materials. 

The selection process of greenhouse shapes and orientations under different climatic conditions was 

introduced, and several shapes and orientations were compared [12]. J.T. Chen analyzed and compared 

six typical greenhouse shapes (uniform span, uneven span, oval, arch, zigzag and vinery) common in 

southern China, in order to select the type that is most suitable for capturing solar radiation to the 

greatest extent [13]. R. Liu introduced a new transient greenhouse model, which can be used for the 

management and control of solar greenhouse conditions in China, and as a decision support tool for 

greenhouses [14]. Another more important aspect is the light environment regulation model or strategy. 

It is an important research topic to make the best use of resources while meeting the needs of crop 

growth. The existing methods are generally based on empirical light filling or adjustment of a given 

threshold range, so it is difficult to achieve high cost performance. Because the growth of crops can be 

evaluated by photosynthetic rate, the regulation method based on photosynthetic rate monitoring or 

prediction has gradually become the mainstream. The other more important aspect is the light 

environment regulation model or strategy, and meeting crop growth needs while maximizing resource 

utilization has become an important research topic. The existing mothods are generally based on 

empirical light supplementation or regulation based on a given threshold range, which makes it difficult 
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to achieve high cost performance. Since a crop growth condition can be evaluated by its photosynthetic 

rate, regulation methods based on photosynthetic rate monitoring or prediction are gradually becoming 

mainstream. T. Liu et al. modelled and achieved the accurate prediction of the photosynthetic rate of 

tomatoes using the LSSVM for tomato seedlings [15]. P.P. Xin uses ACO-SVM model [16] and ANN 

model [17] to optimize and control the light environment of cucumber. J. Hu established the 

photosynthetic rate model of cucumber seedling based on BP neural network and SVR [18]. J.T. Ding 

used ABPM-BP model to predict and adjust the growth environment parameters of Dendrobium 

candidum to improve its yield [19]. Y.W. Liu et al. established a greenhouse environmental climate 

prediction model based on an LSTM model and validated it with tomatoes, cucumbers, and peppers [20]. 

X.Y. Zhang et al. measured multiple prediction methods based on poplar leaf data and determined the 

best performance of the prediction model established using the XGBoost algorithm [21]. K.P. Zheng 

et al. analysed the association between photorespiration and multiple factors in cucumber leaves and 

achieved the best fit with the XGBoost algorithm [22]. D.H. Jung predicted temperature, humidity, 

and CO2 with RNN-LSTM [23]. 

Because of the large area of a greenhouse and the stereoscopic cultivation, distributed light 

environment regulation is needed. We propose a greenhouse light environment regulation scheme 

based on distributed photosynthetic monitoring, as shown in Figure 1. The greenhouse light 

environment regulation scheme in this study relies on a main control terminal and multiple monitoring 

terminals. Each monitoring terminal includes temperature sensors, CO2 sensors, photosynthetic photon 

flux density (PPFD) sensors, and control circuits to automatically monitor real-time environmental 

parameters at multiple locations in the greenhouse and transmit data to the main control terminal via a 

wireless communication module. At the main control terminal, a corresponding model is invoked to 

determine the light saturation point, and the location where the light intensity needs to be changed is 

regulated through a fill light regulation circuit to complete the feedback according to the result of 

the search. 

 

Figure 1. Greenhouse light regulation solution for distributed photosynthesis monitors. 
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Strawberries are one of the most popular fruits in the world, and the greenhouse strawberry 

cultivation industry is developing rapidly and on a large scale [24]. In this study, we take strawberries 

as an example to study the method of photosynthetic rate prediction model construction. 

Choosing a modeling approach with a good fit is crucial to ensure model usability [25]. Common 

models include multiple linear regression (MLR), random forest (RF), back propagation neural 

network (BPNN), and support vector regression (SVR). In this paper, a support vector machine model 

based on particle swarm optimization (PSO-SVR) is used for photosynthetic rate prediction to improve 

the prediction performance and lay the foundation for subsequent distributed regulation of the 

greenhouse light environment. 

2. Data collection and preprocessing  

2.1. Experimental data acquisition 

In July 2021, four good, uniformly growing strawberry plants ('Hong yan') at flowering-fruit stage 

were obtained from the plastic shed in Changfeng County, Hefei City, Anhui Province. We transplanted 

them to a 2×4×2.5m3 greenhouse in the Science Building of Anhui Agricultural University, Hefei, 

Anhui Province, where the soil and air conditions were essentially the same as their original growing 

environment. During the trial period, fertilisation, pest control, and environmental control measures 

were carried out according to the Anhui local strawberry production standards provided by the Anhui 

Standardisation Information Service Platform. 

The data for this experiment was collected with the LI-6800 portable photosynthesis system. The 

LI-6800 has a CO2 injector, a light control module, and a temperature control module, so it can be 

automatically programmed to simulate a greenhouse under various environmental conditions in a 

dedicated leaf chamber module [26]. This type of measurement avoids the need for extensive 

adjustment of the greenhouse environment and reduces the operational difficulty of the test. Therefore, 

we used the LI-6800 portable photosynthesis system as the core for building the basic test platform 

and conducted a multi-factor correlation photosynthesis rate combination test to quantitatively obtain 

photosynthesis rate related parameters under multi-factor nested conditions, verify the key 

environmental factors affecting photosynthesis rate in strawberry, and provide refined data for building 

a multi-factor correlation photosynthesis rate prediction model. 

The leaf bin environment, including temperature, CO2 volume concentration and photon flux 

density (PPFD), was controlled using several sub-modules attached to the LI-6800 photosynthesis 

system from 09:00 to 11:30 and 14:30 to 17:00 each day, while the net photosynthetic rate of the 

samples was measured. The data were collected strictly according to the guidelines of control variables. 

On-demand control was performed around fresh strawberry leaves using several sub-modules included 

in the LI-6800 Photosynthesis System. Data were collected strictly following the guidelines of the 

control variables. Among them, the temperature was controlled at 18, 20, 23, 26, 29, and 32 °C in six 

gradients; the CO2 volume ratio was set at 200, 300, 400, 600, 800, 1000, 1200, and 1500 μmol/mol 

in eight concentrations; and the PPFD was set at eleven gradients of 100, 200, 300, 400, 600, 800, 

1000, 1200, 1500, 1800, and 2000 μmol/m2s. The humidity module was set the relative humidity inside 

the leaf chamber to between 50% and 60%. After each adjustment of the environmental parameters, 

the leaves to be tested were acclimatised in the leaf chamber for 30 minutes before recording 

photosynthetic rates to obtain stable data. 
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To improve robustness, a leaf was randomly selected on each of the four strawberry plants. These 

leaves were used for the environmental control and photosynthetic rate tests described above, and 2112 

sets of experiments were performed. After removing the few missing and abnormal values due to 

human oversight in the experiments, the overall error was found to be small, so the data from one 

randomly selected strawberry plant sample per set of environmental conditions resulted in a sample 

data set with 528 valid data sets. 

2.2. Experimental parameter correlation verification 

There are many environmental parameters that affect the photosynthetic rate, and the selection of 

predictors is necessary to construct a suitable prediction model. To exclude the arbitrariness of 

selecting subjective choices as much as possible and to combine relevant information, we used grey 

correlation analysis to verify the correlation between the predictors (environmental parameters) and 

the corresponding photosynthetic rates of the constituent sample data [27]. Grey relational analysis 

(GRA) does not require a large sample size, is relatively small in computational effort and can 

effectively analyze the correlation between predictors and photosynthetic rate. The specific steps are 

as follows: 

1) The photosynthetic rate is noted as the reference sequence, denoted as 

 𝑋0 = [𝑋0(1), 𝑋0(2),… , 𝑋0(𝑛)] (1) 

2) The predictors in the data set are set as a comparison series, denoted as 

 (𝑋1, 𝑋2, … , 𝑋𝑚) = [

𝑥1(1) 𝑥2(1) ⋯ 𝑥𝑚(1)
𝑥1(2) 𝑥2(2) ⋯ 𝑥𝑚(2)
⋮ ⋮ ⋮ ⋮

𝑥1(𝑛) 𝑥2(𝑛) ⋯ 𝑥𝑚(𝑛)

] (2) 

where 𝑛  is the length of the series and 𝑚  is the numbers of predictors. 𝑋i =

(𝑥𝑖(1), 𝑥𝑖(2), . . . , 𝑥𝑖(𝑛))
𝑇
,𝑖 = 1,2, . . . , 𝑚. 

3) Data nondimensionalization. Commonly used methods for dimensionless processing are the 

extreme value method, the initial value method, and the mean method. Here, the extreme value method 

is used to standardize the statistical data, and the values are controlled to be between [0, 1] to eliminate 

the influence of the magnitude and size of each variable. The extreme value method formula is 

 𝑥𝑝
′ (𝑘) =

𝑥𝑝(𝑘) − 𝑚𝑖𝑛⁡
1<𝑖<𝑛

𝑥𝑝

𝑚𝑎𝑥
1<𝑖<𝑛

𝑥𝑝 − 𝑚𝑖𝑛⁡
1<𝑖<𝑛

𝑥𝑝
0

 (3) 

where 𝑥𝑖
′(𝑗)⁡is the normalized value of 𝑥𝑖(𝑗), 𝑝 is the evaluation object, 𝑘 is the evaluation 

parameter, 𝑝 = 1,2, . . . , 𝑚，𝑘 = 1,2, . . . , 𝑛 , and 𝑚𝑎𝑥
1<𝑖<𝑛

𝑥𝑝  and 𝑚𝑖𝑛⁡
1<𝑖<𝑛

𝑥𝑝  denote the maximum and 

minimum values of the sequence 𝑝, respectively.The dimensionless data are as follows: 
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 (𝑋0
′ , 𝑋1

′ , … , 𝑋𝑚
′ ) = [

𝑥0
′ (1) 𝑥1

′(1) ⋯ 𝑥𝑚
′ (1)

𝑥0
′ (2) 𝑥1

′(2) ⋯ 𝑥𝑚
′ (2)

⋮ ⋮ ⋮ ⋮
𝑥0
′ (𝑛) 𝑥1

′(𝑛) ⋯ 𝑥𝑚
′ (𝑛)

] (4) 

4) The correlation coefficient is calculated. The number of grey correlation coefficients between 

the corresponding elements of each comparison sequence and the reference sequence are calculated as 

follows: 

 𝜉𝑝(𝑘) =
min𝑝mink|𝑥0

′ (𝑘) − 𝑥𝑝
′ (𝑘)| + 𝜁maxpmaxk|𝑥0

′ (𝑘) − 𝑥𝑝
′ (𝑘)|

|𝑥0
′ (𝑘) − 𝑥𝑝

′ (𝑘)| + 𝜁maxpmaxk|𝑥0
′ (𝑘) − 𝑥𝑝

′ (𝑘)|
 (5) 

where 𝜁(0<𝜁<1) is the resolution coefficient, and is usually set to 0.5; 𝜉𝑝(𝑘)⁡is the number of 

grey correlation coefficients between the p-th evaluation object and the k-th parameter. 

5) The degree of relevance is calculated. The data are substituted into Eq. (6) and the correlation 

value between each predictor and the photosynthetic rate is obtained. 

 𝛾𝑞 =
1

𝑛
∑𝜉𝑝(𝑘)

𝑛

𝑘=1

 (6) 

As seen in Figure 2, when the T, CO2 volumetric concentration and PPFD were used as predictors, 

the resulting 𝛾𝑞 were all greater than 0.6, which correlated strongly with the crop photosynthetic rate. 

Clearly, the three environmental parameters selected in this paper can have a large impact on the 

photosynthetic rate when they are adjusted. 

 

Figure 2. Correlation analysis diagram of selected environmental parameters and the 

photosynthetic rate. 
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3. Methods  

3.1. PSO-SVR prediction model 

3.1.1. Support vector regression (SVR) 

Support vector machine (SVM) is a very convenient binary classification model originating from 

statistics that usually solves classification and regression problems by transforming the original space 

into a high-dimensional feature space. It may be called Support vector regression (SVR) in the 

treatment of regression problems. In this study, the photosynthetic rate is nonlinearly related to 

environmental parameters such as temperature, CO2 volume concentration, and PPFD, which are 

applicable to the model [18]. 

Let the samples in the data set be (𝑥𝑖 , 𝑦𝑖) ∈𝑅𝑛 × 𝑅, where 𝑥𝑖 is an input independent variable 

and 𝑦𝑖 is the output dependent variable. A total of 528 items (ambient temperature, CO2 concentration, 

photosynthetically active radiation, and photosynthetic rate under the corresponding conditions) were 

included in the data set. We took the ambient temperature, CO2 concentration, and photosynthetically 

active radiation as inputs and the apparent photosynthetic rate under the corresponding conditions as 

the output, thus transforming the model prediction into a nonlinear regression problem (𝑖 = 1,2,3; 𝑛 =

528). The goal of SVR modelling is to find the relationship between the independent and dependent 

variables and to provide a function that represents the relationship as close as possible. When a new 

set of 𝑥𝑖 is input, the method can provide the corresponding predicted values. It is expressed by: 

 𝑓(𝑥)=∑ 𝜔 ∗ 𝜑(𝑥)𝑛
𝑖=1 + 𝑏 (7) 

where φ(𝑥) is a mapping function, ω represents the weight, and b represents the deviation, and 

ω and b are the targets to be studied, as they determine the linear hyperplane suitable for the data set 

being used for training. To map⁡𝑥⁡and y, which do not have a linear relationship per se, to a higher 

dimensional space, φ(𝑥) and y in the higher dimensional space have a linear relationship, and φ(𝑥) 

is a nonlinear mapping about 𝑥. The fitting accuracy must also comply with Eq. (8): 

 |𝑓(𝑥𝑖) − 𝑦𝑖| ≤ 𝜀 (8) 

where 𝜀 is an insensitive loss function, which is introduced to ignore the error within a certain 

range between the obtained function value and the true value. Then, a penalty parameter 𝐶(𝐶 > 0)and 

nonnegative relaxation factors ξ𝑖 and ξ𝑖
∗ are introduced, and this nonlinear regression problem can 

be transformed into a convex quadratic optimization problem that can be used to represent the deviation 

of the value of the training set fitting function f(x) from the actual value. The SVR minimizes the 

regression risk by considering Eq. (9). 

 𝑀𝑖𝑛：
1

2
𝜔2 + 𝐶∑(𝜉 + 𝜉∗)

𝑙

𝑖=1

  

 𝑠. 𝑡. {

𝑓(𝑥𝑖) − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖
∗, 𝑖 = 1, . . , 𝑙

𝑦𝑖 − 𝑓(𝑥𝑖) ≤ 𝜀 + 𝜉𝑖, 𝑖 = 1,… , 𝑙

𝜉𝑖, 𝜉𝑖
∗ ≥ 0，𝑖 = 1,… , 𝑙

 (9) 

To reduce the difficulty of the calculation, the above equation can be transformed into its dual 
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form by introducing the Lagrange multiplier 𝑎𝑖
∗,𝑎𝑖 and kernel function 𝐾(𝑥𝑖 , 𝑥𝑗)=[φ(𝑥𝑖)，φ(𝑥𝑗)], 

as in Eq. (10): 

 𝑓(𝑥) =∑(𝑎𝑖
∗ − 𝑎𝑖)𝐾(𝑥𝑖 , 𝑥𝑗) + 𝑏

𝑛

𝑖=1

  

 𝑠. 𝑡. 0 ≤ 𝑎𝑖
∗ ≤ 𝐶，0 ≤ 𝑎𝑖 ≤ 𝐶 (10) 

The kernel function can greatly reduce the computational complexity of the SVR for nonlinear 

problems. Generally speaking, functions satisfying the mercer theorem can be used as kernel functions. 

Nowadays, the commonly used kernel functions are linear kernel function, RBF kernel function, 

polynomial kernel function, etc. In order to avoid the complexity changing with parameters during the 

computation, we choose a Gaussian kernel function, which is also called radial basis kernel function 

(RBF, Radial basis function kernel). 

 𝐾(𝑥𝑖, 𝑥𝑗) = 𝑒𝑥𝑝 (−
‖𝑥𝑖 − 𝑥𝑗‖

2𝑔2 ) (11) 

3.1.2. Particle swarm algorithm 

After determining the use of the RBF, the SVR model must obtain the optimal values of the penalty 

coefficient C, the parameter 𝑔 of the RBF, and the accuracy 𝜀. The PSO algorithm is a commonly 

used population intelligence theory algorithm with high confidence and generalization ability because 

of the advantages of fast convergence, fewer adjustment parameters, and less likelihood of falling into 

local optimality, and it has shown superior performance in solving complex nonlinear optimization 

problems [28]. 

The solution principle is as follows. By tracking the individual and global extremes of a particle, 

the velocity and position of the particle are calculated and updated. 

Specifically, suppose there exists a D-dimensional solution space and a population 𝑋 =

(𝑥1, 𝑥2, … 𝑥𝑛) consisting of 𝑚 particles; then, the position of the i-th particle in the space is expressed 

as 𝑋𝑖 = [𝑥𝑖1, 𝑥𝑖2, … 𝑥𝑖𝑛]
𝑇, and the velocity is expressed as 𝑉𝑖 = [𝑣𝑖1, 𝑣𝑖2, … 𝑣𝑖𝑛]

𝑇, which is updated 

using Eqs. (12) and (13). Setting a reasonable particle swarm size can ensure a uniform initial 

population distribution of the particle swarm algorithm. 

 ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )1 1 2 2id id id id id idv wv k c r k pbest k x k c r k gbest k x k= + − + −
 
(12) 

 𝑥𝑖𝑑(𝑘 + 1) = 𝑥𝑖𝑑(𝑘) + 𝑣𝑖𝑑(𝑘 + 1) (13) 

Where 𝑐1  and 𝑐2  represent learning factors, 𝑤  represents inertia weights, 𝑟1  and 𝑟2  are 

pseudorandom numbers, which are independent of each other, and 𝑟1, 𝑟2~𝑈(0,1) and 𝑑 represent 

particle dimensions. 𝑝𝑏𝑒𝑠𝑡𝑖𝑑(𝑘) represents the individual extreme value of the particle in the d-th 

dimension, while 𝑔𝑏𝑒𝑠𝑡𝑖𝑑(𝑘) represents the global extreme value in the k-th iteration. 
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3.1.3. Particle swarm algorithm based SVR parameter tuning process 

The specific algorithm process is as follows. 

Step 1: To prevent large data overwhelming small data and facilitate the calculation and prediction 

of data with differences in units, forms and attributes, we perform a standardization operation on the 

data input as independent variables. The standardized formula is shown in Eq. (14). 

 𝑥𝑖(𝑗) =
𝑥𝑖(𝑗) − 𝑥𝑖

𝑧𝑖
 (14) 

where 𝑥𝑖(𝑗) represents the j-th sample value of the i-th input variable, 𝑖 = 1,2, … ,𝑚 represents 

the input variable, and 𝑗 = 1,2, … , 𝑛 represents the sample number. 

 z𝑖 = √
1

𝑛 − 1
∑(𝑥𝑖(𝑗) − 𝑥𝑖)

2

𝑛

𝑗=1

 (15) 

 𝑥𝑖 =
1

𝑛
∑𝑥𝑖(𝑗)

𝑛

𝑗=1

 (16) 

Since the output of the model is only the photosynthetic rate, there is no need to normalize the 

output and no need to reverse-normalize the predicted results, saving computational costs. 

Step 2: Import the pre-processed data and divide it randomly into training and test sets. 

Step 3: Take the penalty parameter 𝐶 of the SVR, the loss function 𝜀 and parameter 𝑔 of the 

RBF as the optimization objects and set the initialization information of the particle swarm. Set the 

initial parameters of the PSO algorithm to optimize the SVR model: the particle population size is set 

to 10, the maximum number of iterations is 10, 𝑤 is set to 0.4, and the learning factors 𝐶1 and 𝐶2 

are set to 1.5 and 1.6, respectively, with restrictions on the variation range of the velocity and position. 

Step 4: Initialize the particle swarm, substitute the divided training set and test set data, substitute 

the initialized parameters from step 3 into the SVR model for training, and use the output model 

prediction accuracy as the fitness function of the PSO algorithm. 

Step 5: Compare the fitness value of each particle with the saved optimal position, determine the 

optimal position of the particle, continuously update it, and calculate and collect the fitness value of 

the particle in each new round. 

Step 6: When the set maximum number of iterations is completed or the particle fitness value no 

longer changes significantly with a new iteration, we obtain the penalty coefficient 𝐶, parameter 𝑔 

of the RBF and the loss function ε of the current SVR model. 

Step 7: The values of each parameter obtained in step 6 are substituted into the SVR model for 

prediction. 

The training process of the PSO-SVR model in this study is shown in Figure 3. 
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Figure 3. Flow chart of PSO-SVR model training. 

3.2. Control methods 

3.2.1. Multiple linear regression (MLR) 

Multiple Linear Regression (MLR) is a common and effective statistical tool for describing more 

complex input-output relationships. The regression line in MLR can be expressed as follows: 

 y = 𝛽0 + 𝛽1𝑥1 +⋯+ 𝛽𝑖𝑥𝑖 +⋯+ 𝛽𝑡𝑥𝑡 + 𝛼 (17) 

where 𝑦 is the dependent variable, 𝑥𝑖 is the 𝑖-th independent variable, 𝛽i is the polynomial 

coefficients of 𝑥𝑖, t is the number of independent variables, and 𝛼 is the possible variation form.  

Then, the obtained MLR model can be adopted to predict the possible dependent variable related 

with the newly input vector. 
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3.2.2. Back-propagation neural network (BPNN) 

Back Propagation Neural Network (BPNN), a supervised algorithm based on gradient descent, is 

composed of two processes, namely, the positive propagation of information and the reverse 

propagation of error [18]. 

BPNN consists of four steps: 1) Initialize the weights and thresholds in the network. 2) Perform 

forward propagation. 3) Calculate the error and perform backpropagation. 4) Adjust the weights and 

thresholds in the network.  

3.2.3. Random Forest (RF) 

Random Forest (RF) is a kind of ensemble algorithm (Ensemble Learning) that was developed as 

an extension of classification and regression trees (CART) to improve the estimation accuracy [29]. 

The training stage is to train multiple binary decision trees. Every classification regression tree 

can grow completely, and then get a low offset tree. Simultaneously, the method of random attribute 

selection and bagging makes lower correlation of each individual in random forest. The RF model 

obtains a better prediction result by modeling multiple trees instead of just one. 

3.3. Evaluation Indicators 

To verify the predictive performance of the PSO-SVR model for the photosynthetic rate, the 

determination coefficient (R2), Root Mean Square Error (RMSE), Mean Square Error (MSE) and Mean 

Absolute Error (MAE) were selected as model evaluation indexes. The calculation equations of each 

evaluation index are as follows. 

 𝑅2 = 1 −
∑ (𝑦̂𝑖 − 𝑦𝑖)

2𝑛
𝑖

∑ (𝑦̅𝑖 − 𝑦𝑖)
2

𝑖
 (18) 

 𝑀𝑆𝐸 =
1

𝑁
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑁

𝑖=1

 (19) 

 𝑀𝐴𝐸 =
1

𝑛
∑|𝑦̂𝑖 −𝑦𝑖|

𝑛

𝑖=1

 (20) 

 𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑁

𝑖=1

 (21) 

Where 𝑦𝑖 is the true value to be predicted, 𝑦̂𝑖 is the predicted value, and 𝑁 is the total number 

of predictions. After we fit the data, the actual values were compared with the predicted values in the 

validation set. 
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4. Simulation results and analysis 

4.1. Data set devision  

We divided the data set in two ways and performed validation tests on their corresponding test 

sets using different validation criteria, such as MSE, MAE, RMSE, and R2. As shown in Table 1, we 

use D1 to represent one-tenth of the data for testing. The test set contains 53 sets of data and the 

remaining 475 sets of data are involved in training; D2 to represent the division into training and test 

sets by 7:3, resulting in 370 sets of data in the training set and 158 sets of data in the test set. 

Table 1. Two ways of dividing the data set. 

Data set Training set Validation set Test set 𝐓𝐨𝐭𝐚𝐥 

D1 422 53 53 528 

D2 370 0 158 528 

4.2. Parameter optimization results 

Different hyperparameters have different effects on the generalization ability of the SVR model. 

The best hyperparameters should be selected as much as possible to maximize the accuracy of the 

model. In this paper, the particle swarm (PSO) algorithm is chosen to optimize the parameters of the 

SVR model. The particle population size is set to 30, the maximum number of iterations is 30, the 

inertia weight is set to 0.4, and the learning factors 𝑐1 and 𝑐2 are set to 1.5 and 1.6, respectively, while 

the range of variation of velocity and position is limited. After parameter tuning, the optimal 

parameters for the PSO-SVR photosynthetic rate prediction model were determined to be 𝐶=10, 𝜀=0.01, 

and 𝑔=4.3282 in the division case of D1, and 𝐶=10, 𝜀=0.02, and 𝑔= 2.6653 in the division case of D2. 

4.3. Photosynthetic rate prediction analysis and error statistics 

For a comprehensive assessment of the predictive performance of the photosynthetic rate 

prediction model based on the PSO-SVR algorithm, LR, RF, SVR, and BPNN were also used to model 

on the same data set. Figure 4 a, b depicts the upper limits of the tested effects of the five algorithms 

for both D1 and D2 division cases, respectively.  
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a. Prediction curves of the five algorithms on the test set in D1 condition. 

 
b. Prediction curves of the five algorithms on the test set in D2 condition. 

Figure 4. Prediction curves of the five models.  

From Figure 5 a, b, we can analyze more specifically the correlation between the measured and 

predicted values of the photosynthetic rate models optimized in different ways on different test sets. It 
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is clear that almost all models with good performance in D1 condition show a decrease in performance 

when the data used for training are reduced. However, in both D1 and D2 conditions, the regression 

coefficient of PSO-SVR is closer to 1 compared to the rest of the models, which means that the PSO-

SVR model has better performance on the photosynthetic rate data set. 

 

a. Correlation between predicted and measured photosynthetic rate values under D1 conditions. 

 

b. Correlation between predicted and measured photosynthetic rate values under D2 conditions. 

Figure 5. Predictive correlation demonstration for five models. 

 

To further analyze the prediction accuracy and generalization ability of the five models, we plotted 

Table 2. Table 2 shows the results of the error comparison of R2, MSE, MAE, and RMSE on different 
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test sets. Among the five methods, the R2 of BPNN, RF, and PSO-SVR are all above 0.9000, indicating 

that these models have good fitting effects and the independent variables explain the dependent 

variable to a considerable extent. 

 It is generally accepted that random forest has slightly lower prediction accuracy than SVR on 

small samples [29]. In this paper, in the division case of D1, the R2 of both RF and PSO-SVR are above 

0.9900. the MSE of RF is 0.0843, the MAE is 0.1843, and the RMSE is 0.2903. the MSE of PSO-SVR 

is 0.0258, the MAE is 0.0739, and the RMSE is 0.1608. both models have small errors. However, in 

the case of D2 division, in the face of reduced training data, although the R2 of both RF and PSO-SVR 

are above 0.9800, the prediction accuracy of RF decreases more than that of PSO-SVR. the MSE of 

RF is 0.1643, MAE is 0.2318, and RMSE is 0.4053. the MSE of PSO-SVR is 0.0926, MAE is 0.1461, 

and RMSE is 0.3043. the prediction error increases for both models, but the PSO-SVR model has a 

smaller variation in error. This still indicates that the PSO-SVR model established in this paper has 

high prediction accuracy and generalization ability on the photosynthetic rate data set. In addition, the 

running time of random forest is smaller than that of PSO-SVR, but there is a non-negligible difference 

between the prediction accuracy of the two algorithms on the small sample data set, and the PSO-SVR 

with better generalization ability should not be abandoned because of the slightly faster running 

speed of RF. under comprehensive consideration, the PSO-SVR model is the best model on the 

small sample data. 

Table 2. Comparison of the experimental accuracy and error of the different prediction methods. 

Method R2 𝐌𝐒𝐄 MAE 𝐑𝐌𝐒𝐄 

MLR 
D1 0.6810 3.9071 1.5458 1.9766 

D2 0.6719 3.9203 1.5312 1.9799 

BP 
D1 0.8188 2.2559 1.2139 1.5020 

D2 0.8101 2.2698 1.1510 1.5066 

RF 
D1 0.9934 0.0843 0.1843 0.2903 

D2 0.9855 0.1643 0.2318 0.4053 

SVR 
D1 0.8722 1.5906 0.9758 1.2611 

D2 0.8811 1.4206 0.38840 1.1919 

PSO-SVR 
D1 0.9979 0.0258 0.0739 0.1608 

D2 0.9922 0.0926 0.1461 0.3043 

5. Conclusion 

To meet the need for distributed regulation of the greenhouse light environment, this paper 

attempts to find an optimal modeling approach for environmental factors associated with 

photosynthetic rate and compares the performance of several models for predicting photosynthetic rate 

in strawberry leaves. In the strawberry photosynthetic data set based on correlations verified by gray 

correlation analysis, temperature, CO2 concentration, and PPFD measurements near the leaves were 

used as input variables to the model, and photosynthetic rate was used as an output variable. In addition, 



12789 

Mathematical Biosciences and Engineering  Volume 19, Issue 12, 12774–12791. 

the difference in prediction accuracy between different methods of dividing the data set was also tested. 

We observe that the method of optimizing the parameters in the support vector regression model using 

the particle swarm algorithm has the best generalization ability, which exhibits an R2 greater than 

0.9900 on the test sets obtained with different ways of dividing the data set. The predictive model will 

enable the greenhouse light environment distributed control solution to dynamically measure the 

current greenhouse ambient temperature, CO2 volume concentration and light flux density and 

accurately predict the light saturation point based on the distributed monitoring terminal deployed in 

the greenhouse, and then calculate the light replenishment strategy to achieve fine control of light in 

the local area. The model can be used as a soft sensor. In addition, it has some ability to be extended 

to other plants in the same family as strawberry. In the next step, we will add humidity and other 

parameters to the model and carry out the deployment of distributed regulation of the greenhouse light 

environment. 
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