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Abstract: As an indicator measured by incubating organic material from water samples in rivers, the 

most typical characteristic of water quality items is biochemical oxygen demand (BOD5) concentration, 

which is a stream pollutant with an extreme circumstance of organic loading and controlling aquatic 

behavior in the eco-environment. Leading monitoring approaches including machine leaning and deep 

learning have been evolved for a correct, trustworthy, and low-cost prediction of BOD5 concentration. 

The addressed research investigated the efficiency of three standalone models including machine 

learning (extreme learning machine (ELM) and support vector regression (SVR)) and deep learning 

(deep echo state network (Deep ESN)). In addition, the novel double-stage synthesis models (wavelet-

extreme learning machine (Wavelet-ELM), wavelet-support vector regression (Wavelet-SVR), and 
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wavelet-deep echo state network (Wavelet-Deep ESN)) were developed by integrating wavelet 

transformation (WT) with the different standalone models. Five input associations were supplied for 

evaluating standalone and double-stage synthesis models by determining diverse water quantity and 

quality items. The proposed models were assessed using the coefficient of determination (R2), Nash-

Sutcliffe (NS) efficiency, and root mean square error (RMSE). The significance of addressed research 

can be found from the overall outcomes that the predictive accuracy of double-stage synthesis models 

were not always superior to that of standalone models. Overall results showed that the SVR with 3th 

distribution (NS = 0.915) and the Wavelet-SVR with 4th distribution (NS = 0.915) demonstrated more 

correct outcomes for predicting BOD5 concentration compared to alternative models at Hwangji 

station, and the Wavelet-SVR with 4th distribution (NS = 0.917) was judged to be the most superior 

model at Toilchun station. In most cases for predicting BOD5 concentration, the novel double-stage 

synthesis models can be utilized for efficient and organized data administration and regulation of water 

pollutants on both stations, South Korea.  

Keywords: biochemical oxygen demand; wavelet transformation; deep echo state network; extreme 

learning machine; support vector regression 

 

1. Introduction  

The role of water quality in streams, lakes, and seas can be stated as organic, synthetic, and 

environmental condition of waterbody [1,2]. The items for water quality include the diverse features 

such as dissolved oxygen (DO), chemical oxygen demand (COD), biochemical oxygen demand 

(BOD5), total organic carbon (TOC), total phosphorus (T-P), total nitrogen (T-N), suspended solids 

(SS), turbidity (TU), potential of Hydrogen (pH), electrical conductivity (EC), water temperature (WT), 

and chlorophyll-a (Chl-a) and so on. The quantitative evaluation of water quality items is significant 

for the transaction of integrated water resources [3]. 

The water quality items can be identified in three ways: situ-measurement class (e.g., TU, pH, 

EC, DO, and WT), lab-measurement class (e.g., T-P, T-N, TOC, SS, COD, and Chl-a), and incubated-

measurement class (e.g., BOD5). Among water quality items, BOD5, the representative incubated-

measurement indicator, was considered as a reference to appraise the organic pollution of waterbody 

by the American Public Health Association Standard Methods Committee (APHASMC) [4]. Also, the 

concentration of BOD5 can be recommended as the necessity of DO to cut down the organic matter of 

fluid at specific temperature [5]. It can, therefore, be estimated using the quantity of oxygen used up 

per liter of inspected data dependent on the 5-day period at 20 Celsius (℃) [6], and was assessed as 

one of essential river water quality items for the preservation and management of eco-environmental 

systems [7].  

Although different machine learning and deep learning paradigms have been implemented for 

estimating the incubated-measurement indicator in rivers, this article proposes the unique technique 

for the accurate prediction of BOD5 concentration. Hybrid neuroscience approaches involving the 

diverse data preprocessing coupled with the neuroscience techniques promote the evolution of more 

complex models based on the higher precision of estimated problems in natural behavior [2,8]. The 

double-stage synthesis models, one of hybrid neuroscience approaches, combining the wavelet 

transformation (WT) and different neuroscience models were developed and implemented to boost the 
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predictive accuracy of BOD5 concentration in Hwangji and Toilchun stations, South Korea. The 

standalone models such as extreme learning machine (ELM), support vector regression (SVR), and 

deep echo state network (Deep ESN) were also employed for integrating and evaluating novel double-

stage synthesis model’s scheme clearly. The novel double-stage synthesis models (i.e., Wavelet-ELM, 

Wavelet-SVR, and Wavelet-Deep ESN), therefore, demonstrates the efficient and accurate estimation 

of highly complex and nonstationary problem in rivers. The distinguished attraction of double-stage 

synthesis models motivates to explore the accurate prediction of BOD5 concentration.  

To the best of our knowledge and recognition from the previous information such as published 

articles, documents and reports, the double-stage synthesis models in the addressed article have not 

been frequently implemented for predicting BOD5 concentration among the various water quality 

items. This article discusses the performance of implemented models (ELM, SVR, Deep ESN, 

Wavelet-ELM, Wavelet-SVR, and Wavelet-Deep ESN) for predicting BOD5 concentration. They are 

evaluated by utilizing three mathematical formulae (R2, NS, and RMSE) and four graphical aids 

(Scatter diagram, boxplot, violin plot, and Taylor diagram), respectively. 

The rest of addressed research is arranged as follows. A brief review of BOD5 concentration 

estimation and prediction is presented in section 2. The detailed description of machine learning and 

deep learning paradigms are provided in section 3. Also, the wavelet transformation is discussed. In 

section 4, report for data available and the criteria of model assessment are provided in detail. In section 

5, a case study is presented by using the standalone and double-stage synthesis models based on water 

quantity and quality items collected in Hwangji and Toilchun stations, South Korea. In section 6, the 

advantages of standalone and double-stage synthesis models using mathematical formulae and 

graphical aids are discussed. In the end, the conclusions are drawn up.  

2. Literature review on BOD5 concentration estimation and prediction 

Various machine learning and deep learning paradigms for the estimation and prediction issues 

of water quality have been extensively reported in numerous articles and documents. [9] developed 

the hybrid model utilizing SVR and firefly algorithm (FFA) for predicting water quality indicator in 

the Euphrates River, Iraq. They found that the SVR-FFA model could predict the water quality 

indicator accurately. [10] implemented four standalone and twelve hybrid models to predict the Iran 

water quality indicator. The BA-RT, one of hybrid models, provided the best performance to predict 

the Iran water quality indicator. [11] employed seven standalone and three hybrid models to predict 

the diverse water quality indicators in China. Results showed that the decision tree (DT), random forest 

(RF), and deep cascade forest (DCF) models produced the outstanding achievements to predict water 

quality indicators in major rivers and lakes. [12] reviewed the recent advances in water quality remote 

sensing system using 200 datasets of water quality indicators. They demonstrated that the deep learning 

model outperformed the other proposed models to predict water quality indicators in Midwestern 

United States. [13] investigated the ELM, RF, group method of data handling (GMDH), classification 

and regression tree (CART), and Bat-ELM models to predict the chlorophyll-a concentration in river 

and lake systems, USA. They concluded that the Bat-ELM model predicted the chlorophyll-a 

concentration precisely compared to other models. [14] proposed the deep learning models including 

the recurrent neural network (RNN), long-short term memory (LSTM), and gated recurrent unit (GRU) 

to predict the drainage water quality indicator in Southern China. They showed that the deep learning 

models produced better prediction compared to the multiple linear regression (MLR) and multilayer 

perception (MLP) models.  
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However, limited techniques and methods have been implemented to estimate and predict BOD5 

concentration [15–18]. [19] employed the regression tree (RT) and SVR models to estimate total 

suspended solids (TSS), total dissolved solid (TDS), COD, and BOD5 concentration using the datasets 

from National Stormwater Quality Database (NSQD), USA. Results showed that the applied models 

could estimate BOD5 concentration accurately. [20] developed the adaptive neuro-fuzzy inference 

system (ANFIS) and wavelet SVR (WSVR) models to predict BOD5 concentration in Karun River, 

Iran. They demonstrated that the WSVR model provided better prediction compared to the ANFIS 

model. [1] estimated BOD5 concentration employing the RF, gradient boosting regression tree (GBRT), 

ELM, and Deep ESN in the Han River, South Korea. It can be found from [1]’s article that the Deep 

ESN5 model supplied the most accurate predictions of BOD5 concentration among the developed 

models. Also, [2] developed two-stage and standalone neuroscience models to predict BOD5 

concentration in the Nakdong River, South Korea. Considering the developed models, the DWT-RF5 

and DWT-GRNN4 models were the best model for predicting BOD5 concentration. [21] utilized the 

SVR, RF, artificial neural networks (ANNs), long short-term memory (LSTM), convolutional neural 

networks (CNN)-LSTM, and Bi-LSTM models for forecasting COD and BOD5 concentrations in the 

Yamuna River, India. This investigation provided that the Bi-LSTM model supplied the best 

performance for forecasting COD and BOD5 concentrations. [22] implemented four standalone (ANN, 

RF, support vector machines (SVMs), and gradient boosting machines (GBM)) and six hybrid (RF-

SVMs, ANN-SVMs, GBM-SVMs, RF-ANNs, GBM-ANNs, and RF-GBM) models to predict BOD5 

concentration in the Buriganga River, Bangladesh. They found that the RF-SVMs model provided the 

best predictive accuracy among the developed models. In contrast with the above-mentioned machine 

learning and deep learning paradigms, the novel double-stage synthesis models were introduced to 

find the optimal models between BOD5 concentration and well-known water quality items based on 

five input associations. The addressed research can highlight how the novel double-stage synthesis 

models enhance the predictive results of BOD5 concentration. 

3. Implemented models and supplementary method 

The implemented models in the addressed article were machine learning (ELM and SVR) and 

deep learning (Deep ESN) paradigms, and the supplementary method was classified as the wavelet 

transformation, which is one of data preprocessing techniques used in various research fields. It can 

be seen from Figure 1 that the comprehensive mechanism of research process is underlined. Successive 

sub-phases explain the implemented models and supplementary method.  
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Figure 1. Comprehensive mechanism of research process.  

3.1. Extreme Learning Machine (ELM)  

[23] initially recommended the ELM model as a rapid and effective category of feedforward 

neural networks (FFNN) (refer to Figure 2). It involves a single-middle-layer, which receives a 

particular scheme for training the parameters of networks compared to the conventional multilayer 

perceptron (MLP) model. The ELM model can map using a single-middle-layer with M independent 

input indicators and be written as follows: 

1 1

( ) (w )
M L

i i i j

j i

f x g x b
= =

= +                                            (1)  

where g(.) is the activation function, which supplies the output in the middle layer; i is the weight of 

output for connecting the middle neurons to the output neuron; and L is the neuron number of the 

middle layer. The output indicator can be given by the following formula (2): 

    
1 1

(w )
M L

i i i j

j i

y g x b t 
= =

= + = +                                (2) 

where   is the error. The Gaussian and sigmoid functions are the most employed mapping ones in 

the ELM model’s category. The underlying formula (3) expresses the Gaussian function: 

2
( ) ( , , ) exp( )i i ig x h a c x a x c= = − −                                       (3)  
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where a and c refer to the activation functions. During training phase, the connection weight is fixed 

in the ELM model’s category. That is, random values are allowed directly to neurons’ activation 

functions instead of requesting an iterative process to update them. The connection weights for output 

neuron can be achieved continuously utilizing the least squares method. In other words, the fitting 

error ought to be reduced by computing 
2

−Hβ T for the connection weight (β ), where T is the matrix 

for target and H is the randomized matrix corresponding to the middle layer: 

      

1 1( )

. .
,

. .
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T

T
N N

g x t

g x t

  
  
  = =
  
  
    

H T                                    (4) 

The connection weight for output is resolved, based on the linear equation system such as +=β Η T , 

where +
Η  is the generalized inverse function of Moore-Penrose [1,24].   
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Figure 2. A schematic diagram of extreme learning machine (ELM) model. 

3.2. Support Vector Regression (SVR) 

The SVR model (refer to Figure 3), which is a special type of SVMs, has been applied in various 

fields, including stock index prediction, bioinformatics engineering, chemical synthesis, and 

production process control and so on [25,26]. The generalization of conventional ANNs models may 

reduce to a local optimized generalization, while a universal optimization is insured for the SVR 

model [27–29].  

The fundamental concepts of SVR model are as follows. Recognizing the training sample ( )
ii

y,x , 
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where n

i
x    is a specific value of input indicator x, and n

i
y    is the matching value of 

surveyed model output. Also, a nonlinear transfer function ( )( ) and a linear function ( )f( ) can be 

defined between input and output indicators. The actual output, therefore, is expressed by formula (5): 

B(x)wf(x)y T +==                                                   (5)     

where y  is the actual output; and w and B are the adjustable parameters of the model. In the SVR 

model, the empirical risk can be written as the following formula (6): 

=

 −=
N

1i

iiemp
yy

N

1
R                                                    (6) 

where Remp is the empirical risk; and 


−
ii yy is Vapnik’s ε-insensitive loss function. The adjustable 

parameters (i.e., w and B in formula (5)) of the model can be calculated by obtaining the minimum 

cost function [27]. In the addressed article, the following cost function was used: 

)ξ(ξCww
2

1
)ξξ,(w,ψ

N

1i

ii

T

ε 
=

 ++=                                       (7)    

where )ξξ,(w,ψε


 is the cost function; 



ii ξ,ξ   are the positive slack variables; and C is the cost 

constant. In addition, the constraints for formula (7) can be classified as: (1) iξεyy
ii +−   i = 1, 

2, ... , N; (2) ++− iii ξεyy  i = 1, 2, ... , N; and (3) 0ξ,ξ ii 
 i = 1, 2, ... , N.  
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Figure 3. A schematic diagram of support vector regression (SVR) model. 
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3.3 Deep Echo State Network (Deep ESN) 

The recurrent neural networks (RNN), including the echo state network (ESN), has the most 

broadly utilized reservoir computing (RC) method [1,31,32]. Since the RNN model is powerful and 

accurate for computing the complicated and nonlinear problems, the Deep ESN model is effective for 

historical data. The Deep ESN model contains an order of deformed recurrent layers named as reservoir, 

where every layer output performs as the following layer input. Figure 4 explains a conceptual diagram 

of Deep ESN model with the recurrent structure of reservoir from the viewpoint of a discrete-time 

dynamic system. The reservoir dynamic state can be renewed by recognizing the leaky integration 

ESN (i.e., LI-ESN) as below: 

    in Rx(t) (1 )x(t 1) tanh(W u(t) W x(t 1)) = − − + + −                       (8)  

where α is the leaky coefficient; u(t) is the outside input based on time t; x(t) is the reservoir state in 

the corresponding layer based on time t; Win is the matrix of input connection weight for the reservoir; 

and WR is the matrix of recurrent connection weight. Because the input indicator to the following 

reservoir can be supplied by the output indicator of its prior reservoir, an ordinary equation for the 

Deep ESN model is organized for expanding the function of state transition as below.  

    
R

0 1

x (t) (1 ) x (t 1) tanh(W i (t) W x (t 1));

i (t) u(t) & i (t) x (t); 1,2,...,L

 
−

= − − + + −

= = =
                 (9) 

where  is a layer (reservoir) in the structure of RC; RW are the connection weights between the 

layer and the prior one 1− ; and L is the quantity for the layers of reservoir [1,32,33]. Here, five 

layers were employed in the reservoir for the Deep ESN model to estimate BOD5 concentration.  

 

Figure 4. A conceptual diagram of deep echo state network (Deep ESN) model [1]. 
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3.4 Wavelet Transformation (WT) 

The WT method, which is one of multi-resolution signal procedure methods, is employed to build 

the double-stage synthesis models. The original data can be isolated into various frequency 

components involving an approximation and numerous details handling the WT method. In the 

addressed article, discrete-based wavelet transformation, which has been utilized for the data 

preprocessing in diverse fields, was selected. In fact, the discrete-based WT method can be 

accomplished by implementing the Mallat method [34]. The bottom line of Mallat method is two-route 

filters comprising two filters as low-pass and high-pass [2,35]. [36] defined that the coefficients for 

the wavelet (high-pass) and scaling (low-pass) in the jth level of decomposition is outlined as  

     
1

1

, 1, 2 1 mod

0
j

L

j t l j t l N

l

W hV
−

−

− + −

=

 , 
1

1

, 1, 2 1 mod

0
j

L

j t l j t l N

l

V g V
−

−

− + −

=

 , 0,1, , 1jt N= −  (10) 

where ,j tW   and ,j tV   are the elements for corresponding jW   and jV  . The WT decomposes the 

complex and original input time series into the components (approximation and details) which show 

relatively simpler patterns than the original input time series. The different components obtained from 

WT were implemented as input association of corresponding double-stage synthesis model. Evolving 

double-stage synthesis models for the components separately and summing their predicted values can 

improve the predictive accuracy of double-stage synthesis models compared to performance of 

standalone models for the original input time series with high complexity. A flowchart for dual-step 

discrete-based WT is shown in figure 5. Here, two details (D1 and D2) and an approximation (A2) are 

achieved from the original input time series. Also, Figure 6 illustrates the sequential diagram for 

evolving the double-stage synthesis models.  
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Figure 5. Dual-step discrete-based WT decomposition. 
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Figure 6. Sequential diagram for evolving double-stage synthesis models. 

4. Report for data and assessment criteria 

4.1.Preparation of utilized data 

The original data can be isolated into various frequency In the addressed article, Hwangji 

(longitude 129°05′07″E; latitude 37°06′74″N) and Toilchun (longitude 128°44′46″E; latitude 

36°47′09″N) stations were employed to predict BOD5 concentration using diverse physical and 

chemical variables such as T-N, T-P, TOC, DO, WT, SS, COD, pH, EC, and station discharge (DIS) in 

South Korea. Figure 7 shows the illustrative map of Hwangji and Toilchun stations.  

The surveyed data (2008/02–2020/12 for Hwangji and 2011/07–2020/12 for Toilchun stations) 

for water quantity and quality items can be directly accessed and collected from official website 

(http://water.nier.go.kr) of National Institute of Environmental Research (NIER), South Korea. The 

full data file consisted of training and validation samples. The training sample involved 80% (data = 

398 from Hwangji and data = 294 from Toilchun stations) and the validation sample applied the last 

20% (data = 99 from Hwangji and data = 74 from Toilchun stations) of full data file.  
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Figure 7. Illustrative map of Hwangji and Toilchun stations. 

Recognizing the source code and software of machine learning and deep learning paradigms, the 

ELM model was evolved by employing the R (https://www.r-project.org, a free software environment 

for statistical computing and graphics) package and the elmNNRcpp (https://cran.r-

project.org/web/packages/elmNNRcpp/index.html). In case of SVR model, it was implemented by the 

DTREG predictive modeling software (www.dtreg.com). In addition, the Deep ESN model was 

developed by utilizing the MATLAB programing language (https://www.mathworks.com), which is a 

freely available MATLAB toolbox for the Deep ESN (https://it.mathworks.com/ 

matlabcentral/fileexchange/69402-deepesn). 

The optimal number of hidden nodes for the ELM and Wavelet-ELM models was determined 

using a trial and error process. As the number of hidden nodes was changed from 1 to 5m (where, m is 

the number of input indicators), the number of hidden nodes with the minimum RMSE value was 

decided as the optimal value. The logistic sigmoid function and linear function were used for activating 

hidden and output nodes, respectively. In addition, epsilon type of SVR model with radial basis 

function (RBF) kernel was employed for predicting BOD5 concentration using the SVR and Wavelet-

SVR models. Also, the V-fold cross-validation were applied to validate the SVR and Wavelet-SVR 

models, and the grid search algorithm found the optimal parameters by minimizing total errors. Finally, 

the optimal number of layers and reservoirs units were decided based on the trial and error process for 

the Deep ESN and Wavelet-Deep ESN models.  

Table 1 explains the computed results for the correlation coefficients and P values between 

individual input indicators and BOD5 concentration. It can be judged from Table 1 that TOC (e.g., CC 

= 0.721, P value = 0.0001 at Hwangji and CC = 0.563, P value = 0.0001 at Toilchun stations) and COD 

(e.g., CC=0.721, P value =0.0001 at Hwangji and CC = 0.626, P value = 0.0001 at Toilchun stations) 

items exhibited high correlation and statistically significant with BOD5 concentration among various 

input indicators. In the addressed article, all indicators can be categorized as class 1 (i.e., in situ-

measurement items (pH, EC, DO, and WT), class 2 (i.e., lab-measurement items (SS, COD, T-N, T-P, 

and TOC) and incubated-measurement item (BOD5)), and class 3 (i.e., water quantity item (river 

discharge)), respectively.  
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Table 1. Correlation coefficients and P values between corresponding input indicators and 

BOD5 concentration. 

Class Input indicators  BOD5 concentration 

Hwangji Toilchun 

CC P-value CC P-value 

1 pH 

EC 

DO 

WT 

-0.003 

0.088 

0.036 

-0.074 

0.9491 

0.0494 

0.4185 

0.0974 

0.073 

-0.262 

-0.064 

0.123 

0.1024 

0.0001 

0.1565 

0.0058 

2 SS 

COD 

T-N 

T-P 

TOC 

0.120 

0.721 

0.163 

0.349 

0.721 

0.0069 

0.0001 

0.0003 

0.0001 

0.0001 

0.462 

0.626 

-0.195 

0.479 

0.563 

0.0001 

0.0001 

0.0001 

0.0001 

0.0001 

3 DIS -0.042 0.3494 0.184 0.0001 

4.2. Mathematical assessment criteria of standalone and double-stage synthesis models 

To assess the performance of standalone (ELM, SVR, and Deep ESN) and double-stage synthesis 

(Wavelet-ELM, Wavelet-SVR, and Wavelet-Deep ESN) models, three mathematical formulae, which 

have been recognized and utilized worldwide, were employed. The coefficient of determination (R2) 

criterion [37,38] is clarified as the square of correlation between surveyed and estimated BOD5 

concentrations (see formula (11)). The Nash-Sutcliffe (NS) efficiency criterion [39] can resolve the 

models’ effectiveness between surveyed and estimated BOD5 concentrations (see formula (12)). Also, 

the disparity between surveyed and estimated BOD5 concentrations can be referred by handling the 

root mean square error (RMSE) criterion [40]. The RMSE criterion can be computed by employing 

formula (13). 

2

2 1

2 2

1 1

1
( )( )

1 1
( ) ( )

n

sur estsur est

i

n n

sur estsur est

i i

BOD BOD BOD BOD
n

R

BOD BOD BOD BOD
n n

=

= =

 
− − 

 =
 

− −  
 



 

                  (11) 
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[ BOD BOD ]
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[ BOD BOD ]

=

=

−

−




                                                (12) 

2

1

1 n

sur est

i

RMSE= [ BOD BOD ]
n =

−
                                      

     (13) 

where surBOD and estBOD  = surveyed and estimated BOD5 concentrations; surBOD and estBOD  = 

surveyed and estimated mean BOD5 concentrations; and n = the number of full data available.   



12756 

Mathematical Biosciences and Engineering  Volume 19, Issue 12, 12744–12773. 

5. Case study 

The addressed article utilized the miscellaneous water quantity and quality items to predict BOD5 

concentration in Hwangji and Toilchun stations, South Korea. As defined formerly, the assessment of 

standalone and double-stage synthesis models to estimate BOD5 concentration was the essential view 

of this article. 

Among water quality items, some indicators, including pH, EC, DO, and WT, were directly 

surveyed by utilizing a commercial mechanical tool. Also, the indicators including SS, COD, T-N, T-

P, and TOC were surveyed through the laboratory assistant system indirectly. BOD5 concentration, 

however, can be indirectly surveyed via the incubation system, based on the 20 ℃ for the 5-day 

period [41]. Since the plan of addressed article was scheduled to predict BOD5 concentration utilizing 

the standalone and double-stage synthesis models, this behavior could save and protect the time and 

effort to estimate and incubate BOD5 concentration.   

From the correlation coefficients and P values of water quantity and quality items (refer to Table 

1), divergent organizations were provided to choose the best input association for given stations. To 

employ the same input indicators on both stations among them, some input indicators with positive 

(e.g., COD, TOC, T-P, and SS) and negative (e.g., WT, pH, and DIS) correlations were selected for 

diverse input associations in Hwangji station because input indicators with negative correlations can 

also contribute for predicting BOD5 concentration. However, many input indicators based on positive 

(e.g., COD, TOC, T-P, SS, WT, pH, and DIS) correlation were implemented for different input 

associations in Toilchun station.  

Hence, the standalone and double-stage synthesis models were evolved for predicting BOD5 

concentration, based on five input associations (so called, 1st–5th distributions). Because TOC and 

COD items were picked out as the underlying water quality items for given stations, the addressed 

article determined the consolidation of TOC and COD items as the 1st distribution. Table 2 presents 

the diverse input associations of water quantity and quality items to predict BOD5 concentration. All 

developed models in Table 2 can be categorized into five distributions.   

5.1. Predicting BOD5 concentration at Hwangji station 

5.1.1. Application of standalone models 

The results of three mathematical formulae (R2, NS, and RMSE) for the standalone models are 

summed up in Table 3 for Hwangji station. Table 3 explains that the outcomes of SVR1 (R2 = 0.905, 

NS = 0.891, and RMSE = 0.299 mg/L) are more excellent than the ELM1 and Deep ESN1 in the 

validation phase dependent on the 1st distribution. In the 2nd distribution, the SVR2 (R2 = 0.908, NS = 

0.905, and RMSE = 0.279 mg/L) performs more excellent than the ELM2 and Deep ESN2. And, the 

SVR3 (R2 = 0.925, NS = 0.915, and RMSE = 0.264 mg/L) surpasses the ELM3 and Deep ESN3 clearly 

in the validation phase for the 3rd distribution. The contrast of standalone models in the 4th distribution, 

furthermore, indicates that the ELM4 (R2 = 0.902, NS = 0.893, and RMSE = 0.295 mg/L) dominates the 

SVR4 and Deep ESN4 in the validation phase. In the end, the SVR5 (R2 = 0.905, NS = 0.884, and RMSE 

= 0.309 mg/L) is more accurate than ELM5 and Deep ESN5 in the validation phase for the 5th distribution. 

Recognizing the impressive models from the 1st–5th distributions, the best accomplishment of 

standalone models can be found from the ELM (the 4th distribution), SVR (the 3rd distribution), and 

Deep ESN (the 2nd distribution) among diverse input associations in the validation phase. Table 3 tells 
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us that the desirable performance of SVR3 gives more accurate than ELM4 and Deep ESN2 in the 

validation phase. Therefore, it can be said that the SVR3 is the most accurate for predicting BOD5 

concentration among the desirable standalone models at Hwangji station.   

Table 2. Diverse input associations of developed models for predicting BOD5 concentration. 

Classification Division Model Distribution Input association 

 

 

 

 

 

 

 

Standalone 

 

Machine  

learning 

 

ELM 

ELM1 

ELM2 

ELM3 

ELM4 

ELM5 

COD+TOC 

COD+TOC+T-P+SS 

COD+TOC+WT+pH 

COD+TOC+T-P+SS+WT+pH 

COD+TOC+T-P+SS+WT+pH+DIS 

 

Machine  

learning 

 

SVR 

SVR1 

SVR2 

SVR3 

SVR4 

SVR5 

COD+TOC 

COD+TOC+T-P+SS 

COD+TOC+WT+pH 

COD+TOC+T-P+SS+WT+pH 

COD+TOC+T-P+SS+WT+pH+DIS 

 

Deep  

learning 

 

Deep ESN 

Deep ESN1 

Deep ESN2 

Deep ESN3 

Deep ESN4 

Deep ESN5 

COD+TOC 

COD+TOC+T-P+SS 

COD+TOC+WT+pH 

COD+TOC+T-P+SS+WT+pH 

COD+TOC+T-P+SS+WT+pH+DIS 

 

 

 

 

 

 

Double-stage 

synthesis 

 

Machine  

learning 

 

Wavelet-

ELM 

Wavelet-ELM1 

Wavelet-ELM2 

Wavelet-ELM3 

Wavelet-ELM4 

Wavelet-ELM5 

COD+TOC 

COD+TOC+T-P+SS 

COD+TOC+WT+pH 

COD+TOC+T-P+SS+WT+pH 

COD+TOC+T-P+SS+WT+pH+DIS 

 

Machine  

learning 

 

Wavelet-

SVR 

Wavelet-SVR1 

Wavelet-SVR2 

Wavelet-SVR3 

Wavelet-SVR4 

Wavelet-SVR5 

COD+TOC 

COD+TOC+T-P+SS 

COD+TOC+WT+pH 

COD+TOC+T-P+SS+WT+pH 

COD+TOC+T-P+SS+WT+pH+DIS 

 

Deep  

learning 

 

Wavelet-

Deep ESN 

Wavelet-Deep ESN1 

Wavelet-Deep ESN2 

Wavelet-Deep ESN3 

Wavelet-Deep ESN4 

Wavelet-Deep ESN5 

COD+TOC 

COD+TOC+T-P+SS 

COD+TOC+WT+pH 

COD+TOC+T-P+SS+WT+pH 

COD+TOC+T-P+SS+WT+pH+DIS 
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Table 3. Results of three mathematical criteria using the standalone models at Hwangji station. 

Classification Distribution Validation phase 

R2 

 

NS RMSE 

(mg/L) 

 

 

 

 

 

 

 

Standalone 

ELM1 

ELM2 

ELM3 

ELM4 

ELM5 

0.900 

0.895 

0.898 

0.902 

0.879 

0.835 

0.879 

0.837 

0.893 

0.855 

0.368 

0.315 

0.365 

0.295 

0.344 

SVR1 

SVR2 

SVR3 

SVR4 

SVR5 

0.905 

0.908 

0.925 

0.908 

0.905 

0.891 

0.905 

0.915 

0.882 

0.884 

0.299 

0.279 

0.264 

0.310 

0.309 

Deep ESN1 

Deep ESN2 

Deep ESN3 

Deep ESN4 

Deep ESN5 

0.871 

0.884 

0.845 

0.857 

0.886 

0.806 

0.831 

0.805 

0.769 

0.809 

0.398 

0.371 

0.399 

0.434 

0.394 

5.1.2. Application of double-stage synthesis models 

The results of three mathematical criteria for the double-stage synthesis models are also arranged 

in Table 4 at Hwangji station. From Table 4, it is clear that the outcomes of Wavelet-SVR1 (R2 = 0.904, 

NS = 0.895, and RMSE = 0.293 mg/L) are more dominant compared to the Wavelet-ELM1 and 

Wavelet-Deep ESN1 in the validation phase dependent on the 1st distribution. Based on the 2nd 

distribution, the Wavelet-SVR2 (R2 = 0.911, NS = 0.911, and RMSE = 0.271 mg/L) is more excellent 

than the Wavelet-ELM2 and Wavelet-Deep ESN2. Also, the Wavelet-SVR3 (R2 = 0.920, NS = 0.912, 

and RMSE = 0.269 mg/L) outperforms the Wavelet-ELM3 and Wavelet-Deep ESN3 regarding the 3rd 

distribution in the validation phase. Moreover, the contrast of double-stage synthesis models in the 4th 

distribution demonstrates that the Wavelet-SVR4 (R2 = 0.926, NS = 0.915, and RMSE = 0.264 mg/L) 

performs superior to the Wavelet-ELM4 and Wavelet-Deep ESN4 in the validation phase. In the end, 

Wavelet-SVR4 (R2 = 0.919, NS = 0.914, and RMSE = 0.266 mg/L) is more efficient than the Wavelet-

ELM5 and Wavelet-Deep ESN5 in the validation phase for the 5th distribution.  

Contemplating the outstanding models from the 1st-5th distributions, the admirable performance 

of double-stage synthesis models can be judged from the Wavelet-ELM (the 2nd distribution), Wavelet-

SVR (the 4th distribution), and Wavelet-Deep ESN (the 3rd distribution) among diverse input 

associations in the validation phase. It can be noticed from Table 4 that the Wavelet-SVR4 provides 

more effective outcomes than the Wavelet-ELM2 and Wavelet-Deep ESN3 in the validation phase. For 

that reason, the Wavelet-SVR4 is more trustworthy than the Wavelet-ELM2 and Wavelet-Deep ESN3 

for predicting BOD5 concentration among the desirable double-stage synthesis models at Hwangji station.  
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Table 4. Results of three mathematical criteria using the double-stage synthesis models  

at Hwangji station. 

Classification Distribution Validation phase 

R2 

 

NS RMSE 

(mg/L) 

 

 

 

 

 

 

 

Double-stage 

synthesis 

Wavelet-ELM1 

Wavelet-ELM2 

Wavelet-ELM3 

Wavelet-ELM4 

Wavelet-ELM5 

0.837 

0.816 

0.831 

0.796 

0.734 

0.776 

0.812 

0.772 

0.777 

0.717 

0.428 

0.393 

0.432 

0.427 

0.481 

Wavelet-SVR1 

Wavelet-SVR2 

Wavelet-SVR3 

Wavelet-SVR4 

Wavelet-SVR5 

0.904 

0.911 

0.920 

0.926 

0.919 

0.895 

0.911 

0.912 

0.915 

0.914 

0.293 

0.271 

0.269 

0.264 

0.266 

Wavelet-Deep ESN1 

Wavelet-Deep ESN2 

Wavelet-Deep ESN3 

Wavelet-Deep ESN4 

Wavelet-Deep ESN5 

0.869 

0.863 

0.860 

0.846 

0.851 

0.826 

0.832 

0.833 

0.815 

0.817 

0.377 

0.370 

0.369 

0.388 

0.386 

5.1.3 Graphical aids of model accomplishment 

To verify the accuracy of desirable standalone and double-stage synthesis models using graphical 

aids, Figures 8(a)–(f) present the scatterplots for the surveyed and estimated BOD5 concentration 

values at Hwangji station. The linear functions and values of NS efficiency criterion are presented for 

the corresponding standalone and double-stage synthesis models, respectively. It can be concluded 

from NS values and the slopes of linear functions that an apparent discrepancy can be followed among 

the desirable standalone and double-stage synthesis models (ELM4, SVR3, Deep ESN2, Wavelet-

ELM2, Wavelet-SVR4, and Wavelet-Deep ESN3). Therefore, the SVR3 and Wavelt-SVR4 performs 

the most reliable accuracy for predicting BOD5 concentration values clearly, whereas the Wavelet-

ELM2 was the worst among the desirable models at Hwangji station. 

Additional portraits can evaluate the performance of standalone and double-stage synthesis 

models using the boxplot, violin plot [42], and Taylor diagram [43]. Figures 9(a)–(c) show the diverse 

graphical aids for the desirable standalone and double-stage synthesis models at Hwangji station. It 

can be found from Figure 9(a) that the estimated BOD5 concentrations of SVR3 and Wavelet-SVR4 

yield more analogous configuration to the surveyed values for median, interquartile ranges and 

dispersion, adjacent values, and sign of skewness compared to other desirable models. Another 

graphical aid for the distribution of surveyed and estimated BOD5 concentration values utilizing the 

desirable models can be provided with the violin plots (Figure 9(b)). The violin plot can be defined as 

one of approaches to discern the distribution of assigned numerical values. Figure 9(b) supplies a close 

shape pattern for the SVR3 and Wavelet-SVR4 concerning the median, interquartile, and distribution 

of assigned values. In addition, the Taylor diagram (Figure 9(c)) utilizes three statistical indices, 

including correlation coefficient, normalized standard deviation, and root mean square error. The 
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principal approach of Taylor diagram can be explained as to find the closest estimated model with the 

corresponding surveyed BOD5 concentration based on standard deviation (polar axis) and correlation 

coefficient (radial axis). The Taylor diagram, therefore, demonstrates the accuracy and efficiency of 

SVR3 and Wavelet-SVR4 over the other desirable models (ELM4, Deep ESN2, Wavelet-ELM2, and 

Wavelet-Deep ESN3). 

 

(a) ELM4 model 

 

(b) SVR3 model 

 

(c) Deep ESN2 model 



12761 

Mathematical Biosciences and Engineering  Volume 19, Issue 12, 12744–12773. 

 

(d) Wavelet-ELM2 model 

 

(e) Wavelet-SVR4 model 

 

(f) Wavelet-Deep ESN3 model 

Figure 8. Scatterplots for the desirable standalone and double-stage synthesis models  

in the validation phase (Hwangji station). 
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(a) Boxplots  

 

(b) Violin plots 

 

(c) Taylor diagram 

Figure 9. Boxplots, violin plots, and Taylor diagram for the desirable standalone and 

double-stage synthesis models in the validation phase (Hwangji station). 

5.2. Predicting BOD5 concentration at Toilchun station 

5.2.1. Utilization of standalone models 
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The outputs of three mathematical formulae (R2, NS, and RMSE) for the standalone models are 

summed up in Table 5 for Toilchun station. Table 5 shows that the estimates of ELM1 (R2 = 0.571, NS 

= 0.472, and RMSE = 0.472 mg/L) are preferable to the SVM1 and Deep ESN1 in the validation phase 

considering the 1st distribution. During the 2nd distribution, the SVR2 model (R2 = 0.722, NS = 0.691, 

and RMSE = 0.361 mg/L) are more remarkable compared to the ELM2 and Deep ESN2. Also, the 

performance of SVR3 (R2 = 0.701, NS = 0.661, and RMSE = 0.378 mg/L) exceeds the ELM3 and 

Deep ESN3 obviously regarding the 3rd distribution in the validation phase. The contradiction of 

standalone models subjected to the 4th distribution, besides, approves that the SVR4 (R2 = 0.868, NS 

= 0.854, and RMSE = 0.248 mg/L) outperforms the ELM4 and Deep ESN4 in the validation phase. 

Eventually, the SVR5 (R2 = 0.876, NS = 0.870, and RMSE = 0.234 mg/L) is more reliable than ELM5 

and Deep ESN5 in the validation phase with the 5th distribution.  

Table 5. Results of three mathematical criteria using the standalone models at Toilchun station. 

Classification Distribution Validation phase 

R2 

 

NS RMSE 

(mg/L) 

 

 

 

 

 

 

 

Standalone 

ELM1 

ELM2 

ELM3 

ELM4 

ELM5 

0.571 

0.671 

0.677 

0.739 

0.808 

0.472 

0.630 

0.641 

0.738 

0.807 

0.472 

0.395 

0.389 

0.332 

0.285 

SVR1 

SVR2 

SVR3 

SVR4 

SVR5 

0.534 

0.722 

0.701 

0.868 

0.876 

0.477 

0.691 

0.661 

0.854 

0.870 

0.469 

0.361 

0.378 

0.248 

0.234 

Deep ESN1 

Deep ESN2 

Deep ESN3 

Deep ESN4 

Deep ESN5 

0.376 

0.637 

0.491 

0.491 

0.608 

0.359 

0.547 

0.417 

0.461 

0.606 

0.520 

0.437 

0.496 

0.476 

0.408 

 

Contemplating the magnificent models among the 1st–5th distributions, the best capability of 

standalone models can be discovered from the ELM (the 5th distribution), SVR (the 5th distribution), 

and Deep ESN (the 5th distribution) among diverse input associations in the validation phase. As seen 

from Table 5, the improved performance of SVR5 contributes better prediction compared to the ELM5 

and Deep ESN5 in the validation phase. As a result, the SVR5 is most reliable for predicting BOD5 

concentration among the improved standalone models at Toilchun station.   

5.2.2. Utilization of double-stage synthesis models 

The outputs of three mathematical criteria for the double-stage synthesis models are still 

organized as in Table 6 at Toilchun station. As observed from Table 6, the estimates of Wavelet-SVR1 

(R2 = 0.662, NS = 0.647, and RMSE = 0.386 mg/L) are more prevalent than the Wavelet-ELM1 and 
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Wavelet-Deep ESN1 in the validation phase utilizing the 1st distribution. Favoring the 2nd distribution, 

the Wavelet-SVR2 (R2 = 0.866, NS = 0.845, and RMSE = 0.255 mg/L) is more exquisite than the 

Wavelet-ELM2 and Wavelet-Deep ESN2. Likewise, the performance of Wavelet-SVR3 (R2 = 0.688, 

NS = 0.646, and RMSE = 0.386 mg/L) exceeds the Wavelet-ELM3 and Wavelet-Deep ESN3 viewing 

the 3rd distribution during validation phase. Likewise, the contradiction of double-stage synthesis 

models in the 4th distribution demonstrates that the Wavelet-SVR4 (R2 =0.922, NS = 0.917, and RMSE 

= 0.187 mg/L) surpasses the Wavelet-ELM4 and Wavelet-Deep ESN4 definitely in the validation phase. 

Eventually, the Wavelet-SVR5 (R2 = 0.780, NS = 0.775, and RMSE = 0.308 mg/L) is more effective 

than the Wavelet-ELM5 and Wavelet-Deep ESN5 in the validation phase with the 5th distribution.  

Envisaging the eminent models from the 1st–5th distributions, the attractive performance of 

double-stage synthesis models can be evaluated from the Wavelet-ELM (the 5th distribution), Wavelet-

SVR (the 4th distribution), and Wavelet-Deep ESN (the 5th distribution) among various input 

associations in the validation phase. It can be seen from Table 6 that the Wavelet-SVR4 yields more 

reliable outcomes compared to the Wavelet-ELM5 and Wavelet-Deep ESN5 in the validation phase. 

As a result, the Wavelet-SVR4 performs superior to the Wavelet-ELM5 and Wavelet-Deep ESN5 for 

predicting BOD5 concentration among the enhanced double-stage synthesis models at Toilchun station. 

Table 6. Results of three mathematical criteria using the double-stage synthesis models  

at Toilchun station. 

Classification Distribution Validation phase 

R2 

 

NS RMSE 

(mg/L) 

 

 

 

 

 

 

 

Double-stage 

synthesis 

Wavelet-ELM1 

Wavelet-ELM2 

Wavelet-ELM3 

Wavelet-ELM4 

Wavelet-ELM5 

0.608 

0.539 

0.665 

0.541 

0.698 

0.565 

0.530 

0.627 

0.522 

0.689 

0.428 

0.445 

0.397 

0.449 

0.362 

Wavelet-SVR1 

Wavelet-SVR2 

Wavelet-SVR3 

Wavelet-SVR4 

Wavelet-SVR5 

0.662 

0.866 

0.688 

0.922 

0.780 

0.647 

0.845 

0.646 

0.917 

0.775 

0.386 

0.255 

0.386 

0.187 

0.308 

Wavelet-Deep ESN1 

Wavelet-Deep ESN2 

Wavelet-Deep ESN3 

Wavelet-Deep ESN4 

Wavelet-Deep ESN5 

0.473 

0.579 

0.596 

0.498 

0.663 

0.471 

0.550 

0.570 

0.477 

0.660 

0.472 

0.435 

0.426 

0.470 

0.379 

5.2.3. Visual aids of model accomplishment  

To validate the precision of desirable standalone and double-stage synthesis models using visual 

aids, Figures 10(a)–(f) provide the scatterplots for the surveyed and estimated BOD5 concentration 

values employing the desirable standalone and double-stage synthesis models at Toilchun station. The 

linear formulae and values of NS efficiency criterion are inserted for the corresponding standalone and 
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double-stage synthesis models, respectively. It can be inferred from NS values and the slopes of linear 

formulae that a definite inconsistency can be traced among the desirable standalone and double-stage 

synthesis models (ELM5, SVR5, Deep ESN5, Wavelet-ELM5, Wavelet-SVR4, and Wavelet-Deep 

ESN5). Therefore, the Wavelet-SVR4 accomplishes the most reliable precision for predicting BOD5 

concentration values obviously, while the Deep ESN5 yields the least precise among the desirable 

models at Toilchun station. 

 

(a) ELM5 model 

 

(b) SVR5 model 

 

(c) Deep ESN5 model 
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(d) Wavelet-ELM5 model 

 

(e) Wavelet-SVR4 model 

 

(f) Wavelet-Deep ESN5 model 

Figure 10. Scatterplots for the desirable standalone and double-stage synthesis models  

in the validation phase (Toilchun station). 
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Additional pictures can anticipate the performance of standalone and double-stage synthesis 

models using the boxplot, violin plot, and Taylor diagram. Figures 11(a)–(c) support the various visual 

aids for the desirable standalone and double-stage synthesis models at Toilchun station. It can be seen 

from Figure 11(a) that the boxplots of estimated BOD5 concentration utilizing the Wavelet-SVR4 can 

resemble that of surveyed BOD5 concentration intimately. Another visual aid for the distribution of 

surveyed and estimated BOD5 concentration values employing the desirable models can be displayed 

with the violin plots (Figure 11(b)). The violin plot can be described as one of schematic techniques to 

reveal the distribution of mandated numerical values. Figure 11(b) demonstrates a similar contour 

pattern for the Wavelet-SVR4 employing the median, interquartile, and distribution of mandated values. 

Figure 11(c) supplies the Taylor diagram employing the desirable standalone and double-stage 

synthesis models for Toilchun station. It can be seen from Figure 11(c) that the point of Wavelet-SVR4 

which has the minimal RMSE value visualizes the straight distance from the surveyed one, while the 

point of Deep ESN5 displays the longest distance from the surveyed point. 

 

 

(a) Boxplots 

  

(b) Violin plots 
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(c) Taylor diagram  

Figure 11. Boxplots, violin plots, and Taylor diagram for the optimal standalone and 

double-stage synthesis models during validation phase (Toilchun station). 

6. Discussion 

The addressed research explored the nonlinear behavior (e.g., hard to predict) of BOD5 

concentration employing standalone and double-stage synthesis models in Hwangji and Toilchun 

stations, South Korea. Since both stations (i.e., Hwangji and Toilchun) yielded the different high-

quality accuracies for the desirable standalone models, it was hard to judge which model predicted 

BOD5 concentration with accuracy. Also, the outputs of three mathematical formulae explained that 

the SVM models with diverse input associations could predict BOD5 concentration precisely compared 

to the ELM and Deep ESN models based on the corresponding distribution on both stations. Because 

all standalone models enforced the various theoretical structures and inference, the accurate prediction 

was changed for diverse input associations of standalone models.  

The main aim for developing the double-stage synthesis models was to enhance the accurate 

prediction of BOD5 concentration compared to corresponding standalone models. Unfortunately, the 

Wavelet-ELM models could not boost the accurate prediction for corresponding ELM models from 

the perspective of double-stage synthesis models’ performance, based on NS values at Hwangji station. 

Among the Wavelet-SVR models, the Wavelet-SVR1 (0.4% for SVR1), Wavelet-SVR2 (0.7% for 

SVR2), Wavelet-SVR4 (3.7% for SVR4), and Wavelet-SVR5 (3.4% for SVR5) models slightly 

enhanced the accurate prediction. Also, all the Wavelet-Deep ESN models increased the predictive 

accuracy on a small scale, including the Wavelet-Deep ESN1 (2.5% for Deep ESN1), Wavelet-Deep 

ESN2 (0.1% for Deep ESN2), Wavelet-Deep ESN3 (3.5% for Deep ESN3), Wavelet-Deep ESN4 (6.0% 

for Deep ESN4), and Wavelet-Deep ESN5 (1.0% for Deep ESN5). Noticing the desirable models’ 

categorization for the standalone and double-stage synthesis models, the Wavelet-SVR4 model, which 

yielded the best accuracy, improved the accurate prediction by 12.7% (Wavelet-ELM2), 9.8% 

(Wavelet-Deep ESN3), 2.5% (ELM4), and 10.1% (Deep ESN2), respectively.  

Regarding the performance evaluation of double-stage synthesis models by NS values at Toilchun 

station, only the Wavelet-ELM1 (19.7% for ELM1) model could boost the estimated efficiency 

obviously among the Wavelet-ELM models. Also, Wavelet-SVR1 (35.6% for SVR1), Wavelet-SVR2 

(22.3% for SVR2), and Wavelet-SVR4 (7.4% for SVR4) models increased the accurate prediction 
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clearly among the Wavelet-SVR models. In addition, all the Wavelet-Deep ESN models, including the 

Wavelet-Deep ESN1 (31.2% for Deep ESN1), Wavelet-Deep ESN2 (0.5% for Deep ESN2), Wavelet-

Deep ESN3 (36.7% for Deep ESN3), Wavelet-Deep ESN4 (3.5% for Deep ESN4), and Wavelet-Deep 

ESN5 (8.9% for Deep ESN5) models, boosted the precise efficiency, respectively. Considering the 

desirable models’ categorization for the standalone and double-stage synthesis models, the Wavelet-

SVR4 model which produced the best accuracy, reinforced the accurate prediction by 32.8% (Wavelet-

ELM5), 38.6% (Wavelet-Deep ESN5), 13.4% (ELM5), 5.2% (SVR5), and 51.0% (Deep ESN5), 

respectively. The double-stage synthesis models, therefore, could not always reinforce the accurate 

prediction of corresponding standalone models on both stations. This experience pursued the previous 

works of [2] and [44]. [44] predicted DO concentration employing the single and hybrid machine 

learning models in Florida, USA. Results demonstrated that the hybrid machine learning models could 

not regularly improve the predicted accuracy of single machine learning models. Also, [2] 

implemented the single and combinational paradigm to predict BOD5 concentration in South Korea. 

They found that the combinational paradigm could not always increase the predictive accuracy of 

single models clearly.  

Therefore, the process which embeds the different data preprocessing algorithms [45–49] in the 

diverse standalone (i.e., machine learning and deep learning) models, is required to increase the 

accurate prediction and efficiency of BOD5 concentration for the continuous research.  

7. Conclusions 

The addressed research explored the precision and efficiency of the standalone and double-stage 

synthesis models for predicting BOD5 concentration in Hwangji and Toilchun stations, South Korea. 

Five input associations (1st–5th distributions) were resolved for developing the standalone and double-

stage synthesis models based on seven water quantity and quality items. For the modeling and 

prediction of standalone and double-stage synthesis models, the assembled data were divided into 

training and validation samples, respectively. Three mathematical formulae (R2, NS, and RMSE) and 

four graphical aids (scatter diagram, boxplot, violin plot, and Taylor diagram) were used to evaluate 

the accurate prediction of addressed models.  

Considering the best models from the 1st-5th distributions, the SVR3 (R2 = 0.925, NS = 0.915, and 

RMSE = 0.264 mg/L) and Wavelet-SVR4 (R2 = 0.926, NS = 0.915, and RMSE = 0.264 mg/L) models 

were the most precise compared to other desirable models (ELM4, Deep ESN2, Wavelet-ELM2, and 

Wavelet-Deep ESN3) based on standalone and double-stage synthesis models in the validation phase 

at Hwangji station. Also, the Wavelet-SVR4 model (R2 = 0.922, NS = 0.917, and RMSE = 0.162 mg/L) 

provided more precise results than other desirable models (ELM5, SVR5, Deep ESN5, Wavelet-ELM5, 

and Wavelet-Deep ESN5) for predicting BOD5 concentration in the validation phase at Toilchun station. 

However, it was found the addressed research that explained that the precision and efficiency of BOD5 

concentration estimated by the standalone models could not be reinforced by the double-stage 

synthesis models on both stations. Therefore, using the credible water quantity and quality items from 

the available data groups can confirm the outputs of the addressed research, and perform the best 

prediction of BOD5 concentration employing the different standalone and double-stage synthesis 

models in river.  
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