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Abstract: We propose a new mathematical model to investigate the effect of the introduction of an
exposed stage for the cats who become infected with the T. gondii parasite, but that are not still able
to produce oocysts in the environment. The model considers a time delay in order to represent the
duration of the exposed stage. Besides the cat population the model also includes the oocysts related
to the T. gondii in the environment. The model includes the cats since they are the only definitive
host and the oocysts, since they are relevant to the dynamics of toxoplasmosis. The model considers
lifelong immunity for the recovered cats and vaccinated cats. In addition, the model considers that cats
can get infected through an effective contact with the oocysts in the environment. We find conditions
such that the toxoplasmosis disease becomes extinct. We analyze the consequences of considering the
exposed stage and the time delay on the stability of the equilibrium points. We numerically solve the
constructed model and corroborated the theoretical results.
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1. Introduction

Toxoplasmosis is the main cause of death associated to foodborne illness in the United States. It has
been estimated that more than forty million persons in the U.S. carry the Toxoplasma parasite [1, 2].
Toxoplasmosis disease is caused by the protozoan parasite Toxoplasma gondii (T. gondii). In the
United States it is estimated that 11% of the population six years and older have been infected with
Toxoplasma. In various places throughout the world, it has been shown that more than 60% of some
populations have been infected with Toxoplasma. Infection is often highest in areas of the world that
have hot, humid climates and lower altitudes, because the oocysts survive better in these types of
environments [1–3].

The sexual cycle of T. gondii only takes place in members of the Felidae family and most of the
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studies on the sexual cycle have been carried out in cats [3–5]. Due to the difficulties in maintaining
and sacrificing cats in the laboratory, there are relatively few papers dealing with the cycle of T. gondii
in this host [4]. It has been recently reported that T. gondii sexual development in the intestinal cells
of mice under some particular conditions is feasible [4, 6]. Following a period of asexual reproduction
by tachyzoite forms, the parasite enters a latent phase in the bradyzoite stage that persists for the host’s
lifetime in pseudocysts, macrophages and neurons of various tissues, notably in the brain [7, 8].

T. gondii infects terrestrial and aquatic mammals and birds [4]. These animals are intermediate hosts
because only asexual stages occur in them [4, 7, 8]. The sexual stages are seen only in the members
of the family Felidae, including the domestic cat [3, 4, 9, 10]. The final or definitive host are the cats,
and other warm-blooded vertebrates are just intermediate hosts [7, 8]. T. gondii can encysts in the
brain, and can inhibit apoptosis [8]. Interestingly, the T. gondii parasite does not disturb the life of
cats. It has been estimated that an infected cat can produce approximately 20 million oocysts, between
4 and 13 days after the cat gets infected [11]. Domestic cats are able to excrete oocysts that can infect
warm-blooded animals [12]. These oocysts contaminate the environment, including water, vegetables
and various foods [13, 14]. However, it has been shown that gamma irradiation can decontaminate
food that contains oocysts [14]. Nevertheless, oocysts of T. gondii are spreaded in the environment.
Therefore, control strategy studies for the toxoplamosis disease have been related to considering cat
populations [15–18]. For a review of mathematical models for toxoplasmosis the reader can see [19].

The seroprevalence related to toxoplasmosis around the world is significantly high with values in the
range of 30% − 40% [20]. In addition, cats are very popular in the world and therefore can contribute
to the permanence of the toxoplasmosis disease [21]. One consequence of a high prevalence is that in
2013 congenital toxoplasmosis was estimated to be 1.2 million [19]. The congenital infection affects
the eye and it is difficult to diagnose at birth but is present in 20% − 80% of congenitally infected
persons [1]. In Europe all pregnant women are tested for T. gondii infection, but there have been
concerns about the cost–benefit of these tests [22].

The study of parasites is very important for the public health [23]. There are many studies that have
used mathematical models to investigate the dynamics of a variety of parasites, even though models are
simplifications of the real-world [24–26]. For toxoplasmosis dynamics several mathematical models
have been proposed [12, 27–29]. For instance, in [30] the author proposed a model to describe the
coinfection dynamics of malaria-toxoplasmosis in the human and feline susceptible host population.
In [18] the authors developed a differential equation model to investigate the effective transmission
pathways of T. gondii and potential control mechanisms. A systematic review of previous mathematical
models for the transmission of T. gondii is available in [19].

There are a variety of mathematical models with time delays that have been used in many different
fields including biology [31–34]. In particular, there are many mathematical models for studying the
dynamics of infectious diseases that are based on delay differential equations [35–38]. For instance,
in [39] the authors studied an epidemic model with spatial diffusion and time delay and they found two
different types of instability. One due to diffusion, and the other one related to the time delay. The
time delays are introduced in order to model the effect of processes that are not instantaneous [40–43].
In [44], the authors studied a SEIS epidemiological model with a saturation incidence rate and a time
delay representing the latent period of the disease. There are advantages and disadvantages of using
mathematical models based on delay differential equations. For instance, there is more variety of
dynamics with delay differential equations in comparison with ordinary differential equations. The
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introduction of time delays can change the stability of an equilibrium point and periodic solutions
can arise [45–48]. In addition, in general obtaining the solutions of delay differential equations is
more challenging than those of the ordinary differential equations [49–52]. There are a variety of
analytical and numerical methods that have been developed to find the solutions of delay differential
equations [53–56].

In this work, we propose a mathematical model that includes a latent stage for the cats who become
infected with the T. gondii parasite, since it is well-known that these cats are not able to produce
oocysts instantaneously [3, 5, 7]. We focus on the cats since they are one of the main factors for the
permanence of T. gondii in the environment [20]. The time delay represents the duration of the latent
stage for the cats. The model also includes the oocysts related to the T. gondii in the environment.
The oocysts, are of paramount importance in the survival of the T. gondii [3, 7, 57, 58]. The model
considers lifelong immunity for the recovered cats and vaccinated of cats. In addition, the model
considers that cats get infected through an effective contact with the oocysts in the environment. The
T. gondii parasite can be vertically transmitted and therefore we include this aspect in the model [59].
The model does not consider other intermediate hosts like rodents and birds and this is a limitation of
the model. However, the proposed model is an improvement and generalization of the mathematical
model presented in [60]. In [60] a model based on ODEs was developed to study the dynamics of
toxoplasmosis on the cat populations and taking into account the oocysts that contain the T. gondii
parasite. In [61] the authors extended the model to include a time delay between the time from when
oocysts become present in the environment and when they become infectious. However, in this study
we include the effect of a time delay between the time a cat has an effective contact with the oocysts
and the time when the cats become infective and able to shed oocysts in their feces [62, 63]. The
entire enteroepithelial cycle of T. gondii can be completed within 3 to 10 days after ingestion of tissue
cysts [62]. After the cats ingest sporulated oocysts, the formation of oocysts is delayed until 18 days
or more [62]. In other words, a cat can undergo a latent period of a few days before casting feces with
oocysts, which may last for 10–15 days [5, 62, 63]. In [63], the authors assumed a short latent period
of three days. Thus, based on these aforementioned facts we propose the introduction of a latent stage
in the cats and a time delay.

From a mathematical analysis viewpoint we study the stability of the equilibrium points of the
model. We use the next generation method to find the basic reproductive number R0 for the model
without the time delay [64, 65]. Then, we study the model with the time delay and see the effects
on the dynamics of toxoplasmosis. We numerically solve the delay differential equation system to
corroborate the theoretical results and finally we provide additional numerical results to understand
better the impact of the length of the delay on the dynamics.

We organized this paper as follows: In Section 2, we develop the model and present the main
assumptions. In Section 3, we perform the local and global stability analysis of the steady states.
In Section 4, we present a variety of numerical simulations. Finally, in Section 5 we present the
conclusions.

2. Materials and methods

Here we present a new mathematical model for the transmission of toxoplasmosis in cat populations
taking into account the time delay between the time a cat has an effective contact with the oocysts
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and the time when the cats become infective and able to shed oocysts in the feces [3, 5, 11, 62]. As
in [60] the mathematical model allows the vaccination of the cats and the infection of cats through
effective contacts with oocysts shed by cats. Previous studies have included vaccination for cats [60,
66, 67]. The inclusion of vaccines in the mathematical model makes possible the study of the effect of
vaccines on the control of toxoplasmosis. The model assumes that the rate of infection depends on the
environmental load of the T. gondii parasite [68]. The proposed model is based on a system of delay
differential equations. For more details about the model see [60].

The model divides the cat population into four disjoint subpopulations: susceptible S (t), latent E(t),
infected I(t) and recovered R(t) (includes vaccinated cats). The model uses one state variable O(t) for
the T. gondii oocysts. The model assumes that vaccinated cats have permanent immunity [16, 66, 69,
70]. Moreover, the model includes a constant proportional vaccination rate, which is a standard way
in mathematical modeling of infectious diseases. However, more realistic and complex vaccination
types have been used for modeling for studying COVID-19 pandemic [71, 72]. The population of cats
is assumed constant. Susceptible cats transit to the latent subpopulation E(t) after an effective contact
with an oocyst. The latent stage is included as a time delay of τ. The infected stage lasts an average
of 1

α
. The increase in the amount of oocysts is proportional to the infectious cats I(t). In particular,

the model assumes that the parameter k is related to the oocysts that are shed per infected cat and per
unit time. There is a removal rate of oocysts from the environment. It is assumed vertical transmission
in the cat population due to congenital transmission [73–76]. For instance, in [77] the authors studied
lactational transmission from infected cats to their kittens.

The mathematical model is based on a nonlinear delay differential equations given by

Ṡ (t) = µ (1 − I(t)) − βS (t) O(t) − (µ + γ)S (t),
Ė(t) = βS (t) O(t) − β S (t − τ) O(t − τ)e−µτ − µE(t),
İ(t) = β S (t − τ) O(t − τ)e−µτ − αI(t),

V̇R(t) = αI(t) + γS (t) − µVR(t),
Ȯ(t) = k I(t) − µ0 O(t).

(1)

Without loss of generality, the population of cats is assumed to be N(t) = S (t) + E(t) + I(t) + VR(t) = 1.
The mathematical model flow is depicted in Figure 1. The initial conditions at time t = 0 are given by

Figure 1. Flow chart of toxoplasmosis transmission dynamics with an exposed stage.

S (0) > 0, E(0) ≥ 0, I(0) ≥ 0,VR(0) ≥ 0,O(0) ≥ 0. (2)
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We can disregard the subpopulation VR(t) and study the following reduced model

Ṡ (t) = µ (1 − I(t)) − βS (t) O(t) − (µ + γ)S (t),
Ė(t) = βS (t) O(t) − β S (t − τ) O(t − τ)e−µτ − µE(t),
İ(t) = β S (t − τ) O(t − τ)e−µτ − αI(t),
Ȯ(t) = k I(t) − µ0 O(t).

(3)

The reduced system (3) satisfies the initial conditions given by

S (s) = ξ1(s) > 0, s ∈ [−τ, 0], O(s) = ξ2(s) ≥ 0, s ∈ [−τ, 0], (4)

where ξ1(s) and ξ2(s) are continuous function defined from the interval [−τ, 0] to R+, and with the norm
‖ξi‖ = sup

−τ≤s≤0
|ξi(s)|. The susceptible subpopulation of cats is nonnegative for t ≤ 0 and the number of

oocysts is nonnegative for t ≤ 0.

3. Stability analysis of the Model

Let’s see that in the constructed model the subpopulations are positive for all t ≥ 0 and that they are
bounded.

Theorem 3.1. If the parameters of model (3) are all positive and the initial conditions given by (4)
are satisfied, then the solutions of the model (3) given by

(
S (t), E(t), I(t),O(t)

)
remain positive and

uniformly bounded in [0,+∞).

Proof. From (3), one gets that

Ṡ (t) = µ (1 − S (t) − I(t)) − βS (t) O(t) − γS (t) ≥ −βS (t) O(t) − γS (t).

Thus,

S (t) ≥ S (0) exp
(
−

∫ t

0
(βO(s) + γ) ds

)
> 0, ∀t ≥ 0

Let’s suppose that there exists a t1 > 0 such that I(t1) = 0, İ(t1) ≤ 0, and I(t) > 0∀ t ∈ (0, t1). Then,
from the third equation of model (3), it follows that

0 ≥ İ(t1) = βS (t1 − τ)O(t1 − τ)e−µτ. (5)

However, O(t) > 0 for all t ∈ (0, t1). If this is not the case, there exists a t2 > 0 such that t2 < t1,

Ȯ(t2) ≤ 0, O(t2) = 0 and O(t) > 0 for t ∈ (0, t2). From the fourth equation of system (3), it follows that
0 ≥ kI(t2). This is a contradiction because I(t) > 0 for all t ∈ (0, t1). Thus, using the continuity of O(t),
it follows that O(t) > 0, with t ∈ (0, t1]. Therefore, (5) is false as τ → 0+ and thus I(t) ≥ 0 for t ≥ 0.
From the fourth equation of system (3), it is concluded that O(t) ≥ 0 for t ≥ 0. Next, the positivity for
E(t) it follows from the fact that solutions of the differential equations of E(t) can be written as

E(t) = e−µt

(
E(0) +

∫ t

t−τ
S (w)O(w)eµw dw

)
.
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Now, the subpopulation S (t) is bounded by µ

µ+γ
, because by the standard comparison theorem [78],

we can show that
S (t) ≤ S (0) exp(−(µ + γ)t) +

µ

µ + γ
(1 − exp(−(µ + γ)t)).

In particular, if S (0) ≤
µ

µ + γ
, then S (t) ≤

µ

µ + γ
. Analogously, one gets that O(t) ≤

k
µ0

if O(0) ≤
k
µ0
,

E(t) ≤
βk

(µ + γ)µ0
if E(0) ≤

βk
(µ + γ)µ0

, and I(t) ≤
βµke−µτ

αµ0(µ + γ)
if I(0) ≤

βµke−µτ

αµ0(µ + γ)
. Thus, the set

O =
{
(S , E, I,O) ∈ R4

+/0 < S ≤
µ

µ + γ
, 0 ≤ E(t) ≤

βk
(µ + γ)µ0

, 0 ≤ I ≤
βµke−µτ

αµ0(µ + γ)
, 0 ≤ O ≤

k
µ0

}
,

is positively invariant. �

Based on this previous result, we can study the solutions of model (3) in the restricted region O.

3.1. Toxoplasmosis-free equilibrium point

The mathematical model (3) has the following toxoplasmosis-free equilibrium point: F∗0 =(
µ

µ+γ
, 0, 0, 0

)
. This would be the ideal realistic condition where there toxoplasmosis becomes extinct.

First, we will analyze the case when there is not time delay (ODE model). Then, we will see the impact
of the time delay on the stability of the toxoplasmosis-free equilibrium point. The local stability of F∗0
is determined by the eigenvalues of the Jacobian of the system (3) at F∗0:

J(F∗0) =


−γ − µ 0 −µ −

β µ

γ+µ

0 −µ 0 0

0 0 α β µ

γ+µ

0 0 k −µ0


.

The eigenvalues are the following λ1 = −µ − γ, λ2 = −µ, and the roots of

p(λ) = (γ + µ) λ2 + (γ α + αµ + γ µ0 + µ µ0) λ − β µ k + α γ µ0 + αµ0 µ.

Reordering one gets
λ2 + a λ + b = 0,

where, a = α + µ0, b = −
β µ k
γ+µ

+ αµ0. According to the Routh–Hurwitz criterion, if k β µ
µ+γ

< αµ0 one
obtains that p(λ) has only roots with negative real parts and the toxoplasmosis-free equilibrium point
F∗0 is locally asymptotically stable (las). Therefore, one can define the basic reproduction number as

R0 =
kβ µ

α µ0 (γ + µ)
. (6)

Now we have obtained the following theorem,

Theorem 3.2. The disease-free equilibrium F∗0 of model (3) with τ = 0 is locally asymptotically stable
if R0 < 1, but unstable if R0 > 1.

Proof. It follows from the previous computations. �
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3.2. Toxoplasmosis-free equilibrium point analysis with the time delay

Calculations show that system (3) has the same toxoplasmosis-free equilibrium F∗0 =
(

µ

µ+γ
, 0, 0, 0

)
,

as the system with τ = 0. Linearizing the system (3) one obtains the following characteristic equation

|J0 + Jτ e−λτ − λI| = 0,

where

J0(F∗0) =



−γ − µ 0 −µ −
β µ

γ+µ

0 −µ 0 β µ

γ+µ

0 0 −α 0

0 0 k −µ0


, Jτ(F∗0) =



0 0 0 0

0 0 0 −
β µ e−µ τ

γ+µ

0 0 0 β µ e−µ τ

γ+µ

0 0 0 0


.

After some simple calculations one gets∣∣∣λI − J0 − Jτ e−λτ
∣∣∣ = (λ + µ) (λ + γ + µ) T (λ) = 0, (7)

where,

T (λ) = (γ + µ) λ2 + (γ α + αµ + γ µ0 + µ µ0) λ − e−λ τβ µ e−µ τk + α γ µ0 + αµ0 µ.

We can see that two eigenvalues are λ1,2 = −µ,−µ− γ are negative. The other eigenvalues are the roots
of T (λ). Now, let’s define the basic reproduction number for the delay model (3) as:

Rd
0 =

µ β k e−µ τ

αµ0 (µ + γ)
.

Theorem 3.3. The disease-free equilibrium F∗0 of model (3) is locally asymptotically stable if Rd
0 < 1,

but unstable if Rd
0 > 1.

Proof. We define from Eq. (7) the following function

p(λ) = λ2 + aλ + b e−λ τ + c, (8)

where, a = α + µ0, b = −
β µ k
γ + µ

e−µ τ = −Rd
0 αµ0, and c = αµ0. It can be seen that p is a continuous

function. Moreover,

p(0) = b + c = −
kβµ
µ + γ

e−µ τ + αµ0 = αµ0 (1 − Rd
0),

and
lim
λ→∞

p(λ) = +∞.

Then, if Rd
0 > 1, there is a positive real root, and then the disease free equilibrium is locally unstable.

Now, let us consider the case when Rd
0 < 1. Notice that when τ = 0, Rd

0 = R0 and one obtains

p(λ) = λ2 + a λ + αµ0 (1 − Rd
0).

Thus, all the roots of p(λ) have negative real parts by the Routh–Hurwitz criterion. We can see that
p(λ) does not have nonnegative real solutions because in p(λ), it is increasing when λ ≥ 0.
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Let us see how the complex roots distribute for the transcendental characteristic equation. If p(λ)
has roots with nonnegative real parts, they must be complex. Then p(λ) must have a pair of purely
imaginary solutions. Let us assume that λ = iω (ω > 0) is a root of p(λ). Then, using (8) we see that
it must satisfy

−ω2 + a iω + b e−iωτ + c = 0.

Separating the real and imaginary part, one obtains

−ω2 + b cos(ωτ) + c = 0 =⇒ −ω2 + c = −b cos(ωτ),

and
aω − b sin(ωτ) = 0 =⇒ aω = b sin(ωτ).

Adding up the squares of the previous equations, one obtains that

ω4 + (a2 − 2c)ω2 + (c2 − b2) = 0. (9)

Here, a2 − 2c = (α + µ0)2 − 2αµ0 = α2 + µ2
0 > 0 and

c2 − b2 = (αµ0)2 (1 − (Rd
0)2) > 0,

if Rd
0 < 1. Thus, all the coefficients of Eq.(9) are positive and therefore Eq.(9) does not have positive

real roots. Then, there is no ω such that iω is a solution of Eq.(7). Therefore, the real parts of all
the eigenvalues of the characteristic Eq.(7) are negative for all τ > 0 and Rd

0 < 1. This implies that
disease-free equilibrium F∗0 is locally asymptotically stable if Rd

0 < 1 for the delayed model (3). �

3.3. Global stability of the disease-free equilibrium

We propose the following theorem.

Theorem 3.4. The disease-free equilibrium point F∗0 of system (3) is globally asymptotically stable if
Rd

0 ≤ 1.

Proof. Let us denote by yt the translation of the solution of the system (3), by yt = (S (t + ξ), I(t +

ξ),V(t + ξ)) where ξ ∈ [−τ, 0]. Define the following Lyapunov function:

L(I(t), S (t),O(t)) = β

∫ t

t−τ
S (ξ) O(ξ) e−µτ dξ + I(t) +

α

k
O(t). (10)

Calculating the derivative of L(I(t), S (t),O(t)), one gets that

L′ = βe−µτ
[
S (t) O(t) − S (t − τ) O(t − τ)

]
+ I′(t) +

α

k
O′(t)

= βe−µτ
[
S (t) O(t) − S (t − τ) O(t − τ)

]
+ β e−µτ S (t − τ) O(t − τ) − α I(t) + α I(t) − µ0

α

k
O(t)

= βS (t) O(t)e−µτ − µ0
α

k
O(t) ≤ β

µ

µ + γ
O(t) e−µτ − µ0

α

k
O(t)

=

[
β µ e−µτ

µ + γ
− µ0

α

k

]
O(t) =

α µ0

k

[
β µ k e−µτ

α (µ + γ)µ0
− 1

]
O(t) =

α µ0

k

[
Rd

0 − 1
]

O(t).
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Since, we know from the restricted region that S (t) ≤ µ

µ+γ
, one obtains

L′ ≤
α µ0

k
(Rd

0 − 1) O(t).

Thus, L′ ≤ 0 if Rd
0 ≤ 1. Moreover, L(F∗0) = 0 and L(I(t), S (t),O(t)) > 0, at any point different than

the disease-free equilibrium point F∗0. Then, F∗0 is globally asymptotically stable. �

3.4. Local stability analysis of the endemic equilibrium

The endemic equilibrium for the delayed model (3) is

E∗0 = (S ∗, E∗, I∗,O∗) , (11)

where

S ∗ =
αµ0

β ke−µ τ
, (12)

E∗ =
α (−µ kβ e−µ τ + α γ µ0 + αµ0 µ) (e−µ τ − 1)

β ke−µ τ (µ e−µ τ + α) µ
=
α2µ0 (γ + µ)

(
Rd

0 − 1
)

eµ τ (eµ τ − 1)

β k (α eµ τ + µ) µ
, (13)

I∗ =
µ kβ e−µ τ − αµ0 (γ + µ)

β (µ e−µ τ + α) k
=
αµ0 (γ + µ)

(
Rd

0 − 1
)

β (µ e−µ τ + α) k
, (14)

O∗ =
µ kβ e−µ τ − αµ0 (γ + µ)

β µ0 (µ e−µ τ + α)
=
α

(
R0

d − 1
)

(γ + µ)

β (µ e−µ τ + α)
. (15)

Note, that the endemic point E∗0 exists if and only if Rd
0 > 1. The characteristic equation is given by

|J0 + Jτ e−λτ − λI| = 0, (16)

where

J0(E∗0) =


−βO∗ − γ − µ 0 −µ −β S ∗

βO∗ −µ 0 β S ∗

0 0 −α 0

0 0 k −µ0


, and Jτ(E∗0) =


0 0 0 0

−βO∗ e−µ τ 0 0 −β S ∗ e−µ τ

βO∗ e−µ τ 0 0 β S ∗ e−µ τ

0 0 0 0


,

The characteristic equation of the system can be factored in a long form expression and it can be
obtained that one eigenvalue is λ = −µ and the other roots of characteristic equation are given by

λ3 + (βO∗ + α + γ + µ + µ0) λ2(
−ke−λ τβ S ∗ e−µ τ + e−λ τβO∗ e−µ τµ + O∗ α β + O∗ β µ0 + α γ + γ µ0 + αµ + αµ0 + µ µ0

)
λ

− e−λ τe−µ τO∗ β2kS ∗ + e−λ τe−µ τS ∗ β2kO∗ − e−λ τe−µ τγ β kS ∗ − e−λ τe−µ τβ kµ S ∗ + e−λ τe−µ τβ µ µ0 O∗

+ O∗ α β µ0 + α γ µ0 + αµ µ0 = 0. (17)
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Rewriting, one gets

λ3 + Aλ2 + Bλ + C = e−λτ (T1 λ + T2), (18)

where

A = βO∗ + α + γ + µ + µ0,

B = O∗ α β + O∗ β µ0 + γ α + αµ + αµ0 + γ µ0 + µ µ0,

C = αµ0 (βO∗ + γ + µ) = O∗ α β µ0 + αµ0 (γ + µ) ,
T1 = e−µ τβ kS ∗ − e−µ τβ µO∗ = αµ0 − e−µ τβ µO∗,

T2 = e−µ τ (γ β kS ∗ + β kµ S ∗ − β µ µ0 O∗) = αµ0 (γ + µ) − e−µτβ µ µ0 O∗,

where A, B,C > 0. Rewriting Eq.(18), one obtains

λ3 + Aλ2 + (O∗ α β + O∗ β µ0 + γ α + αµ + γ µ0 + µ µ0) λ + O∗ α β µ0

=

(
αµ0(e−µ τ − 1) − e−(µ+λ)τ β µO∗

)
λ + αµ0 (µ + γ)(e−µ τ − 1) − e−(µ+λ)τ β µ µ0 O∗.

Then, one gets

λ3 + Ãλ2 + B̃λ + C̃ = T̃1 λ + T̃2, (19)

where

Ã = A > 0,
B̃ = O∗ α β + O∗ β µ0 + γ α + αµ + γ µ0 + µ µ0 > 0,
C̃ = O∗ α β µ0 > 0,

T̃1 = −αµ0(1 − e−µ τ) − e−(µ+λ)τ β µO∗ < 0,
T̃2 = −αµ0 (µ + γ)(1 − e−µ τ) − e−(µ+λ)τ β µ µ0 O∗ < 0.

These inequalities are valid if Rd
0 > 1. Then, the left-hand side of Eq. (19) is positive and the right-

hand side is negative for all λ ≥ 0. Therefore, for any λ ≥ 0, Eq. (18) cannot have real non-negative
solutions.

Let us consider the complex roots and assume that λ = iω (ω > 0) is a root of Eq.(18). This occurs
if and only if ω is a solution of,

−iω3 − Aω2 + B iω + C = e−iωτ [iωT1 + T2] = (cos(ωτ) − i sin(ωτ)) [iωT1 + T2].

We can obtain the following equations for the imaginary and real parts respectively,

− ω3 + Bω = T1 ω cos(ωτ) − T2 sin(ωτ), (20)

and
− Aω2 + C = T2 cos(ωτ) + T1 ω sin(ωτ). (21)

Squaring Eqs. (20) and (21), one gets

ω6 − 2Bω4 + B2 ω2 = T 2
1 ω

2 cos2(ωτ) − 2T1T2 ω cos(ωτ) sin(ωτ) + T 2
2 sin2(ωτ),
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and
A2ω4 − 2AC ω2 + C2 = T 2

2 cos2(ωτ) + 2T1T2 ω cos(ωτ) sin(ωτ) + T 2
1 ω

2 sin2(ωτ).

Adding these squares, we get the following result,

ω6 + (A2 − 2B)ω4 + (B2 − 2AC)ω2 + C2 = T 2
1 ω

2 + T 2
2 .

Reordering,
ω6 + (A2 − 2B)ω4 + (B2 − 2AC − T 2

1 )ω2 + C2 − T 2
2 = 0. (22)

Making the change of variable z = ω2, one gets

z3 + (A2 − 2B) z2 + (B2 − 2AC − T 2
1 ) z + C2 − T 2

2 = 0. (23)

Then,
z3 + D z2 + E z + F = 0, (24)

where, D = A2 − 2B, E = B2 − 2AC − T 2
1 and F = C2 − T 2

2 . These particular coefficients are given by

D = A2 − 2B

= (O∗ β + α + γ + µ + µ0)2
− 2 O∗ α β − 2 O∗ β µ0 − 2α γ − 2αµ − 2 µ0 α − 2 γ µ0 − 2 µ µ0

= γ2 + 2 (O∗ β + µ) γ + O∗2β2 + 2 O∗ β µ + µ2 + α2 + µ0
2 > 0,

F = C2 − T 2
2 = (O∗ α β µ0 + αµ0 (γ + µ))2

−
(
αµ0 (γ + µ) − e−µ τβ µ µ0 O∗

)2

= β µ0
2O∗

(
e−µ τµ + α

) (
−e−µ τβ µO∗ + α βO∗ + 2α γ + 2αµ

)
= β µ0

2O∗
(
e−µ τµ + α

) (
βO∗

(
α − e−µ τµ

)
+ 2 (γ + µ)α

)
> 0,

and

E = B2 − 2AC − T 2
1

= (O∗ α β + O∗ β µ0 + γ α + αµ + αµ0 + γ µ0 + µ µ0)2

− 2 (O∗ β + α + γ + µ + µ0) (O∗ α β µ0 + α γ µ0 + αµ µ0) −
(
αµ0 − e−µ τβ µO∗

)2

= β2O∗2
(
α − e−µ τµ

) (
e−µ τµ + α

)
+ 2 e−µ τα β µ µ0 O∗ + β2µ0

2O∗2 + 2 γ α2βO∗

+ 2α2β µO∗ + 2 γ β µ0
2O∗ + 2 β µ µ0

2O∗ + γ2α2 + 2 γ α2µ + α2µ2 + γ2µ0
2 + 2 γ µ µ0

2 + µ2µ0
2 > 0.

The coefficient D is positive for all values of the parameters. On the other hand, E and F are positive
for α ≥ e−µ τµ. This last inequality is true from biological facts since α is the reciprocal of the average
infectious time for the toxoplasmosis disease and µ is the reciprocal of the average lifespan of the cats.

Lemma 3.5. If D, E and F are non-negative, then Eq.(24) has no positive real roots.

Proof. Let p(ξ) = ξ3 +D ξ2 +E ξ+F.Deriving with respect to ξ, one obtains that p′(ξ) = 3ξ2 +2D ξ+E.
Where ξ = ω2 > 0, D ≥ 0, E ≥ 0 and F ≥ 0. Thus, p′(ξ) > 0, so p(ξ) increases for ξ ≥ 0. Then, since
p(0) = F ≥ 0, then Eq.(24) has no positive real roots. �
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Then we can conclude that there is no complex root of the form λ = iω such that it is a solution of
Eq. (18). Then using Rouché’s theorem one can conclude that the real parts of all the roots of Eq.(18)
are negative ∀τ ≥ 0, [79]. Thus, if α ≥ e−µ τµ the endemic equilibrium E∗0 is stable for any time delay
τ (with Rd

0 > 1).
From a biological viewpoint we have proven that for any time delay τ such that Rd

0 > 1, the endemic
equilibrium point E∗0 would not loose its stability. This is important to know since it means that even
if the exposed stage is large then the crucial parameter is the basic reproduction number Rd

0 for the
delayed model (3). We will perform numerical simulations to support the theoretical results obtained
in this section.

4. Numerical simulations

Here, some numerical simulations are presented to support our proposed theoretical results. We
vary some of the values of the parameters for the numerical simulations. For some cases we obtain the
disease-free equilibrium and for other ones we obtain the endemic steady state depending on the value
of the basic reproduction number of the delayed model (3). We also vary the time delays and therefore
obtain different values of the basic reproduction number Rd

0. In addition, the numerical simulations
allow us to explore the dynamics of toxoplasmosis.

We use Matlab to calculate the numerical solutions and the built-in function dde23 for delay differ-
ential equations [52, 55]. We use mostly the parameter values (using weeks as the time unit) provided
in Table 1. For instance, for the vaccination rate we use a value of γ = 0.001 which means that 0.1%
of the susceptible population in some particular region is vaccinated per week. In reality, this could
vary depending on many factors such as vaccine availability and willingness to vaccinate the cats. The
transmission rate β varies for different regions and it is difficult to estimate due to the lack of real
data regarding longitudinal data related to toxoplasmosis prevalence in cats. The initial conditions are
varied in order to observe the local and global stability behaviors.

Table 1. Values of the parameters for the base case for model (3).

Parameter Description Value
µ Birth/Death rates (cats) 1/260 (1/weeks) [80]
α Shedding period 1/2 (1/weeks) [11]
µ0 Clearance rate 1/26 (1/day) [11, 68]
k Oocysts per day (cat) 20 × 106 (1/day) [81]
β Transmission rate [0.1 − 0.5] × 10−9 (1/oocyst)
γ Vaccination rate 0.001 (1/day)

4.1. Stability for the disease-free equilibrium point

Here we set a time delay τ , 0 and a transmission rate β that allows us to obtain Rd
0 < 1. Fig. 2

depicts the dynamics of the different subpopulations of cats and the oocysts. It can be seen that the
system reaches the disease free equilibrium F∗0. Fig. 3 shows the dynamics when the time delay is
large (τ = 10), R0 > 1 and Rd

0 < 1. We can see that the system again approaches the disease free
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equilibrium F∗0 despite R0 > 1. Notice that the endemic equilibrium point E∗0 exists, but the system
does not approach to it. These results support our previous theoretical results where it was concluded
that if Rd

0 < 1 regardless of the initial conditions the disease becomes extinct (global stability). From
a biological viewpoint this means that the duration of the exposed stage can affect the steady state and
to the possibility of toxoplasmosis becoming extinct.

Figure 2. Dynamics of the different subpopulations of cats when β = 0.17×10−9, γ = 0.001,
τ = 1, R0 ≈ 0.9911 and Rd

0 ≈ 0.9892. The initial condition is S (0) = 0.5, E(0) = 0.3,
I(0) = 0.3, VR(0) = 0 and O(0) = 300.

Figure 3. Dynamics of the different subpopulations of cats when β = 0.179×10−9, γ = 0.001,
τ = 10, R0 ≈ 1.017 and Rd

0 ≈ 0.9976. The initial condition is S (0) = 0.5, E(0) = 0.3,
I(0) = 0.3, VR(0) = 0 and O(0) = 300.

4.2. Stability for the endemic equilibrium point

In this subsection we assume parameter values such that Rd
0 > 1. Based on the theoretical results the

system must reach the endemic steady state E∗0. Fig. 4 depicts the dynamics of the subpopulations when
Rd

0 > 1. As our theoretical results predicted, the system reaches the endemic steady state E∗0. Notice
that despite the time delay in the model the stability of the endemic steady state E∗0 is maintained. We
consider a hypothetical case where the time delay (duration of the exposed stage) is very large. Fig. 5
shows the dynamics when τ = 100. Note, that the endemic steady state E∗0 keeps its stability, but some
oscillations appear. All these previous numerical results agree with our theoretical results.
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Figure 4. Dynamics of the different subpopulations of cats when β = 0.25×10−9, γ = 0.001,
τ = 1, R0 ≈ 1.20 and Rd

0 ≈ 1.199. The initial condition is S (0) = 0.5, E(0) = 0.3, I(0) = 0.3,
VR(0) = 0 and O(0) = 300.

Figure 5. Dynamics of the different subpopulations of cats when β = 0.35×10−9, γ = 0.001,
τ = 100, R0 ≈ 1.42 and Rd

0 ≈ 1.17. The initial condition is S (0) = 0.5, E(0) = 0.3,
I(0) = 0.3, VR(0) = 0 and O(0) = 300.

4.3. Effect of the duration of the exposed stage

The duration of the exposed stage is closely related to the time delay τ. We perform numerical
simulations varying the time delay to see the effect of the duration of the exposed stage on the dynamics
of the toxoplasmosis disease. Fig. 6 depicts the transient behavior of the system (3). We perform the
simulations for the case when R0 > 1 since it has more interesting dynamics. It can be seen that the
transient behavior of the solutions is different when the time delay is varied.

It can be seen from Fig. 6 that the time delay has some effects on the transient behavior of the
different subpopulations as expected. Notice that main changes occur at t = τ. The infected cats and
oocysts are the main driven factors of the diseases and they are clearly correlated. For instance, at
t = 100 and when τ = 100, the infected cats increase abruptly since all the effective contacts between
susceptible cats and oocysts at t = 0 now appear in the infected subpopulation. Then, right away there
is an increase in the amount of oocysts in the environment since infected cats produce oocysts. As
a consequence at t = 100 the susceptible population starts to decrease again due to the increase of
oocysts. This effect is also shown in the exposed subpopulation of cats, but to a lesser degree because
some exposed cats are continuously leaving the exposed stage. Notice that if the numerical simulation
is performed for a very long time the system will reach the endemic state E∗0 since Rd

0 > 1 for all cases.
Thus, we can say that the time delay clearly can affect the transient dynamics. However, the steady
state only can be changed if Rd

0 increases its value to more than one, as the theoretical results pointed
out. However, it is important to remark that increasing the time delay decreases Rd

0 and therefore the

Mathematical Biosciences and Engineering Volume 19, Issue 12, 12655–12676.



12669

disease free steady state can be reached.

Figure 6. Different graphs when the time delay is varied. The parameter values are β =

0.5 × 10−9, γ = 0.001, τ = 100 and Rd
0 > 1. The initial condition is S (0) = 0.5, E(0) = 0.3,

I(0) = 0.3, VR(0) = 0 and O(0) = 300.

5. Conclusions

We proposed a new mathematical model to investigate the effect of the introduction of an exposed
stage for the cats who become infected with the T. gondii parasite, but that are not still able to produce
oocysts in the environment. We introduce in the model a time delay that represents the duration of the
exposed stage. The model includes the cat population and also the oocysts related to the T. gondii in
the environment. A key part of the model is the inclusion of the cats since they are the only definitive
host. In addition, the spread of the toxoplasmosis is mainly through the oocysts in the environment. As
any mathematical model there are certain assumptions that were made. The model considers lifelong
immunity for the recovered cats and vaccinated cats. The cats can get infected by contact with the
oocyst.

In this study we found the conditions such that the toxoplasmosis disease becomes extinct and also
when it persists. We considered a fixed duration for the exposed stage using a time delay in the mathe-
matical model. We analyzed the disease dynamics and in particular on the stability of the equilibrium
points. We computed and used the characteristic equations to study the local stability of the equilib-
rium points. We found the particular basic reproduction number Rd

0 of the mathematical model with a
time delay. We found this basic reproduction number of the delayed model includes the time delay. We
prove that if Rd

0 < is less than unity, the disease-free equilibrium is locally asymptotically stable. On
the other hand, if Rd

0 > 1, the endemic equilibrium is locally asymptotically stable. The global stability
of the disease-free equilibrium was established by using the Lyapunov-LaSalle theorem. In particular,
if Rd

0 < 1 the disease-free equilibrium is globally asymptotically stable and the toxoplasmosis becomes
extinct in the long term. We obtained that if Rd

0 > 1, then the time delay representing the fixed duration
of the exposed stage has no effect on the stability of the endemic equilibrium point and therefore does
not induce periodic solutions and Hopf bifurcations cannot occur.

In general, our results allow us to get deeper insight on the dynamics of the toxoplasmosis disease.
Some parameters were taken from the literature related to toxoplasmosis. However, some of them have
a degree of uncertainty as is common in biological processes. We found that the basic reproduction
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number Rd
0 decreases as the time delay increases and therefore this time delay can help to control the

toxoplasmosis disease. It is important to remark that the temperature might have some influence on
the duration of the exposed stage and therefore on the time delay. Thus, climate change can modify
the time delay and the dynamics of the toxoplasmosis. From the mathematical expression of the basic
reproduction number Rd

0 we can see that the mean infectious period, the vaccination rate, the removal
rate of oocysts and the time delay affect the value of the basic reproduction number and the endemic
equilibrium point. For instance, all these parameters increase, the basic reproduction number Rd

0 de-
creases and then this has positive control effects on the toxoplasmosis disease. We numerically solved
the delayed mathematical model for a variety of parameters’ values and the theoretical numerical re-
sults were in good agreement with the theoretical ones. We would like to remark that if Rd

0 > 1, then
the endemic equilibrium didn’t lose stability regardless of the time delay. It is important to point out
that our theoretical results are valid regardless of the parameter values. We used some particular values
to show graphically few toxoplasmosis dynamics that agree with the theoretical results. In reality, the
vaccination rate would vary depending on many factors such as vaccine availability and willingness to
vaccinate the cats. Regarding the transmission rate this varies for different regions and it is difficult to
estimate due to the lack of real data regarding longitudinal data related to toxoplasmosis prevalence in
cats.

The proposed mathematical model allows the assessment of various control strategies against toxo-
plasmosis. For instance, the implementation of vaccination programs for cats can reduce the prevalence
of toxoplasmosis. Optimal control can be used to determine the best strategy if costs of each strategy
are established. As a good research practice we would like to point out a few limitations of this work,
but there are others. The model studied in this work has an important limitation since it does not
consider other intermediate hosts. However, since the only definitive host are the cats it is crucial to
have models that include them and it is expected that they are the main driving force of toxoplasmo-
sis [7, 8]. Further studies that include additional intermediate hosts are necessary to get deeper insight
in the toxoplasmosis dynamics. In addition, the well-known homogeneous mixing assumption might
not represent reality. One key assumption and limitation is the permanent immunity of vaccinated cats.
This aspect would need further studies and the design of a new mathematical model and analysis. The
mathematical model assumes exponential transitions between most of the subpopulations and this is
not exactly what happens in the real world. Some authors have proposed models using gamma dis-
tributions, but this requires much more equations [82–85]. The value of the crucial transmission rate
is unknown and can vary depending on the region. This requires much further biological field study.
We expect in future works to consider other hosts. Finally, we would like to point out that this type of
studies provide deeper insight into the toxoplasmosis disease and can help health authorities to reduce
the prevalence of toxoplasmosis.
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15. M. Lélu, M. Langlais, M.-L. Poulle, E. Gilot-Fromont, Transmission dynamics of Tox-
oplasma gondii along an urban–rural gradient, Theor. Popul. Biol., 78 (2010), 139–147.
https://doi.org/10.1016/j.tpb.2010.05.005
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67. D. Sykes, J. Rychtář, A game-theoretic approach to valuating toxoplasmosis vaccination strategies,
Theor. Popul. Biol., 105 (2015), 33–38. https://doi.org/10.1016/j.tpb.2015.08.003

68. N. Mateus-Pinilla, B. Hannon, R. Weigel, A computer simulation of the prevention of the trans-
mission of Toxoplasma gondii on swine farms using a feline T. gondii vaccine, Prevent. Vet. Med.,
55 (2002), 17–36. https://doi.org/10.1016/S0167-5877(02)00057-0

69. A. Freyre, L. Choromanski, J. Fishback, I. Popiel, Immunization of cats with tissue cysts, brady-
zoites, and tachyzoites of the T-263 strain of Toxoplasma gondii, J. Parasitol., 79 (1993), 716–719.
https://doi.org/10.2307/3283610

70. J. Frenkel, Transmission of toxoplasmosis and the role of immunity in limiting transmission and
illness, J. Am. Vet. Med. Assoc., 196 (1990), 233–240.

71. M. R. Islam, T. Oraby, A. McCombs, M. M. Chowdhury, M. Al-Mamun, M. G. Tyshenko, et
al., Evaluation of the United States COVID-19 vaccine allocation strategy, PloS One, 16 (2021),
e0259700. https://doi.org/10.1371/journal.pone.0259700
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