
MBE, 19(12): 12601–12616. 

DOI: 10.3934/mbe.2022588 

Received: 30 June 2022 

Revised: 14 August 2022 

Accepted: 16 August 2022 

Published: 29 August 2022  

http://www.aimspress.com/journal/MBE 

 

Research article 

Hierarchical multiloop MPC scheme for robot manipulators with 

nonlinear disturbance observer 

Xingjia Li1, Jinan Gu1,*, Zedong Huang1, Chen Ji1 and Shixi Tang2 

1 School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China 
2 School of Information Engineering, Yancheng Teachers University, Yancheng 224002, China 

* Correspondence: Email: gujinan@tsinghua.org.cn. 

Abstract: This paper addresses the robust enhancement problem in the control of robot manipulators. 
A new hierarchical multiloop model predictive control (MPC) scheme is proposed by combining an 
inverse dynamics-based feedback linearization and a nonlinear disturbance observer (NDO) based 
uncertainty compensation. By employing inverse dynamics-based feedback linearization, the multi-
link robot manipulator was decoupled to reduce the computational burden compared with the 
traditional MPC method. Moreover, an NDO was introduced into the input torque signal to compensate 
and correct the errors from external disturbances and uncertainties, aiming to enhance the robustness 
of the proposed controller. The feasibility of the proposed hierarchical multiloop MPC scheme was 
verified and validated via simulation of a 3-DOF robot manipulator. Results demonstrate that the 
proposed controller provides comparative accuracy and robustness and extends the existing state-of-
the-art algorithms for the trajectory tracking problem of robot manipulators with disturbances. 

Keywords: trajectory tracking; inverse dynamics; model predictive control (MPC); nonlinear 
disturbance observer (NDO); hierarchical multiloop MPC scheme 
 

1. Introduction  

Designed to grasp and operate objects for industrial application, robot manipulators have been 
drawing increasing attention in the last decades [1]. The motion of robot manipulators is implemented 
by the embedded controllers, such as open loop controller and PID controller [2,3]. However, open 
loop controller or PID controller can hardly guarantee a high-quality performance of the robot 
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manipulator under inevitable dynamic uncertainties and external disturbances. To deal with the 
problems, increasing efforts have been made and many robust control strategies have attained, for 
example, active disturbance rejection control [4], artificial neural network controller [5,6], fuzzy 
logical controller [7], fuzzy adaptive controller [8,9], sliding mode controller [10,11], integral sliding 
mode controller [12], linear matrix inequality scheme [13], et al. 

As robot manipulators always confront various uncertainties during the working process, 
operators used to be forbidden to enter the working space of robot manipulators for safety purposes. 
In recent years, robot manipulators have been extensively concerned in not only industrial assembly 
but also agricultural engineering, medical surgery, public hygiene [14], and other fields [15,16]. 
Consequently, the expanding application scenarios require the robot manipulator to have high precision 
and response speed and, in the meantime, special attention to the way it achieves critical tasks, 
especially in some scenarios requiring compliant contact, obstacle avoidance, and close robot-human 
interaction [17]. For these scenarios, it is essential to constrain the input control variables and the state 
and output variables, bringing severe challenges to satisfying all the dynamic constraints via a classical 
control scheme.  

To meet the demands of the complex constrained dynamics systems, optimal control theories are 
gradually initialed and developed [18]. Model predictive control (MPC) is a typical optimal control 
theory method [19,20]. Besides certain robustness, one significant feature of MPC is that it can 
consider constraints of input and output variables and state variables simultaneously. In this virtue, 
MPCs have effectively served many actual industrial applications, for example, unmanned aerial 
vehicles [21] and ground vehicles [22,23]. Meanwhile, MPCs are also considered to be a promising 
control technique for applications in the field of robot manipulators. Guechi et al. discussed an MPC 
for a 2‐DoF (degree of freedom) robot manipulator and compared it with a linear quadratic (LQ) 
controller [24]. Wilson et al. put forward a simplified Nonlinear MPC for a 2-DoF vertical robot 
manipulator [25]. Best et al. presented an MPC scheme for a soft humanoid robot [26]. Carron et al. 
introduced a Gaussian process-based MPC scheme for the offset-free tracking of a robot manipulator [27]. 
It is noted that compared with classical control methods, MPC methods generate the optimal control 
sequence by predicting the future evolution of the objective variables [28]. Thus, the online optimization 
process of MPC will result in a remarkable increase in the calculation time of the manipulator controller. 
Especially for multi-link robot manipulators of solid coupling and nonlinear characteristics, the MPC 
control method often requires magnificent computational ability, which will significantly increase the 
overall cost of the manipulator controller. What is worse, the applications of robot manipulators in actual 
working circumstances are inevitably affected by workspace constraints, modeling uncertainties, and 
external disturbances. Although MPC has certain robustness, excessive uncertainties and disturbances 
still might cause the failure of MPC. These negative factors seriously limit the application of MPC 
controllers in robot manipulator systems [29]. 

Due to the possibility of excessive dynamics uncertainties and external disturbances, recent 
investigations have been dedicated to exploiting robust tube MPC methods capable of meeting the 
demands of the system constraints even in these critical conditions [30,31]. In their work, the worst 
possible uncertainties are taken into account to complete the binding dynamic constraints, which adds 
massive extra computational cost. To address this problem, Incremona et al. [32] developed a 
hierarchical multiloop scheme for robot manipulators with inverse dynamics, MPC, and integral 
sliding mode module, using inverse dynamics to decouple the robot manipulator and the integral 
sliding mode controller to reject the uncertainties of the unmatched dynamics model of the robot 
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manipulators, which improves the robustness of the MPC while lessening the burden of online 
calculation. At the same time, however, this method implies the shortcomings of the chattering problem. 

Although disturbance observers can provide a promising alternative way to estimating and 
rejecting the adversarial disturbances on dynamics systems [33,34], past research seldom discusses the 
knowledge of the application of Nonlinear disturbance observer (NDO) in the hierarchical multiloop 
MPC scheme for robot manipulators. This motivated our attempt to propose a novel robust hierarchical 
multiloop MPC scheme combining inverse dynamics, NDO, and MPC together in this article (see 
Figure 1). Specifically, the inverse dynamics controller is designed to decouple the n-link robot 
manipulator model into n single-link ones. The MPC is to ensure the optimal strategy of the 
manipulator system in terms of the evolution of state and output variable and input torque constraints. 
The NDO is used to compensate for the inevitable unknown frictions and external disturbances to 
eventually enhance the robust performance of the proposed controller at a low online calculation cost. 

 

Figure 1. Schematic diagram of the proposed hierarchical multiloop MPC scheme. 

2. Dynamics model of robot manipulators 

The n-link robot manipulator can be denoted by the dynamics equation [35] 

 𝑴 𝒒 𝒒 𝑪 𝒒, 𝒒 𝒒 𝑮 𝒒 𝝉 𝒅  (1) 

where 𝒒 ∈ ℜ   is the vector of generalized joint coordinates, M 𝒒 ∈ ℜ   is the inertia 
matrix, 𝑪 𝐪, 𝐪 ∈ ℜ   is the vector of centrifugal and Coriolis torques, 𝑮 𝒒 ∈ ℜ   is the gravity 
vector, and 𝝉 ∈ ℜ   is the input torques, 𝒅  is the lumped interferences composed of unknown 
frictions, external disturbances, and sources of dynamics mismatch, etc. 

3. The proposed hierarchical multiloop MPC scheme 

This section proposes a hierarchical multiloop MPC scheme containing inverse dynamics control, 
MPC, and NDO based compensation. 
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3.1. Inverse dynamics based feedback linearization 

When the interferences are all known, the control law based on the inverse dynamics scheme can 
be designed as: 

 𝝉 𝑴 𝒒 𝒗 𝑪 𝒒, 𝒒 𝒒 𝑮 𝒒 𝒅  (2) 

where v is the auxiliary control variable. By substituting Eq (2) into Eq (1), one can obtain 

 𝒒 𝒗  (3) 

However, since the uncertainties are challenging to know totally, the inverse dynamics control 
law, using an estimation on the uncertainties, can be set to 

 𝝉 𝑴 𝒒 𝒗 𝑪 𝒒, 𝒒 𝒒 𝑮 𝒒 𝒅  (4) 

where the symbol “^” indicates the assessment of the physical quantity which covers. d̂  signifies the 

estimation of the uncertainties. 
By substituting Eq (4) into Eq (1) and sorting it out, we can get 

 𝒒 𝒗 𝑴 𝒒 𝒅 𝒅   (5) 

3.2. Nonlinear disturbance observer (NDO) 

For robot manipulators, we can assume the NDO has the following form [36] 

 𝒅 𝑳 𝒒, 𝒒 𝒅 𝒅 𝑳 𝒒, 𝒒 𝒅 𝑳 𝒒, 𝒒 𝒅  (6) 

where 𝒅 is the estimated value of d; 𝑳 𝒒, 𝒒  is a nonlinear function to be designed. 
Substitute Eq (1) into Eq (6) yields 

 𝒅 𝑳 𝒒, 𝒒 𝒅 𝑳 𝒒, 𝒒 𝑴 𝒒 𝒒 𝑪 𝒒, 𝒒 𝒒 𝑮 𝒒 𝝉   (7) 

Design another auxiliary vector as 

 𝒛 𝒅 𝒑 𝒒, 𝒒   (8) 

where 𝒛 ∈ ℜ  and 𝒑 𝒒, 𝒒  is the nonlinear function to design, which should satisfy 

 𝒑 𝒒, 𝒒 𝑳 𝒒, 𝒒 𝑴 𝒒 𝒒  (9) 

By substitution of the derivative of Eq (8) into Eq (9), we can get 

 𝒛 𝒅 𝑳 𝒒, 𝒒 𝑴 𝒒 𝒒  (10) 

Substitute Eq (7) into Eq (10) yields 

 𝒛 𝑳 𝒒, 𝒒 𝒅 𝑳 𝒒, 𝒒 𝑪 𝒒, 𝒒 𝒒 𝑮 𝒒 𝝉   (11) 

Substitute Eq (8) into Eq (11) yields 

 𝒛 𝑳 𝒒, 𝒒 𝒛 𝑳 𝒒, 𝒒 𝑪 𝒒, 𝒒 𝒒 𝑮 𝒒 𝝉 𝒑 𝒒, 𝒒   (12) 

To sum up, the NDO can be expressed by 
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𝒛 𝑳 𝒒, 𝒒 𝒛 𝑳 𝒒, 𝒒 𝑪 𝒒, 𝒒 𝒒 𝑮 𝒒 𝝉 𝒑 𝒒, 𝒒

𝒅 𝒛 𝒑 𝒒, 𝒒                                    
  (13) 

The observation error of the disturbance observer is defined as 

 𝒘 𝑡 𝒅 𝒅  (14) 

Assumed that the change in disturbance relative to the observer is slow, i.e., the rate of change is 
zero, one can get 

 𝒅 0  (15) 

Then we have 

 𝒘 𝑡 𝒅 𝒅 𝒅 𝒛 𝒑 𝒒, 𝒒   (16) 

Substitution of Eq (9) and Eq (13) into Eq (16) yields 

 𝒘 𝑡 𝑳 𝒒, 𝒒 𝒘 𝑡   (17) 

At last, the observation error equation is obtained as 

 𝒘 𝑡 𝑳 𝒒, 𝒒 𝒘 𝑡 0  (18) 

By properly designing the nonlinear function 𝑳 𝒒, 𝒒 , the estimated interference value d̂  can 

be exponentially approximated to the true value of the interference d. 

3.3. Model predictive control (MPC) 

Substituting Eq (14) into Eq (5), one can obtain 

 
𝒒 𝒗 𝜼    

𝜼 𝑴 𝒒 𝒘
  (19) 

where η  is an auxiliary parameter. 
The inverse dynamics controller is aiming to decouple the n-link robot manipulator model into n 

single-link ones. For the ith joint of the robot manipulator, let 𝒙 𝑥 , 𝑥 𝑞 , 𝑞 , then we have 
the single input single output decoupled robot systems, as follows 

 
𝑥 𝑥          

𝑥 𝑣 𝑡 𝜂 𝑡
  (20) 

For convenience, rewritten Eq (20) in matrix form as 

 𝒙 t 𝑨𝒙 t 𝑩 𝑣 𝑡 𝜂 𝑡   (21) 

where 𝑨 0 1
0 0

, 𝑩 0
1

. 

Substituting Eq (19) into Eq (21), we can get 

 𝒙 t 𝑨𝒙 t 𝑩𝑣 𝑡 𝑩𝑴 𝒒 𝒘 𝑡   (22) 

The discrete form of Eq (22) can be expressed as 

 𝒙 𝑘 1 𝑨𝒅𝒙 𝑘 𝑩 𝑣 𝑘 𝒘 𝑘   (23) 
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where 𝒘 𝑘  represents the 𝑩𝑴 𝒒 𝒘 𝑡  term after discretization. 
Yu et al. [37] have proven that MPC is a near-optimal control algorithm regardless of whether the 

perturbation is random or adversarial. Therefore, we can simplify the dynamics objective of the MPC 
loops as 

 𝒙 𝑘 1 𝑨𝒅𝒙 𝑘 𝑩 𝑣 𝑘   (24) 

The objective function needs to minimize the error between the output trajectory and the desired 
one in the MPC loops. More generally, extra penalties concerning the input torques vi(k) are also 
required. Thus the objective function can be defined by 

𝐽 𝒆 𝑘 𝑗|𝑘 𝑸 𝒆 𝑘 𝑗|𝑘 𝒗 𝑘 𝑗|𝑘 𝑹 𝒗 𝑘 𝑗|𝑘 𝒆 𝑘 𝑁|𝑘 𝑷𝒆 𝑘 𝑁|𝑘  

    (25) 

where 𝒆 𝑘 𝑗|𝑘 𝒚 𝑘 𝑗|𝑘 𝒓 𝑘 𝑗|𝑘  , 𝒙 𝑘 𝑗|𝑘  , 𝒓 𝑘 𝑗|𝑘  , and 𝒗 𝑘 𝑗|𝑘  
respectively represent the prediction output, reference output, and prediction input for the 𝑘 𝑗  
step during the kth sampling. ‖. ‖  is the Euclidean norm multiplied by the output state weighting Q, 
‖. ‖  is the Euclidian norm multiplied by the input torque weighting R, and ‖. ‖  is the Euclidean 
norm multiplied by the final output state weighting P. 

Eventually, the MPC can be formulated by solving the following quadratic constrained 
optimization problem: 

𝑚𝑖𝑛  𝐽 𝒆 𝑘 𝑗|𝑘 𝑸 𝒆 𝑘 𝑗|𝑘 𝒗 𝑘 𝑗|𝑘 𝑹 𝒗 𝑘 𝑗|𝑘 𝒆 𝑘 𝑁|𝑘 𝑷𝒆 𝑘 𝑁|𝑘

𝑠. 𝑡.   𝒗 𝒗 𝒗

  

 (26) 

where 𝒗  and 𝒗  represent the lower and upper limits of the input torque 𝒗 . 

4. Simulation 

For simplicity without loss of generality, this work considers a vertical three-link  planar robot 
manipulator to illustrate the effectiveness of the proposed hierarchical multiloop MPC scheme. The 
schematic diagram of the three-link planar robot manipulator is shown in Figure 2. And the inertia and 
structural parameters of the manipulator are listed in Table 1, of which g is the gravity acceleration. For the 
convenience of expression, the parameters in the simulation process are all set to dimensionless values. 

Table 1. The parameters of the three-link robot manipulator.  

Parameter m1 l1 m2 l2 m3 l3 g 

Value 1.5 1.5 1.2 1.2 1.0 1.0 9.8 
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Figure 2. Schematic diagram of the three-link planar robot manipulator. 

In addition, for the manipulator in the joint space, the working range of each joint can be 
denoted by 

 𝑙𝑏 𝑞 𝑢𝑏 , 𝑖 1,2,3.  (27) 

where 𝑙𝑏  is the lower bound of the working range of joint 𝑖, and 𝑢𝑏  is the upper bound of the 

working range of joint 𝑖. For instance, when 𝑙𝑏 , , π  and 𝑢𝑏 , , π , the three-

link planar robot and its working space using Robotics Toolbox for MATLAB is shown in Figure 3. 

 

(a) (b) 

Figure 3. The (a) three-link planar robot and (b) working space using robotics toolbox for 
MATLAB. 

For the 3-DOF manipulator, the nonlinear vector function in the NDO can be designed as follows 
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 𝒑 𝒒, 𝒒 𝑐
𝑞

𝑞 𝑞
𝑞 𝑞 𝑞

𝑐
1 0 0
1 1 0
1 1 1

𝒒  (28) 

Substitute Eq (28) into Eq (9) yields 

 𝑳 𝒒, 𝒒 𝑴 𝒒 𝑐
1 0 0
1 1 0
1 1 1

  (29) 

Eventually, the nonlinear function 𝑳 𝒒, 𝒒  can be denoted by 

 𝑳 𝒒, 𝒒 𝑐
1 0 0
1 1 0
1 1 1

𝑴 𝒒   (30) 

During the procedure of the simulation experiment, desired joint trajectories should be input to 
the manipulator system at first. To demonstrate the proposed control scheme, a set of sinusoidal signals 
are employed into the robot manipulator, as follows 

 𝑟 𝑟 𝑟 𝑠𝑖𝑛 0.2𝜋𝑡   (31) 

In addition, in the MPC loop, the initial speeds of the robot are all set to 𝑞 0 𝑞 0
𝑞 0 0, and the initial angles of the robot manipulator are assigned to 𝑞 0 𝑞 0 𝑞 0
1. Besides, the control period is set to 0.01, the prediction horizon is set to 10, and the control horizon 
is set to 1. Moreover, Q = diag{50,0}, R = 1e-6, P = 2Q, vmin = −100, and vmax = 100. To validate this 
method, we will verify the trajectory tracking performance of the proposed hierarchical multiloop 
MPC scheme when the robot manipulator has unknown frictions, external disturbances, and the 
simultaneous existence of frictions and disturbances. It should be noted that the proposed control 
scheme and the design of the controllers could be more general, even in the spatial coordinates for 
robot manipulators of four or more links.  

5. Results and discussion 

5.1. Robot manipulator with unknown frictions 

Since the frictions of robot system are always related to joint speeds, we can employ the Coulomb-
viscous friction model for validation purpose. When the interferences consist only of the Coulomb-
viscous frictions, it can be denoted by 

 𝑑 𝐹 𝑞 𝑎 𝑞 𝑏 sgn 𝑞   (32) 

where ari and bri are the viscous and Coulomb friction coefficient, respectively. And 𝑎  = 10, 
𝑎   = 8, 𝑎   = 5, 𝑏   = 3.0, 𝑏   = 2.4, 𝑏   = 1.8 for the simulation; sgn .   is the sign 
function (i.e., when x > 0, sgn 𝑥  = 1; if x = 0, sgn 𝑥  = 0; when x < 0, sgn 𝑥  = −1). 
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Figure 4. Time evolution of the unknown frictions and the observed frictions for each joint. 

When only unknown frictions exist in the robot manipulator, the time evolution of the unknown 
frictions and the observed values for each joint is demonstrated in Figure 4. It can be seen that the 
unknown friction torques start with a relatively large amplitude in the initial stage and then gradually 
decreases and are stably maintained in a small amplitude interval. In detail, for joints 1 and 2, at about 
one second, the estimated values of the NDO approximate the actual values of the unknown frictions; 
for joint 3, the observed value matches the unknown friction at the very beginning because the preset 
friction of the joint is less. It is worth mentioning that in this case, the system cannot converge if 
without the compensation of the NDO. 

 

Figure 5. Time evolution of the references and the angles with unknown frictions for each joint. 

When only unknown friction torque is there in the robot manipulator, the time evolution of the 
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trajectory tracking curve for each joint is shown in Figure 5. It can be seen that each joint of the robot 
manipulator can track the reference trajectory from an initial position in less than half a second. 

5.2. Robot manipulator with external disturbances 

Since the external disturbance 𝝉  is always a time-dependent variables, when the interferences 
consist only of external disturbances, we assume that the interferences can be denoted by Gaussian 
function, as follows  

 𝑑 𝜏 𝑡 𝑎 𝑒𝑥𝑝 , 𝑖 1,2,3  (33) 

where 𝑎   determines the size of the disturbance, 𝑏   signifies the center of the disturbance, 𝜎  
mainly represents the time range of disturbance. And 𝑎  = 10, 𝑎  = 8, 𝑎  = 0.3, 𝑏  = 1, 𝑏  
= 2, 𝑏  = 3, 𝜎  = 𝜎  = 𝜎  = 0.3 for the simulation. 

 

Figure 6. Time evolution of the external disturbances and the observed disturbances for 
each joint. 

When only external disturbances exist in the robot manipulator, the time evolution of the unknown 
external disturbances and the observed values for each joint is demonstrated in Figure 6. Overall, the 
estimated values of the NDO approximate the actual values of the unknown external disturbances well. 
Specifically, for joint 1, it can be seen that the amplitude peak of the observed value is smaller than the 
actual disturbance and a small side peak followed. For joint 2, a slight valley before the peak occurs 
in the estimated values of the NDO, but it does not exist in the actual disturbance. For joint 3, although 
there are still some mismatches due to the small disturbance value, the overall matching degree 
between the estimated values of the NDO and the actual disturbance of the robot system is good. 
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Figure 7. Time evolution of the references and the angles with external disturbances for 
each joint. 

When there is only unknown external interference in the manipulator, the time evolution of the 
external disturbances and the observed values for each joint is demonstrated in Figure 7. It can be seen 
that each joint of the manipulator can also track the reference trajectory from an initial position in a 
limited time. 

5.3. Robot manipulator with both unknown frictions and external disturbances 

Furthermore, when both unknown frictions and external disturbances affect the robotic manipulator 
system, we can assume that they are a combination of frictions and disturbances, as follows 

 𝒅 𝑭 𝑭 𝑞 𝝉 𝑡   (34) 

where 𝑭  is the sum of 𝑭  and 𝝉 , and the parameters of them are the same as the subsection above. 

 

Figure 8. Time evolution of the frictions and disturbances and the observed values for each joint. 
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When both unknown frictions and external disturbances are in the robot manipulator 
simultaneously, the time evolution of the total interferences and the observed values for each joint is 
demonstrated in Figure 8. It can be seen that, on the whole, the NDO can compensate for the total 
unknown interferences well, enhancing the robustness of the proposed controller. 

 

Figure 9. Time evolution of the references and the angles with the frictions and 
disturbances for each joint. 

When both unknown frictions and external disturbances affect the robot manipulator 
simultaneously, the time evolution of the trajectory tracking curve for each joint is illustrated in 
Figure 9. It can be seen that each joint of the robot manipulator can quickly track the reference 
trajectory from an initial position. 

5.4. Robot manipulator motion in Cartesian space 

In addition, an example of the motion performance of the robot manipulator in Cartesian 
space is examined. At the initial position, the end of the third link is set to [1.2, 0.5], and the angle 
between the third link and the x-axis is -90 degrees. At the final position, the end of the third link 
is set to [2.423, 2.234], and the third link is parallel to the x-axis. Then the motion trajectory of 
the robot manipulator in Cartesian space is shown in Figure 10. 
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Figure 10. Motion trajectory of robot manipulator in Cartesian space. 

It can be seen from Figure 10 that the robot manipulator can still reach the preset position in 
Cartesian space well even under the condition of unknown frictions and external disturbances. In brief, 
enhanced robust control can be achieved via the proposed hierarchical multiloop MPC scheme by 
rejecting the unknown interferences with the nonlinear disturbance observer. 

6. Conclusions 

This paper proposes an enhanced robust hierarchical multiloop control strategy by utilizing the 
inverse dynamics, NDO, and MPC to realize the optimal control of the trajectory tracking of robot 
manipulators under interferences. Specifically, the loop of the inverse dynamics decouples the multi-
link robot manipulator system to several single link dynamics systems, aiming to reduce the 
computational burden compared with the traditional MPC method. The NDO loop can compensate 
and correct the errors caused by external interferences in the robot manipulator to enhance the proposed 
controller’s robustness.  

The workability of the proposed hierarchical multiloop MPC scheme is validated by the 
simulation of a 3-DOF robot manipulator under three types of common interferences, i.e., unknown 
frictions, external disturbances, and both frictions and disturbances, respectively. At length, the 
simulation demonstrates the enhanced robustness and accuracy of the proposed controller. 
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