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Abstract: With their intelligence, flexibility, and other characteristics, automated guided vehicles 
(AGVs) have been popularized and promoted in traditional industrial markets and service industry 
markets. Compared with traditional transportation methods, AGVs can effectively reduce costs and 
improve the efficiency of problem solving in various application developments, but they also lead to 
serious path-planning problems. Especially in large-scale and complex map environments, it is 
difficult for a single algorithm to plan high-quality moving paths for AGVs, and the algorithm solution 
efficiency is constrained. This paper focuses on the indoor AGV path-planning problem in large-scale, 
complex environments and proposes an efficient path-planning algorithm (IACO-DWA) that 
incorporates the ant colony algorithm (ACO) and dynamic window approach (DWA) to achieve 
multiobjective path optimization. First, inspired by the biological population level, an improved ant 
colony algorithm (IACO) is proposed to plan a global path for AGVs that satisfies a shorter path and 
fewer turns. Then, local optimization is performed between adjacent key nodes by improving and 
extending the evaluation function of the traditional dynamic window method (IDWA), which further 
improves path security and smoothness. The results of simulation experiments with two maps of 
different scales show that the fusion algorithm shortens the path length by 9.9 and 14.1% and reduces 
the number of turns by 60.0 and 54.8%, respectively, based on ensuring the smoothness and safety of 
the global path. The advantages of this algorithm are verified. QBot2e is selected as the experimental 
platform to verify the practicability of the proposed algorithm in indoor AGV path planning. 

Keywords: path planning; AGV; ant colony algorithm; dynamic window approach; multiobjective 
optimization 
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1. Introduction 

With the increasing maturity of automation technology, an increasing number of automated 
guided vehicles (AGVs) has become the mainstream work method in the automatic handling 
process of factories. Its main function is to safely transport goods to the designated destination 
through the planned path in a complex working environment [1]. Compared with manual handling, 
AGVs can complete transportation tasks in harsh and complex environments. The emergence of 
the AGV automatic navigation system has changed the logistics structure of traditional 
manufacturing workshops, greatly reduced the production cost and improved the production 
efficiency of the enterprise. 

The AGV navigation system can use AGVs to improve production and life efficiency in practical 
applications. However, it also produces a series of problems of environment perception, path planning 
and tracking control. Path planning is a key technology for mobile robot navigation and widely utilized 
in autonomous driving, logistics warehousing, AGV navigation and other fields [2]. Among them, the 
path-planning technology of AGVs is employed to identify a safe path in the free movement space of 
AGVs to satisfy one or more path performance indicators [3]. A reasonable and reliable driving path 
is crucial to ensure that AGVs can safely complete their handling tasks. To address the complexity of 
the environment and tasks in practical applications, increasingly many researchers are keen to solve 
the problem of AGV path planning, and path-planning technology has gradually become one of the 
research hotspots in AGV autonomous navigation systems. 

With the continuous development of the AGV market and path-planning technology, increasingly 
many optimization algorithms are used to solve path-planning problems with different application 
backgrounds and task requirements. However, most of the previous works [4] considered the 
performance improvement of a single algorithm in small-scale, low-complexity maps and often 
ignored the limitations of a single algorithm in large-scale, complex environments, and there is a lack 
of practical application verification. In addition, people are often keen to consider a single path 
optimization objective of a single algorithm instead of the optimization of multiple path-planning 
indicators that conform to the actual AGV motion characteristics. 

In this work, we mainly focus on indoor AGV path planning in large-scale and complex 
environments. In this paper, an efficient global path-planning algorithm is proposed to provide 
AGVs with high-quality paths that simultaneously satisfy multiple global path-planning 
performance evaluation indicators in large-scale and complex maps. The main contributions of this 
work are as follows: 

1) Inspired by the ant colony algorithm, we design a state transition probability method to 
improve the search ability of ants, propose a pheromone update rule to increase the convergence 
ability of the algorithm and improve the quality of the optimal path solution, and consider the 
motion rules of AGVs in the real environment. We propose a key point path optimization strategy, 
which reduces the global path length and number of turns. 

2) Based on the motion characteristics of AGVs, the evaluation function of the improved 
DWA algorithm is constructed, which considers the influence of obstacles on AGVs in a certain 
range, enhances the attraction of target points to AGVs, and improves the local optimization 
capability of the DWA algorithm. 

3) Based on the improved ACO and DWA algorithms, an efficient fusion algorithm is 
proposed, which avoids the limitations of the two algorithms in solving path solutions and 
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optimizes various path optimization objectives. 
The content of this paper is organized as follows: Section 2 presents the related work in this 

research area. Section 3 introduces the mathematical model of the traditional ant colony algorithm and 
construction basis of the improved ant colony algorithm in this paper. Section 4 introduces the working 
principle of the traditional DWA algorithm and construction basis of the improved DWA algorithm in 
this paper. Section 5 presents the detailed steps of the fusion algorithm in this paper. Section 6 verifies 
the performance of our improved algorithm from different aspects and compares it with existing 
methods. Section 7 summarizes the work of this paper and provides an outlook for the next steps. 

2. Related work 

The core of the AGV path-planning technology is the path-planning algorithm, which can be 
generally divided into global path planning and local path planning [5]. Global path-planning 
algorithms can be further divided into traditional algorithms [6–8] and intelligent optimization 
algorithms [9–11]. With the continuous development of artificial intelligence, many scholars have 
begun to use intelligent optimization algorithms [12]. As an efficient and stable intelligent algorithm, 
the ACO has the characteristics of distributed computing, ease of combination with other algorithms, 
and strong robustness [13]. However, ACO also shows obvious shortcomings in path-planning 
applications, such as slow convergence, ease of falling into a local optimal solution, and poor path 
quality [14]. For various path-planning problems, many scholars have given different solutions. Chen 
et al. [15] proposed a method based on adaptive clustering, which can provide a reasonable and 
efficient path solution for multiple heterogeneous UAVs in a large-scale coverage environment and 
greatly reduce the time required for search. Du et al. [16] proposed a linear formulation for path 
planning, which expands the diversity of algorithm search solutions and improves the maneuverability 
of the overall system. Considering various shortcomings of the ant colony algorithm in path planning, 
many scholars have attempted to improve it. Jiao et al. [17] designed a multi-state ant colony algorithm, 
which avoids the problem of local optimal solutions, but the convergence of the algorithm must be 
improved. Ling et al. [18] proposed an improved ant colony system algorithm for the UAV full-
coverage path-planning problem, which can plan a reliable flight path for UAVs and improve the global 
search ability of the algorithm. Kumar et al. [19] applied the search and control of the optimal path of 
mobile robots by combining the ant colony algorithm and a heuristic technology. Various ant colony 
optimization algorithms have proposed substantial optimization schemes for path-planning 
problems [20]. The existing ant colony optimization algorithms usually do not consider the actual size 
of the AGV in solving path-planning problems, and the planned path security is relatively low. 
Moreover, the planned path does not satisfy the actual motion constraints of the AGV, and the solution 
efficiency of the algorithm on large-scale complex maps must be improved. 

Local path planning is a commonly employed path-planning algorithm in dynamic environments, 
which includes the APF [21] and DWA [22]. The DWA is based on the motion characteristics of 
mobile robots and has good obstacle avoidance ability, and the planned path is relatively smooth. 
Jiang et al. [23] adaptively adjusted the evaluation function according to the state information of the 
robot, which alleviated the limitations of the DWA algorithm and shortened the path length. Ji et al. [24] 
proposed a new evaluation function that integrated the A* algorithm and DWA algorithm, which 
enables the robot to move smoothly, but the path global optimality is lacking. Lin et al. [25] added 
fuzzy control to the traditional DWA algorithm to evaluate the collision risk of obstacles and improved 
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the efficiency of the algorithm. Liu et al. [26] designed a feasibility evaluation function, improved the 
security of the path, and solved the problem of local optimal solutions. The DWA algorithm is a path-
planning algorithm based on the motion characteristics of the robot. Although the planned path satisfies 
the safety and smoothness requirements of AGVs, in large-scale and complex environments, the path 
planned by DWA still has problems such as detours and unreachable target points due to the lack of 
global information. 

As the task scenarios of path planning become more complex, the efficiency of solving path-
planning algorithms in large-scale, complex maps remains challenging. As the path evaluation 
indicators become increasingly comprehensive, it is often difficult for an algorithm to plan a high-
quality path that can simultaneously satisfy the requirements of multiple path optimization objectives. 
In this research, based on the existing problems of ACO and DWA algorithms in path-planning 
applications, a corresponding optimization scheme is designed to avoid its limitations, and a fusion 
algorithm for indoor AGV path planning is proposed. Compared with other studies, this study 
simultaneously optimizes multiple path objectives (path length, number of turns, smoothness and 
safety) in large-scale and complex maps. 

3. Ant colony algorithm optimization 

3.1. Traditional ant colony algorithm 

In the traditional ant colony algorithm mathematical model, the state transition probability and 
pheromone update strategy have a crucial role in the solution efficiency of the algorithm [27]. 

3.1.1. State transition probability 

At time t, ant k  is moved from node i  to node j  by calculating the state transition probability

( )k
ijP t ; then, the next node is selected according to the roulette method, which is defined as: 
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 , 2 2( ) ( )ij i j i jd = x - x + y - y , ( )ijη t  is the heuristic function and represents the Euler 

distance from the current node to the candidate node, ( )ij tt  is the pheromone concentration between 

two nodes, kallowed  is the set of next mobile nodes to be selected by the ants, and α  and β  are 

the pheromone importance factor and heuristic function importance factor, respectively. 

3.1.2. Pheromone update strategy 

The pheromone update strategy is a process in which the ant colony algorithm continuously 
realizes positive feedback. Through this method, the ant colony guides the descendants of the ants to 
continuously converge to obtain an optimal path. After all contemporary ants have reached the target, 
each ant will update the pheromone concentration according to Eqs (2)–(4). 
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where (0,1)ρ   is the pheromone volatilization coefficient, Δ ( )ijτ t   is the sum of pheromone 

increments for all ants, Δ ( )k
ijτ t  is the pheromone increment of the thk  ant on path ( , )i j , Q  is the 

pheromone intensity, and kL  is the total path length of the thk  ant after one iteration. 

3.2. Improvement ant colony algorithm 

3.2.1. Improvement heuristic function 

The traditional ACO uses the reciprocal of the current node to the candidate nodes as the only 
heuristic factor, the difference between adjacent nodes is very small, and the guiding effect of the target 
point is very weak. Especially in large-scale environmental maps with many grids, the guiding effect 
of traditional heuristic functions is very poor, which is one of the main reasons for the poor quality of 
paths searched by ants. 

The role of the heuristic function is to guide the ants to move toward high-quality nodes. An 
overly complex heuristic function increases the computational complexity of the algorithm, which 
affects the efficiency of the algorithm. Presently, most researchers use the inverse of the distance from 
the current node to the target point as the heuristic function. Therefore, this paper designs a new 
distance heuristic factor on this basis. Reducing the number of sharp corners and turns is 
simultaneously considered. In this paper, the angle ψ  formed by the line between previous node f  

of the current node of the AGV and current node i  and the line between current node i  and next 
nodes j  is selected as the direction heuristic factor to increase the heuristic information between its 

adjacent nodes. The improved heuristic function of the added direction factor is presented as follows: 

 
1

ij
je ij

η
ad bC


  (5) 

where 2 23 ( ) ( )je e j e jd x x y y     , which is the distance factor function, represents the distance 

from the candidate node to the target node. When jed  is smaller, the heuristic function value is larger 

to increase the heuristic information between its adjacent nodes. ijC  is the direction factor function; 

a   and b   are the weight coefficients to adjust the degree of influence of distance and direction, 
respectively; 1a b  . 

A schematic of the direction heuristic factor is shown in Figure 1. 
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Figure 1. Schematic of the directional factor. 

The direction factor function is presented as follows: 
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When ψ  is larger, the corner is smaller, i.e., the direction factor is smaller, so the probability of 
the node being selected is higher. When ψ  is 180 , the three nodes are straight lines, i.e., there is no 

corner between the next node and the current node. At this time, the direction factor is extremely small, 
and the ants tend to choose this node. 

3.2.2. Improvement state transition probabilities 

The traditional ant colony algorithm uses the roulette method to select the next moving nodes of 
the ants. In this paper, an improved pseudorandom state transition probability strategy is applied to 
select the next node toward which the ants move. Under this strategy, the ants will preferentially choose 
the better path points to move in the early stage. During the continuous convergence process, the ants 
will tend to a reasonable path and avoid the probability of falling into the optimal solution. The 
improved state probability transition strategy is expressed as follows: 
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where the function argmax is the maximum value of the product of [ ( )]ij t    and [ ( )]ij t   . When 

0q q  , the state transition probability J   is the maximum value of the product of the heuristic 

function and pheromone concentration; otherwise, it is the traditional roulette random selection mode. 
In addition, this paper adopts the adaptive state transition parameters 0q  to adjust the probability 

of the next mobile node. The formula is presented as follows: 
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where 0q   represents the adaptive state transition parameters. When the algorithm starts running, 

0q q , the ants tend to the path node with the maximum product of the two as the next mobile node. 

This is a deterministic selection mode, which increases the convergence. In contrast, with an increase 
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in number of iterations, 0q   continues decreasing, and the path selection is more inclined to the 
traditional roulette random selection mode, which increases the possibility of ants choosing different 
paths and further improves the ability of the algorithm to explore new paths. 

Reference [28] obtains the optimal parameter configuration through the control variable method. 
The values of α   and β   influence the solution result. Under the constant action of the positive 
feedback of the algorithm, the ants can easily converge to the local optimal solution. This paper adopts 
an improved adaptive greedy policy parameter adjustment method [29]. The ability of pheromone 
concentration and heuristic information to influence the path search is continuously adjusted when the 
number of iterations increases, and parameters α  and β  will be nonlinearly accelerated during each 
iteration by Eq (8). This approach ensures that the path is fully excavated during the process of ant 
colony search, increases the global exploration performance of the algorithm, and avoids the problem 
of local optimal solutions. 

 
max max min

min max min
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N

NC
N
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where the maximum value and minimum value of the heuristic information impact factor are maxβ  

and minβ  , respectively; the maximum value and minimum value of the pheromone influence 

factors are maxα  and minα , respectively; NC  is the total number of iterations; N  is the current 

number of iterations. 

3.2.3. Improvement pheromone update strategy 

In the traditional ACO, after each iteration, each ant updates the pheromone according to its path 
length. When the path length difference is small, the pheromone difference becomes very small, and it 
is difficult for the descendant ants to search for a new better solution, which affects the performance 
of the algorithm optimization. Therefore, this paper proposes a dynamic, grading-differentiated, 
pheromone update strategy to increase the convergence speed. Among them, the dynamic grading 
strategy [30] and differentiated pheromone update strategy are two main parts of the method. 

1) Dynamic grading strategy 
In biological populations, there is a strict hierarchical system in which high-level individuals have 

higher priority and can guide low-level individuals. Inspired by the biopopulation system, this paper 
calculates the fitness of each ant according to Eqs (10) and (11) to dynamically classify ants. Three 
different levels of ants coordinate search for the optimal path. 
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where bL  is the contemporary optical path length, kL  is the path length of the current thk ant, fit  
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is the fitness of each ant, and (0,1)R  is the threshold of the first-level ants and second-level ants. 

2) Differentiated pheromone update strategy 
During each iteration, the quality of the paths found by each ant is different and has certain 

differences. If each ant updates the pheromone of the paths found by itself, then some poorer paths 
may cause interference to the search of the descendant ants. Meanwhile, if only the pheromone on the 
optimal path is updated, the exploration of some optimal paths may be lost. According to the difference 
in path lengths searched by different ants in each iteration process, the pheromone increments on 
different paths are adjusted. The update rules are shown in Eqs (12)–(14): 

 ( 1) (1 ) ( ) Δ ( )ij ij ijτ t ρ τ t τ t     (12) 
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where bL  is the optimal path length for one iteration, wL  is the worst path length, and aL  is the 

mean of the path lengths of each ant. 
In addition, to further increase the convergence speed and make the selection of pheromones for 

offspring ants more directional, the idea of “the law of the jungle” in the wolf pack algorithm is applied 
to encourage the optimal path in each iteration process, and the amount of pheromones on its path is 
increased. In contrast, the worst path is penalized, and the amount of pheromones on its path is reduced. 
Next, the final global pheromone update rule is expressed as follows: 
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The pheromone on the paths of ants of different levels is dynamically updated by Eq (15), and 
the differentiated path information of the ant colony in the iterative process is fully utilized to increase 
the guiding effect of the better ants in the ant colony on the offspring ants and to reduce the poor 
interference of ants on the path search. 

3.2.4. Key node path optimization strategy 

Restricted by the grid map, the AGV can only move in eight different directions. In Figure 2, the 
path planned by the ACO is only the optimal path based on the grid map movement rules, not the actual 
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shortest path, and the planned path does not conform to the actual movement rules of the AGV. 

 

Figure 2. Schematic of the AGV moving direction. 

As mentioned above, this paper proposes a key node path optimization strategy. The detailed 
process is as follows: 

Step 1: Enter the path points obtained by the ant colony algorithm   1,iP i n  U ; 

Step 2: Add the path starting point 1P  as the first starting node sP  to the key node set k_path ; 

Step 3: Sequentially connect the path points 3P i n i ( )   from the starting node and 

determine whether the straight line s iP P   has passed through the obstacle. If it passes through the 

obstacle, add 1iP    as the key node set k_path  . Then, iP   is used as the new starting node to 

continue connecting the waypoints after iP . If the line connected by s iP P  does not pass through the 

obstacle, continue to connect the path points in the path set U  backward until the end point eP  is 

obtained and add it to k_path  as the last key node, where  3, 1 ,  ,...., , s i m k nP P P P P k_path ; 

Step 4: The key nodes in the set k_path  are connected in turn, and the algorithm ends. 

4. Dynamic window approach optimization 

4.1. Traditional dynamic window approach 

The DWA algorithm converts the position control of the AGV into speed control, samples multiple 
sets of speeds in the speed space at time t , simulates and predicts the trajectory of the AGV at time 
Δt  at these speeds, selects the optimal trajectory at time Δt t  according to the evaluation function, 
and controls the robot motion with the corresponding speed command [31]. 

4.1.1. AGV motion model 

First, the kinematic model of the AGV must be analyzed. Assuming that the AGV moves along a 
straight line at timeΔt , the trajectory of the AGV at time Δt  can be presented as: 
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where tx , ty  and tθ  are the coordinates of the AGV in the global coordinate system at time t . 

start

goal
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4.1.2. Speed sampling 

AGV has multiple sets of speeds ( , )v ω  in the speed space, but the final speed will be constrained 

to a certain speed window. 
1) Maximum and minimum speed limits 
According to the moving speed of the robot, let mV  be denoted as the maximum and minimum 

speed space; its form is presented as follows: 

  min max min max( , )  , |v ω v v v ω ω ω    mV  (19) 

where v  is the linear velocity, ω  is the angular velocity, minv  and minω  are the minimum linear 

velocity and minimum angular velocity, respectively, and maxv  and maxω  are the maximum linear 

velocity and maximum angular velocity, respectively. 
2) Acceleration constraints 

Limited by the torque of the motor, the AGV is constrained by the minimum acceleration. Let dV  

be denoted as the speed space that can be achieved at the next moment; its form is expressed as follows: 

  ( , ) Δ Δ  , Δ Δc b c a c b c av ω v v t v v v t ω ω t ω ω ω t        dV      (20) 

where cv  and cω  are the current speed, av  and aω  are the maximum acceleration, and bv  and 

bω  are the maximum deceleration. 

3) Safety constraint 

AGVs should brake when approaching an obstacle to avoid the risk of a collision. Let aV  be 

denoted as the safe speed space of the AGV; its form is expressed as follows: 

  ( , ) (2 ( , ) )  , (2 ( , ) )b bv ω v dist v ω v ω dist v ω ω  aV    (21) 

where ( , )dist v ω  is the closest distance between the simulated trajectory and the obstacle. 

The final speed is constrained in three sets; i.e., the dynamic window zV  can be expressed 

as follows: 

 =z m d aV V V V   (22) 

4.1.3. Evaluation function 

The dynamic window approach evaluates the predicted trajectory through the evaluation function 
and outputs the optimal speed that satisfies the constraints. The traditional evaluation function is 
expressed as follows: 

 ( , ) [ ( , ) ( , ) ( , )]G v w δ σ heading v ω τ vel v ω γ odist v ω       (23) 

where ( , )= 180heading v ω θ    is the direction evaluation function; θ   is the direction angle 

between the AGV movement direction and the target point; ( , )vel v ω  is the speed evaluation function, 
which generally refers to the linear speed of the AGV; ( , )odist v ω  is the obstacle distance evaluation 

function, which represents the shortest distance from the end of the predicted trajectory to the obstacle; 
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σ , τ , and γ  are the weight coefficients of each evaluation function; δ  is the evaluation function 

that indicates that the evaluation function is normalized. 
In summary, the evaluation function is an important factor that affects the quality of the 

trajectory, which aims to make the AGV avoid obstacles as much as possible and reach the target 
at the fastest speed. 

4.2. Improvement dynamic window approach 

The dynamic window approach fully considers the AGV motion characteristics, and the planned 
path is smoother and safer. However, in large-scale complex environments, due to the unreasonable 
mechanism of the traditional DWA evaluation function, there are often problems of falling into local 
optima and unreachable goals. In this paper, the local optimization ability of the DWA algorithm is 
improved by improving and extending the evaluation function of the traditional DWA. The specific 
design is presented as follows: 

1) Improvement obstacle evaluation function 
In the traditional DWA algorithm, to ensure the safety of the path, the weight of the obstacle 

distance evaluation function generally accounts for a large proportion, i.e., the algorithm always 
preferentially selects the path point far from the obstacle, as shown in Figure 3. 

 

Figure 3. Path planned by the traditional DWA algorithm. 

When the AGV is in a wide environment or there are no obstacles between it and the target point, 
the trajectory far from the obstacle will receive a higher score, which is one of the main reasons for 
the inaccessibility of traditional DWA detours and target points. Considering this situation, this paper 
improves the traditional obstacle distance evaluation function. In addition, to ensure the safety of the 
planned path, a safety distance R   is introduced. Only the obstacles within a certain distance are 
considered, and the obstacle distance evaluation is limited to a maximum value to prevent a predicted 
trajectory from obtaining a higher score due to being far away from the obstacle. The improved 
obstacle distance evaluation function is as follows: 
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where  1 2, ,... mo ob ob ob   is the position of the obstacle, p   is the position of the end of the 

predicted trajectory, ( , ) dist i o   is the predicted distance between the end of the trajectory and the 

nearest obstacle, 
2

4
R L  is a safe distance, and 1L m  is the side length of the map grid. From 

Eq (24), the predicted trajectory will be constrained within a certain safety distance from the obstacle. 
2) Adding the key node distance evaluation function 
In addition, if the target point in the environment is near the obstacle, the existing evaluation 

function will make the AGV wander near the target point and fall into a local optimum, as shown 
in Figure 4. 

 

Figure 4. Plan path when ( , )sgdist v ω  is not added. 

Considering this special situation, this paper introduces a target distance function [32], based on 
which the key node distance function is designed to increase the navigation ability of the target point. 
The formula is as follows: 

 
( , )- ( , ), if    3

( , )
( , ) otherwise

dist S E dist p kpi n
sgdist v ω

dist S E


 


 (25) 

where ( , )dist S E   is the distance from the starting point to the target point, ( , )dist p kpi   is the 

distance between the end of the predicted trajectory and the key node, and n  is the number of key 

nodes. As shown in Figure 5. When the target point or key node is too close to the obstacle, 1 2θ θ  

and 1 2o od d . The traditional evaluation function will cause the two paths to obtain similar scores. 

At this time, the AGV may choose path B, which makes the target unreachable. After adding the 
( , )sgdist v ω  function, 1 2de de , and Path A will obtain a higher score to guide the robot toward the 

target point. Equation (25) shows that on any scale map, the path closer to the key node will obtain a 
higher evaluation score, which increases the ability of the robot to navigate to the target point. 

The function ( , )sgdist v ω  focuses on the guidance of the AGV that approaches the subtarget point. 
When the AGV is far from the target point, ( , )heading v ω  plays a leading role in guiding, and the two 

functions will be in different movement stages to guide the AGV to reach the target. 
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Figure 5. Functional analysis for the function ( , )sgdist v ω . 

As mentioned above, the final evaluation function of the improved DWA algorithm in this paper 
is expressed as follows: 

 ( , ) [ ( , ) ( , ) ( , ) ( , )]IG v w δ σ Iheading v ω τ vel v ω γ Iodist v ω ε sgdist v ω         (26) 

where ( , )= 180Iheading v ω θ  ; θ  is the direction angle between the AGV and the next key node, 

not the direction angle with the final target point; the initial direction of the AGV is set as the direction 
angle between the AGV and the first key node. ( , )Iodist v ω   is an improved obstacle distance 
evaluation function, and ( , )sgdist v ω  is a key point distance evaluation function. 

5. Fusion algorithm 

Aiming at the existing problems in the traditional ACO and DWA in large-scale and complex 
environments and comprehensively considering the advantages and disadvantages of the two 
algorithms, a fusion algorithm is proposed to achieve AGV multiobjective path optimization. First, by 
improving the heuristic function of the ant colony algorithm, the number of turns of the path is reduced; 
an improved adaptive state transition strategy is adopted to prevent the algorithm from falling into the 
local optimal solution; a dynamic, grading-differentiated, pheromone update strategy is proposed to 
increase the convergence speed. Then, an improved key node path optimization strategy is adopted to 
simplify redundant nodes to obtain a global path that can better satisfy the actual motion rules of the 
AGV. Finally, to improve the problems of detours and unattainable goals in the planned path, by 
improving and extending the evaluation function of the traditional dynamic window method, the 
adjacent key nodes are locally optimized until the AGV reaches the destination. The safety and 
smoothness of the path are further improved. In summary, a high-quality path can be planned for the 
AGV that satisfies the short path, fewer turns, and high safety and smoothness. 

The specific steps of the IACO-DWA are described as follows: 
Step 1: Build a grid map, set the start and target points for the AGV, and initialize the 

algorithm parameters; 
Step 2: Use the IACO to plan a global optimal path including key nodes; 
Step 3: Select key nodes as local subgoals of the improved DWA algorithm; 
Step 4: Confirm the current starting point and subtarget position of the AGV and use the improved 

DWA for speed sampling and trajectory prediction; 
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Step 5: Evaluate the predicted trajectory based on Eq (26) and output the optimal trajectory that 
satisfies the constraints; 

Step 6: Determine whether the local subtarget point is reached; if it is, perform the following steps. 
Otherwise, return to Step 4; 

Step 7: Determine whether the target point is reached; if it is, output the path. Otherwise, return 
to Step 4. 

6. Simulation and experimental verification 

The experimental running environment is described as follows: Windows 10 (64-bit); Intel® 
CoreTM i7-7500U; memory: 8 GB; MatLab R2019a. 

This paper conducted experimental verification from the following aspects: 1) The gradient 
comparison experiment was performed on a 20   20 scale grid map (environment 1) to verify the 
effectiveness of each step of IACO. The specific process of the gradient comparison experiment is 
presented as follows. Experiment 1: The improved adaptive pseudorandom state transition probability 
was added based on the traditional ACO. Experiment 2: The improved heuristic function of this paper 
was added based on Experiment 1. Experiment 3: Based on Experiment 2, the dynamic grading-
differentiated pheromone update strategy proposed in this paper was added. Based on Experiment 3, the 
key node optimization strategy was adopted to obtain the IACO of this paper. Then, the IACO in this 
paper was compared with the traditional ant colony algorithm, the ant colony algorithm in 
reference [33] and other swarm intelligence algorithms [34]. 2) In a 20    20 scale raster map 
(environment 2), the IDAW was used for path planning to verify its effectiveness. 3) In two grid maps 
of different scales, the advantages of IACO-DWA were verified by comparing the traditional algorithm 
and the algorithms in references [33] and [35]. 4) The QBot2e mobile robot was utilized as the test 
object to verify the practicability of the IACO-DWA in an actual environment. These experiments fully 
verify the performance of the single algorithm and the overall ablation results of the fusion algorithm 
in the experiment. 

6.1. Gradient comparison experiment simulation analysis 

The parameters of the traditional ACO are as follows: m  is 50, NC  is 100, α  is 1, β  is 7, 
ρ  is 0.3, and Q  is 1. In the following experiments, the algorithms in reference [33] and reference [34] 

have consistent parameters with the original reference. The parameters of the IACO are as follows: 
m  is 50, and NC  is 100. According to reference [28], the optimal parameter range is obtained by 

the control variable method; maxβ  and minβ  are 8.5 and 2.5, respectively; maxα  and minα  are 1.5 

and 0.5, respectively; ρ  is 0.3; Q  is 1; 0 (0,1)q  ; 0q  is 0.9; a  and b  are the distance weight 

and direction factor weight, respectively. Since the shortest distance is given priority in ant pathfinding, 
a   and b   are 0.7 and 0.3, respectively. Considering that the map environment in this paper is 
relatively complex, to more rapidly obtain a better solution of the path, R  is set to 0.95. To reduce the 
accidental nature of the experiment, each experiment is performed 20 times to draw a comparison table of 
algorithm performance for a comprehensive evaluation. 
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(a) (b) 

 

   (c)    (d) 

Figure 6. Comparison of the optimal paths for gradient experiments: (a) Experiment 1; 
(b) Experiment 2;(c) Experiment 3; (d) optimal path of the IACO. 

 

(a) (b) 

Figure 7. Comparison of the path-planning results for environment 1: (a) comparison of 
the optimal paths of the algorithms; (b) convergence comparison of the algorithms. 
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Let us assume that the starting point of the AGV is (0.5,19.5)  and the target point is (19.5,0.5) . 

The optimal path of the gradient experiment is shown in Figure 6; the optimal path of the four 
algorithms is shown in Figure 7(a); the algorithm convergence comparison is shown in Figure 7(b); 
and the gradient experiment results are compared in Table 1. 

Table 1. Comparison of the gradient experiment results. 

algorithm 
Optimized path length/m Number of turns Number of iterations Computing time/s 

Best Worst Mean Best Worst Mean Best Worst Mean Best Worst Mean 

Experiment 1 30.6274 32.6274 31.4528 7 14 9 24 34 26 7.3519 8.1519 7.7435 

Experiment 2 30.3848 32.0416 30.7660 5 9 5 21 30 22 8.1400 8.5116 8.4083 

Experiment 3 29.7990 29.7990 29.7990 4 4 4 4 10 7 4.5592 5.4723 4.8123 

ACO 32.0416 36.4558 32.9850 8 16 11 27 40 32 10.0538 12.2822 10.7681

Reference 

[33] 
29.7990 31.2132 30.6542 6 12 9 24 41 34 8.5419 10.5290 9.2264 

ISSA[34] 29.4183 29.9098 29.6048 7 10 9 20 50 29 6.5032 8.6980 6.9628 

IACO 28.6595 28.6595 28.6595 3 3 3 4 9 6 8.2838 9.7868 8.8456 

As revealed by the simulation results, although the traditional algorithm can obtain a collision-
free path, the path quality and convergence speed need to be further improved, which is also a common 
problem of traditional ACO in complex maps. 

For these problems, this paper improves the ACO from different aspects. The data show that after 
the addition of the improvement of Experiment 1, the path quality is improved, whether it is the optimal 
value or the worst value, which indicates that the adaptive pheromone strategy in this paper can prevent 
the ants from falling into the local optimal solution. Experiment 2 shows that after the addition of the 
improved heuristic function based on Experiment 1, the number of path turns is significantly reduced, 
which is the role of the improved heuristic function in this paper. Experiment 3 shows that after the 
addition of the pheromone improvement strategy in this paper based on Experiment 2, the convergence 
speed is significantly improved, and the overall path quality and overall algorithm search efficiency 
are higher. The pheromone update strategy proposed in this paper can help ants find better solutions 
and improve the convergence of the algorithm. 

Figure 6(d) shows that the IACO shortens the path length and reduces the number of turns after 
using the key node optimization strategy to simplify the redundant inflection points, and the constructed 
path conforms to the movement rules of AGVs in the real environment. According to Table 1, compared 
with that of the traditional ACO and the algorithm in reference [33], the path length is reduced by 10.6 
and 3.8%, the number of corners is reduced by 62.5 and 50.0%, and the number of iterations is reduced 
by 85.2 and 83.3%, respectively. In the simulation experiment, the optimal solution can still be 
obtained every time, which reflects the good stability of IACO in this paper. In addition, compared 
with the recently developed swarm intelligence algorithm [34], the path length is reduced by 2.6%, the 
number of corners is reduced by 57.1%, and the number of iterations is reduced by 80.0%. Compared 
with the other ant colony algorithms in Table 1, the computing time of the IACO is reduced, and the 
computing time increase is not obvious compared with ISSA. 
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6.2. Improved DWA algorithm experiment simulation analysis 

In this section, environment 2 is selected for simulation experiments. Each experiment was run 20 
times to verify the effectiveness of the improved DWA algorithm evaluation function and compared 
with the traditional DWA algorithm. Considering the radius of the real AGV, when the distance 
between AGV and target was less than 0.05 m, the AGV reached the target point. The experimental 
parameters of the IDWA in this paper were set as shown in Table 2. 

Table 2. Parameter values of the IDWA. 

parameter Value 
maxv  1 m/s 
maxω  20°/s 
av  0.2 m/s2 
aω  50°/s2 

R  0.35 m 
σ  0.2 
τ 0.3 
γ 0.2 
ε 0.2 
Linear Velocity Resolution 0.01 m/s 
Angular velocity resolution 1°/s 
Time resolution 0.1 s 
Forecast period 3 s 

6.2.1. Simulation experiment analysis of ( , )Iodist v ω  

 

Figure 8. Path planned by the DWA after adding ( , )Iodist v ω . 

Considering the unreasonable obstacle evaluation function mechanism of the DWA, it is easy for the 
AGV to detour and for the target to become unreachable. The experiment in this section selects the 
environment map in Figure 3 to verify the effectiveness of the improved obstacle distance function in this 
paper. Let us assume that the starting point of the AGV is (2.5,0.5)  and the target point is (17.5,11.5) . 

The planned path of the traditional DWA algorithm is shown in Figure 3, and the planned path of the DWA 
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algorithm after improving the obstacle evaluation function is shown in Figure 8. 
In Figure 3, the path of the traditional DWA algorithm has a detour, which makes the target 

unreachable. In this paper, the obstacle distance evaluation function is improved. While ensuring 
safety, only obstacles within a certain range are considered. Figure 8 shows that the AGV can directly 
reach the target point through the free space among obstacles. The phenomenon of traditional DWA 
detours has been improved. 

6.2.2. Simulation experiment analysis of ( , )sgdist v ω  

Based on ( , )Iodist v ω  , if the target point is near the obstacle, the phenomenon of the local 
optimal solution in Figure 4 will appear. The starting point of the AGV is (2.5,0.5) , and the target 
point is (9.5,12.5) . The traditional DWA algorithm planning path is shown in Figure 4, and the DWA 

algorithm planning path after adding the key node evaluation function is shown in Figure 9. 

 

Figure 9. Path planned by the DWA after adding ( , )sgdist v ω . 

Figures 4 and 9 show that after the key node evaluation function has been added, the AGV can 
more smoothly reach the destination. The results show that ( , )sgdist v ω  can enhance the ability of the 

AGV to move to the target point. Notably, most of the key nodes in this paper are inflection points 
near obstacles, which positively affect the navigation of the fusion algorithm to multiple local 
subtarget points. 

6.3. Fusion algorithm simulation experiment analysis 

6.3.1. 20   20 simulation environment 

In a 20   20 small-scale complex environment, the starting point of the AGV is (1.5,0.5) , and 
the target point is (18.5,18.5) . The parameters of the IACO-DWA in this section are as follows: m  

is 50; NC   is 100; maxβ   and minβ   are 8.5 and 2.5, respectively; maxα   and minα   are 1.5 and 0.5, 

respectively; ρ  is 0.3; Q  is 1; 0 (0,1)q  ; 0q  is 0.9; a  and b  are 0.7 and 0.3; R  is 0.5; maxv  

is 1 m/s; maxω  is 20°/s; av  is 0.2 m/s; aω  is 50°/s; R is 0.35 m; σ  is 0.2; τ  is 0.3; γ  is 0.2; 

ε  is 0.2; the linear velocity resolution is 0.01 m/s; the angular velocity resolution is 1°/s; the time 
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resolution is 0.01 s; the forecast period is 3 s. The parameter settings in reference [35] are as follows: 

maxv  is 1 m/s; maxω  is 20°/s; av  is 0.2 m/s; aω  is 50°/s; R is 0.35 m; σ  is 0.3; τ  is 0.05; γ  

is 0.2; the linear velocity resolution is 0.01 m/s; and the angular velocity resolution is 1°/s. To reduce 
the accidental nature of the experiment, each algorithm was performed 20 times, and the algorithm 
performance comparison table was drawn for comprehensive evaluation. All values in Table 3 
represent the optimal value of the 20 times. The experimental results are shown in Figure 10. The 
dashed line in Figure 10(b) indicates the global path planned by the IACO, and the asterisks on the 
dashed line indicate the key nodes. The performance table of the path evaluation index is shown 
in Table 3. 

  

(a) (b) 

  

(c) (d) 

Figure 10. Comparison of the optimal path in a 20 × 20 environment: (a) path planned 
by DWA; (b) path planned by the IACO-DWA; (c)  optimal path of IACO-DWA 
compared to reference [33] and ACO; (d) optimal path of IACO-DWA compared to 
reference [35]. 

The experimental results show that the IACO-DWA solves the following problem: the traditional 
DWA algorithm lacks global guidance, the path is long, and the planned path cannot reach the target 
point. In addition, the IACO-DWA can better track the global path and basically guarantees the global 
optimality of the path. As shown in Figure 10(b), the IACO-DWA satisfies the AGV motion 
characteristics, which improves the smoothness of the path and ensures the safety of the AGV during 
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movement. In Table 3, compared with the traditional ACO and the algorithm in [33], IACO-DWA 
reduces the path length by 9.9 and 3.5% and the number of turns by 60 and 56.6%, respectively, while 
ensuring safety and smoothness. As shown in Figure 10(d), the fusion algorithm in [33] gradually 
deviates from the global path planned by IACO in the process of tracking subtarget points because it 
cannot track local subtargets. Because the fusion algorithm in this paper enhances the ability of the 
DWA algorithm to track the target point, it can better track the global path. Compared with the existing 
fusion algorithm, the path length is reduced by 3.1%, and the overall path quality is better than that 
of the algorithm proposed in [35]. In summary, the IACO-DWA fully utilizes the advantages of the 
two path planning algorithms, avoids their shortcomings in path planning, achieves simultaneous 
path optimization with multiple objectives (path length, number of turns, safety and smoothness) 
and improves the planning efficiency. 

Table 3. Comparison of 20   20 experimental results. 

Algorithm 
Whether to reach the target 

point/Optimal path length (m) 
Number of turns Smoothness Safety 

DWA No 

30.5563 

28.5563 

28.4260 

27.5460 

- 

10 

9 

4 

4 

Yes Yes 

ACO No Worst 

Reference [33] No Worst 

Reference [35] Yes Yes 

IACO-DWA Yes Yes 

6.3.2. 50   50 simulation environment 

In the actual environment, the working space of the AGV is often a large-scale environment. 
Therefore, this paper uses a 50   50 scale grid map and randomly places complex obstacles for the 
simulation experiments. The experimental parameters in this section are identical to the 
experimental parameter settings in Section 6.3.1 and will not be repeated here. The starting point 
of the AGV is (3.5,0.5) , and the target point is (47.5,45.5) . The path comparison results between 

the IACO-DWA and other algorithms are shown in Figure 11, and the path evaluation index 
performance table is shown in Table 4. 

As shown by point “A” in Figure 10(a), in a large-scale complex environment, the traditional 
DWA algorithm is prone to the phenomenon that the target is unreachable. Since the fusion algorithm 
in this paper makes full use of the global information of the path planned by the IACO and improves 
the obstacle evaluation function of the DWA algorithm, it increases the local optimization ability of 
DWA. The experimental results fully prove that the fusion algorithm in this paper solves the problem 
of falling into local optimal solutions. Compared with the traditional ACO and the algorithm in [33], 
the path length of IACO-DWA planning is reduced by 14.1 and 3.8%, respectively, the number of turns 
is reduced by 54.8 and 30.0%, respectively, and the path is safer and smoother. As shown in Figure 11(d), 
compared with the algorithm in reference [35], the path planned by IACO-DWA is shorter, smoother, 
and higher in path quality. The experimental results fully show that in a large-scale and complex 
environment, the IACO-DWA retains its advantages. Compared with the 20 × 20 scale map experiment, 
when the map size increases, the fusion algorithm in this paper also plans a high-quality path that 
simultaneously satisfies multiple path optimization objectives. 
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(a) (b) 

 

(c) (d) 

Figure 11. Comparison of the optimal path in the 50    50 environment: (a) path 
planned by the traditional DWA algorithm; (b) path planned by IACO-DWA; (c) optimal 
path of IACO-DWA compared to reference [33] and ACO; (d) optimal path of IACO-
DWA compared to reference [35]. 

Table 4. Comparison of 50   50 experimental results. 

Algorithm 
Whether to reach the target 

point/Optimal path length (m) 
Number of turns Smoothness Safety 

DWA No 

74.1543 

66.1573 

64.7160 

63.6731 

- 

31 

20 

14 

14 

Yes Yes 

ACO No Worst 

Reference [33] No Worst 

Reference [35] Yes Yes 

IACO-DWA Yes Yes 

6.4. Experimental verification 

The algorithm in this paper is applied to the second-generation nonholonomic wheeled mobile 
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robot QBot2e produced by Quanser company in Canada to verify its effectiveness and feasibility in 
the actual indoor environment. 

In this paper, an indoor laboratory was selected as the experimental environment, and multiple 
obstacles were placed indoors to conduct path planning experiments. The movement of the AGV was 
controlled, and the QBot2e vehicle-mounted Kinect camera was used to obtain the external 
environment information, which can generate the depth information of the environment. This 
information combined with the position and orientation of the AGV chassis can be employed for 
autonomous map construction, as shown in Figure 12. Using image processing technology, the depth 
information containing the environment was processed into a two-dimensional grid map required for 
AGV path planning. The four algorithms were applied to the indoor environment, and the indoor real 
experimental algorithm parameters were consistent with the computer algorithm simulation 
parameters. The optimal path is shown in Figure 13. 

 

Figure 12. Indoor actual environment. 

 

Figure 13. Comparison of optimal paths in an actual environment. 

Figure 13 shows that the IACO-DWA planned an obviously better path than the traditional 
algorithm and other existing methods [35], which fully demonstrates the superiority of the proposed 
algorithm in this paper. The target path points generated by the path planning algorithm were used as 
vectors and separately sent to the AGV. Then, the path point was compared with the current position 
of the AGV; the PID controller was utilized in the feedback loop to control the movement of the AGV 
until the AGV reached the target point, and the algorithm parameters were consistent with the computer 
simulation parameters. The indoor test results are shown in Figure 14. 
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Figure 14. Indoor experimental results. 

Considering the small friction on the ground in the laboratory, the AGV will cause positional 
deviation due to wheel slippage during the movement process. Therefore, a certain limit is set for the 
speed of the AGV, which does not affect the overall path-planning and path-tracking process. The 
indoor experimental results show that the AGV moves according to the path planned by the IACO-
DWA, successfully avoids the obstacle, and maintains a certain safe distance from the obstacle. When 
the algorithm in this paper was run 10 times on the map, the trajectory remained almost constant, and 
the path at the corner was very smooth, which satisfied the motion constraints of the actual AGV and 
reduced the wear on the body hardware caused by the discontinuity of turning. These indoor 
experiment results verify the practicability of the proposed algorithm in indoor AGV path planning. 

7. Conclusions 

In this paper, in large-scale or complex environments, the traditional ACO plans a large number 
of path turns, the convergence speed is slow, and the traditional DWA has problems such as detours 
and unreachable target points. An efficient path-planning algorithm that combines ACO and DWA is 
proposed. To address the shortcomings of the two algorithms in path planning, a corresponding 
optimization scheme is proposed, which avoids their own limitations and simultaneously optimizes 
multiple path indicators: the path length, number of turns, smoothness, and safety. By comparing two 
maps of different scales for simulation experiments and from a multi-angle analysis of the algorithm’s 
path-planning evaluation performance indicators, the effectiveness and superiority of the fusion 
algorithm in this paper are verified. The algorithm of this paper is transplanted to the QBot2e mobile 
robot produced by the Quanser company, and the experimental results are consistent with the 
simulation experiments, which verifies the practicability and superiority of the fusion algorithm in this 
paper. In summary, the algorithm in this paper can be applied to indoor AGV path planning in large-scale 
and complex environments and has a certain practical value. This paper is mainly for indoor AGV global 
path planning. In the next step, we will consider combining sensors and local obstacle avoidance algorithms 
to conduct research on dynamic obstacle avoidance and multi-AGV coordinated path planning. 
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