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Abstract: In this paper, we consider the following predator-prey system with defense switching
mechanism and density-suppressed dispersal strategy

u = ANdy(wWu) + 222 _ qiu,  xeQ, t>0,

u+v

v, = Mdas(w) + 22 —ayy,  x€Q, t>0,
w,:Aw—%+aw(l—%), xXeEQ, t>0,
o v ow () x€0Q, t>0,

v v v

(u, v, w)(x,0) = (up, vo, wo)(x), x€Q,

where Q C R? is a bounded domain with smooth boundary. Based on the method of energy
estimates and Moser iteration, we establish the existence of global classical solutions with uniform-
in-time boundedness. We further prove the global stability of co-existence equilibrium by using the
Lyapunov functionals and LaSalle’s invariant principle. Finally we conduct linear stability analysis
and perform numerical simulations to illustrate that the density-suppressed dispersal may trigger the
pattern formation.

Keywords: prey-predator system; defense switching; density-suppressed diffusion; global stability;
pattern formation

1. Introduction

Defense switching means that prey species pay more attention on guarding against the relatively
more abundant population predator [1], certain fish species in Lake Tanganyika against two
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phenotypes (dextral and sinistral) of cichlid Perissodus microlepis [2] is a typical example. The
dextral and sinistral phenotypes attack the prey fishes from the left-side and right-side, respectively.
Pretend that the population of dextral individuals is more abundant, then prey fishes tend to be more
defensive against the attacks from left-side, which leads to greater hunting success for sinistral
individuals (relatively rare population). Based on a simple Lotka-Volterra equations of a two-predator
one-prey system, Saleem et al. proposed a defensive switching model [1]

u, = u(—a; + fiw),
v = v(—ay + fow), (L.1)

wy =w(o = fiu = fov),

with the predatory rates functions

—_ B
{fl(u,v) =, (1.2)

folu,v) = Bo(1 = 1),

where u := u(x,t) and v := v(x, t) denote the density of two predators while w := w(x, t) is the prey
density. The parameters a; (j = 1,2) account the death rate, §; > 0 (j = 1,2) are the predation
coeflicients and o~ > 0 accounts for the growth rate of the prey species. Moreover, the predatory rates
f1 and f,, also called “defensive switching functions”, possess a characteristic property that the rate of
the prey attacked by a predator will decrease if this predator population becomes much more abundant
than the population of another predator. Specifically, when a predator population becomes large, the
prey species guards against it more vigilantly and switches to another predator, which is in relatively
small population, to keep its individual from being hunted too much. Such prey behaviors result in less
successful hunting for abundant population predator species and more successful hunting for relatively
rare one [1].

In light of the defensive switching model Eqs (1.1) and (1.2) in [1], Pang and Wang [3] considered
the following reaction-diffusion system by introducing the random movements of species and the intra-
specific interaction between the prey in Eq (1.1)

u, = diAu + % —au,
v, = doAv + B2 — (1.3)

wy = dsAw — CEEI 4 oy (1 - %)),

where constants d; > 0 (j = 1,2,3) account for diffusion coefficients and the positive parameter K
represents the environmental carrying capacity to the prey species. We note that the interaction
mechanism between the predators and prey in the defensive switching model is substantially different
from that in the ratio-dependent predator-prey system [4] though they seem to have some similar
structures.

In [1], Saleem et al. proved that the co-existence steady state is globally asymptotically stable
except the case where the two predators have the same mortality rates; Otherwise, the system has a
periodic solution. Pang and Wang [3] proved the co-existence steady states is globally asymptotically
stable no matter @; and a, are equal or not and hence no pattern formation will arise from the

ku

system (1.3). If the term d;Au is replaced by a cross diffusion term A(du + —*5) (k, € > 0), however,

they showed that the cross diffusion between predators can drive stationary patterns by using
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Leray-Schauder degree theory. Recently, the system (1.3) with prey-taxis (the cross diffusion between
the predators and prey) was considered by Wang and Guo [5]. They established the existence of
globally bounded solutions and global stability of constant steady states for small prey-tactic
coeflicient and numerically demonstrated that strong prey-taxis can induce the pattern formation if the
two predators have different mortality rates. Subsequently, the existence of nonconstant steady states
was obtained for some range of repulsive prey-taxis coeflicient with more general functional response
functions in [6]. From the above results, we find that the dispersal strategies (like cross-diffusion or
prey-taxis) play important roles in determining the population distribution profiles.

In this paper, we shall consider a different dispersal strategy - density-suppressed diffusion, which
was first used in [7] to describe the directed movement of predators in the predator-prey systems to fit
the experimental observations. This type of diffusion assumes that the predator’s diffusion decreasingly
depends on the density distribution of the prey. As shown in [8], the density-suppressed diffusion can
explain the heterogenous population distribution observed in the field experiment of [7] while random
diffusion can not. Hence density-suppressed diffusion is a dispersal strategy employed in the predator-
prey system. By taking into account the density-suppressed diffusion, the defensive switching model
reads

u, = Ady(Wu) + B2 — o u,

u+v

v = Mdr(w)y) + Z22 — v, (1.4)

w; =d3AW—W+O’W(1 —%),
where d;j(w) > 0 and d;.(w) < 0 (j=1,2). Note that the property a’;(w) < 0 means that predators will
decrease their random diffusion rates at higher density of the prey species in order for predation. If we
expand the density-suppressed diffusion

Adj(w)g) = V - (d;(w)V + ¢d(W)VW), ¢ = u,v,

we find that the density-suppressed diffusion indeed intrinsically includes both random diffusion and
advection (prey-taxis) components. The differences from the spatial models considered in [3,5,6] is that
here both diffusion and advection coeflicient are not constant but functions of the prey density. It was
shown that the density-suppressed diffusion in the predator-prey systems may generate spatially non-
homogeneous patterns that the random diffusion can not do [8] and may bring substantially different
dynamics [9].

Beyond the predator-prey systems, the density-suppressed diffusion has already been commonly
used in the modeling of other biological processes such as the chemotaxis [10, 11], bacterial
movement [12, 13] and so on. Since the possible degeneracy caused by the density-suppressed
diffusion brings considerable challenges for analysis, the studies of these biological models with
density-suppressed diffusion have been increasingly attracting attentions and produced many
interesting analytical results [14-28] alongside rich numerical simulations demonstrating complex
dynamics and patterns [29-31].

The purpose of this paper is to study the global dynamics of the defensive switching model with
density-suppressed diffusion including global existence and asymptotic behavior of solutions as well
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as pattern formations. Specifically we consider the following problem

u, = ANdy(Wu) + 222 _ qiu,  xeQ, t>0,

u+v

v = Ado(wy) + 2222 _ y,  x€Q, >0,

u+v

we=Aw-E2 4 gp(1-2), xeQ, 1>0, (1.5)
ou _ ov _ ow _
Rl ey} x€o0Q, t>0,

(u,v,w)(x,0) = (ug, vo, wo)(x), x€Q,

where Q C R? is a bounded domain with smooth boundary. The parameters a; (j = 1,2), 8, (j =
1,2,3), o and K are all positive constants. Note that we have assumed d; = 1 without loss of generality
and consider more general constant 83 compared to Eq (1.4). We suppose the density-suppressed
diffusion coefficients d;(w) satisfy the following conditions:

(Ho) dj(w) € C*([0, )) with d;(w) > 0 and di(w) <Oforallw >0, j=1,2.

We further suppose the initial data satisfy
(o, Vo, Wo) € [WE(Q)T? with ug, vo > 0, wp> 0. (1.6)

Then our first result on the global existence of solutions is stated in the following theorem.

Theorem 1.1 (Global boundedness). Let Q C R? be a bounded domain with smooth boundary. Assume
the assumption (Hy) holds and the initial data (ug, vy, wo) satisfy Eq (1.6). Then there exists a uniquely
determined triple (u, v, w) of nonnegative functions which solves Eq (1.5) classically in ) x (0, c0) and
satisfies

e, Dl + IVC DIz + (W, Dllwres < Mo forall £> 0,

where My > 0 is a constant independent of t. Particularly, one has

0 <w(x, ) < K, := max{||wol|.~, K} forall (x,t) € Q X (0, ).

Remark 1.2. Note that in works [5, 6] considering the defensive switching model with prey-taxis, the
smallness of prey-taxis coefficient was required to ensure the global boundedness of solutions. Here
we obtain the existence of global classical solutions with uniform-in-time boundedness without any
smallness assumptions on the parameters.

Next, we shall show the global stability of constant steady states. In fact it is straightforward to find
that a positive constant steady state (u., v., w.) exists if and only if K > 73_11 + Z—; where u.,v.,w, > 0,
satisfying

o = B, o B o-(l - &) _ Bottve (1.7)
U, + V. U, + Vs K U, + V.
which can be solved to obtain
u*zz(l_&)(mz_ﬁl),v*:z(l_&)(lm_ﬁz),W*:&%. (18)
B3 K a3 B3 K @3 B B

Then we can show that (u.,v.,w,) is globally asymptotically stable under certain conditions, as
stated in the following theorem.
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Theorem 1.3 (Global stabilization). Suppose the conditions in Theorem 1.1 hold and let (u,v,w) be

the solution obtained in Theorem 1.1. If K > Z—]‘ + Z—; and
1 dw)Pw?  |dw)Pw?\ K — w,
— > max () +| 2| id , (1.9)
o o<wsk\ Bidi(w) Bodr(w) | 4Kw,

then the co-existence steady state (u.,v., w,) is globally asymptotically stable.

The rest of this paper is organized as follows. In Section 2, we present the local existence theorem
of solutions and establish some preliminary results. Then in Section 3, we prove Theorem 1.1. We
prove Theorem 1.3 in Section 4 and explore the pattern formation in Section 5.

2. Local existence and preliminaries

In the sequel, the integral fg f(x)dx and || f]|.r) Will be abbreviated as fQ f and || f]|.», respectively.
The generic constants ¢; or K; for j = 1,2,---, are independent of ¢ and will vary in the context.
Below we present the local existence result of Eq (1.5), which can be proved in a similar way as [8] by
applying Amann’s theorem [36,37], and we omit the details for brevity.

Lemma 2.1 (Local existence). Let Q C R? be a bounded domain with smooth boundary. Assume
that the initial data (uy, v, wo) satisfies (1.6) and suppose the hypothesis (Hy) holds. Then there exists
Timax € (0, 0] such that the system (1.5) admits a unique classical solution (u,v,w) € [C(QAX]O, Timax))N
C>M(Q % (0, Tmax)))® satisfying u,v,w > 0 for all t > 0. Moreover, if Tyax < 0, then

im ([fu(, Ol + [V, Dllzs + W, Dllwre) = .

max

Using the similar argument as in [38, Lemma 2.2], we obtain the global boundedness of w
immediately.

Lemma 2.2. Let (u,v,w) be the classical solution of Eq (1.5) obtained in Lemma 2.1. Then it holds

that
0 <w(x,t) < K, := max{||wollz~, K}, forall x € Q and ¢ € (0, Tpax). 2.1)
Furthermore, one has
limsupw(x,1) < K forall x € Q. (2.2)
—00

Lemma 2.3. Let (u,v,w) be the classical solution of (1.5) obtained in Lemma 2.1. Assume there is a

constant c¢; > 0 such that
-, Dlz < ¢y for all £ € (0, Thnay), (2.3)

then one has
[Iw(, Dllwia < o forall t € (0, Tnax), 2.4)

with
[1,2), if r<n,
g €qll,o0), if r=n, (2.5)

[1,00], if r>n.
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Proof. From the third equation of (1.5), we have

0
w,=Aw—w+ g(u,v,w) in Q, 0_:1/} =0,

Bauvw

with g(u,v,w) :=w - =72+ O'W(l - %) Since 0 < w < K, (see Eq (2.1)) and u, v > 0, we have

oK?

lg(u,v,w)| < K, + 3K, u + oK, +

K.
:K*(1+,83u+0'+0- )

K.
SK*(1+,83+0'+0-7)(L¢+1),

which, together with Eq (2.3), gives
lg(u, v, Wl < cs. (2.6)

With Eq (2.6), we use the results in [39, Lemma 1] to obtain Eq (2.4) with Eq (2.5) directly. |

Now we will show some basic boundedness properties of the solution (u,v,w) obtained in
Lemma 2.1.

Lemma 2.4. Let (u,v,w) be the classical solution of (1.5) obtained in Lemma 2.1. Then it holds that

fu + fv < K, forallt € (0, Thax), 2.7)
Q Q

1+7 1+7
f f W2+ f f v < K, forallt € (0, Tya — 1), (2.8)
t Q t Q

where the constants K;, K, > 0 are independent of t and T := min{1, T, /2}.

and

Proof. Multiplying the first and second equations of (1.5) by B3, and multiplying the third equation
of (1.5) by (81 + ), then adding the resulting equations, one obtains

[B3(u +v) + (B + Bo)wl; =AlB3(di(W)u + dr(w)v) + (B1 + B2)w]
w

(2.9)
— Bs(au + arv) + o (B +,82)w(1 - E)

Thus, integrating Eq (2.9) with respect to x over Q, we have

dif[ﬂ3(u+v)+(ﬁ1+ﬁz)W]+ﬁ3f(aflu+azv)+MfW2:0'(31+,32)fW- 2.10)
I Jo Q K Q Q

Using Young’s inequality, one has

0B+ B2) fwz N (o + D*(B1 + B2)KIQ
K

Q 4o ’

(U+1)(ﬂ1+ﬁ2)fWS
Q

which, substituted into Eq (2.10), gives

d
ELLBSM +ﬁ3v+(,81 +ﬁ2)W]+’)/0L[IB3M +183V+(ﬁ1 +ﬁ2)W] <cy, (211)
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where yy = min{a,a, 1} and ¢; := (D KRl Then, applying the Gronwall’s inequality to

40
Eq (2.11) gives

f(u+v)$f(uo+v0)+wfwo+i,
Q Q B3 Q YoB3
which yields Eq (2.7).

Next, we shall show Eq (2.8) holds based on some ideas in [8]. Under the homogeneous Neumann

boundary conditions, we define a shifted Laplacian operator 8 = —A+7y; withy; := min {%, %} >

0. Then B is a sectorial operator in L7(Q) for all p € (1, o) [32], and one can easily show that its inverse
B! satisfies

187! ¢l < callll,e for all ¢ € L(Q), (2.12)

and
|I8_%¢|Iiz < ollgll7, for all ¢ € L*(Q) (2.13)

for some constant ¢, > 0. Using the assumptions in (Hy) and Eq (2.1), we can derive that there exist
two positive constants d; and ¢, independent of 7 such for all j = 1,2 one has

0 <61 <|di(w)l < 6, (2.14)

and
0 <di(K,) <djw) <d0). (2.15)

Using the definition of B, we can rewrite Eq (2.9) as
[B3(u +v) + (B1 + B2)wl]; + BIB3(di(Wu + da(w)v) + (B1 + Bo)w]

= (y1di(w) — ay) Bau + (y1da(w) — @) B3v + (y1 + 0)(B1 + fo)w —
=: f(u,v,w).

oBi +B) o (2.16)
B .

Then applying the facts y; := min {2;10)’ 230)} > (0 and Eq (2.15) as well as 0 < w < K, (see Eq (2.1)),
we can derive that

S, v,w) < (y1di(0) — a1) Bzu + (y1d2(0) — a) B3v + (1 + 0)(B1 + B2)K, < cs,

where c3 := (y; + 0)(B1 + B2)K, > 0.
We multiply Eq (2.16) by B7!(B3(u + v) + (8; + B2)w] > 0 and integrate the result with respect to x
over € to obtain

1 d 1 2
2 fQ ‘B_Z[ﬂ.%(u +v) + (B1 + Bo)w]
+ L[ﬁ3(dl(w)u +do(w)v) + (B1 + Bo)w] - [B3(u +v) + (B1 + B2)w]

< fB_l[,B3(u +v) + (B1 + B)wl,
Q
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which combined with Eq (2.15) enables us to find a positive constant y, := min{d,(K.), d»(K.), 1} such

that
dit L 'B_%[&(u +v) + (B +,32)W]|2 +2y, L[ﬂ3(u +v) + (B + Bl
<2c; fg B [Bs(u +v) + (Br + B)wl.
On one hand, using Eq (2.12), the Holder inequality and Young’s inequality, one has
2¢3 fg B B3 +v) + (B) +B)w] < 2631QU ||B7 [Bsw + v) + By + v .
< 20263| Q7 B3+ v) + By + B)wl2

2¢22|1Q)
s%f{&(mvw(ﬁwﬁz)wﬁ 2
Q

Y2

On the other hand, using Eq (2.13), we get

le 2[Bs(u+v) + By + LWl < _f[,B3(u+V)+(ﬁl + Bowl.

26’2

(2.17)

(2.18)

(2.19)

Defining z(t) := fQ |B‘% [B3(u+v) + (B +B>)w]|, and substituting Eqs (2.18) and (2.19) into Eq (2.17),

we obtain

2
7+ 2—Z(I) +72 f[ﬂ3(u + V) + (B + fw]* < ———
&) Q Y2

Then applying the Gronwall’s inequality to Eq (2.20) alongside Eq (2.13), one has

4c3c31Q n 2
z(1) < 2 + B 2[B5(uo + vo) + (B1 + Ba)wo]
2
2C3|Q|
< + |ﬁ3(uo +v0) + (B1 + B)wol” < ca.

Integrating Eq (2.20) over (¢, ¢ + 7) for T = min{1, Ty,.x/2} and applying Eq (2.21), we get

7’2,33f f(u +V)<?’2f f[,B3(M+V)+(Bl+,82)W]

2c23|QIr
< 25GRTT + z(1)
Y2
2¢2¢210
caak
Y2

which gives Eq (2.8). Then we complete the proof of Lemma 2.4.

(2.20)

(2.21)

O

Lemma 2.5. Let (u,v,w) be the classical solution of (1.5) and T = min{1, Ty,.x/2}. Then it holds that

+T
f f IVw|* < K5 forall ¢ € (0, Tyux — 7),
t Q

(2.22)
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and
[IVwl|;2 < K4 forall £ € (0, Tiax), (2.23)

as well as o
f f |Aw[* < K5 forall t € (0,, Trmax — T)s (2.24)
t Q
where the positive constants K3, K4 and Ks are independent of t.

Proof. Multiplying the third equation of (1.5) by w, integrating the resulting equation by parts and
using 0 < w < K, in Eq (2.1), we obtain

d 2 9
w +2 f VWl + 28; f w2 f Ww? =20 f w? < 20K2Q)). (2.25)
dr u+v K Jo Q

1 and Eq (2.1), one has Eq (2.22)

Integrating Eq (2.25) over (f,t + 7) and using the facts 0 < 7 <
directly.

Next, we multiply the third equation of (1.5) by —Aw, use the integration by parts to the resulting
equation, and apply Young’s inequality as well as Eq (2.1) to get

d 2
—fle|2+2f|Aw|2:2ﬁ3f i Aw+—0-fw2Aw—20'fwAw
dt o) o) Ql/l+V K O o)
2 2 uyw \*  30” 4 2 2
< | |Aw|” + 355 (—) + — w + 30 w
Q o\u+v K2 Q

302K4Q
< f AW + 382K> f 2 U—"+3 2 KAQ,
Q Q

K?

d
r f IVwl? + f |Aw]? < 382K> f u* + ¢y, (2.26)
t Q Q

302 K (9]

where ¢ = + 302K?|Q)|. Applying a Gagliardo-Nirenberg type inequality derived in [16,

which entails

Lemma 2.5] and noting the fact ||w]|;2 < K*|Q|%, we have

2 2
fIVWI < ca(|Awll2(wllzz + lIwll2)
Q

< K. IQI* (lIAwllz: + K.IQJ)

1 (2 + )2 K2 Q)
<= | 1AW + g
=2 fgl W 2

which substituted into Eq (2.26) gives

d
— f IVw|? + f IVw]? + f IAWP < ¢; ( f u2+1), (2.27)

i 2+¢2)ca K2 Q)
with ¢3 1= 385K2 + ¢; + %

((t = 7)4,1) such that , > 0 and

. For any t € (0, Tha), by Eq (2.22) there exists a ty, := #y(t) €
f IVw(x, to)Pdx < cq. (2.28)
Q
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Moreover, from Eq (2.8), we know that

fo+T
f f W (x, s)dxds < K, for all 1y € (0, Tiax — 7). (2.29)
Iy Q

Multiplying Eq (2.27) by ¢’ and integrating the results with respect to ¢ over (¢, ), and using the facts
Eqgs (2.28) and (2.29) and ) < t <ty + 7 < tp + 1, one has

t
quan@ZSewvachﬁg+eﬂq”fefmumsm;-+m

1o

!
<cy4+ C3f (llu(-, S)||i2 + 1)
to

f0+T
<cy4+ Csf (||M(', S)||iz + 1)

to
< cy4 + 3K + cs.

Hence Eq (2.23) holds. On the other hand, integrating Eq (2.27) along with Eqgs (2.8) and (2.23), it

holds that
[+T +T
f f AW < 2¢3 f f U + 2037 +2 f IVw(., )I?
t Q t Q Q
< 2c3(Ky + 1) + 2K5,
which gives Eq (2.24). Then we complete the proof of Lemma 2.5. O

3. Global existence: Proof of Theorem 1.1

In this section, we shall show the existence of global classical solution based on some ideas in [8].
To this end, we first establish the a priori L*-estimates of u and v.

Lemma 3.1 (L2-Boundedness). Suppose that the assumptions in Lemma 2.1 hold and let (u,v,w) be
the classical solution of (1.5) which is defined on its maximal existence time interval [0, Ty,.x). Then
the solution of (1.5) satisfies

e, Dllr2 + V(- Dllz2 < Ko for all 7 € (0, Tinax), (3.1)
where the constant K¢ > 0 is independent of t.

Proof. Multiplying the first equation of (1.5) by u, integrating the results with respect to x over Q by
parts and using the fact u,v > 0 for all ¢ € (0, T1,.x), We have

1d
——fu2+a/1fu2+fdl(w)qulzz,Blf ”ku—fd;(w)ww-vu
Zdt o) O [ QM+V o)

sm&f#+fMWMWWWL
Q Q

which along with Eqgs (2.14) and (2.15) indicates

1d
—— f W+ a f u? + d(K.,) f |Vul* < B, K, f u? + 6, f ulVw||Vu). (3.2)
2dt Jg Q Q Q Q
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Applying Young’s inequality and the Holder inequality, one gets

d,(K.) 2 & 21102
5 f ulVwl|[Vu| < f Vul + W2Vl
*Ja 2 Jo 2d\(K.) Jo

dl(K*)f 2 5% 2 2
< —= Vul|” + \Y ,
s Q| ul 2dl(K*)llullelll wll74

which updates Eq (3.2) as

d 52
Ellulliz + 20z1||ulliz +d, (K*)IIVMIIZQ < 2,81K*|Iulliz + a (12(*)|Iulli4llVWIli4- (3.3)

Using the Gagliardo-Nirenberg inequality, the following inequality [16, Lemma 2.5]

VWl < e (1AWl VWl + 1YW,

and Eq (2.23), we obtain
2
2 2 2 2 2
el VWL s < colVullzllullz + [lull;) (AWl 2 Ky + KF)
di(K.,) 't L L
2
< Kyl |Vull2llull 21| AWl 2 + coaKallull L[| Aw]| 2 (3.4)
2 201112
+ K |\ Vull2llull 2 + c2Klull;
2 2 2 2
< di(K)IIVully, + csllull 1AW, + callull;,,
c2K? 2k di (K.
where ¢3 1= 7225 and ¢q 1= 570 + % + K2

Then substituting Eq (3.4) into Eq (3.3), we obtain

%Ilulliz < B1K. + co)llully, + csllull7 AW, 3.5)
< csllull2.(1 + 1AW,
where ¢s 1= 231K, + ¢4 + c3. For any 1 € (0, Thax), by Eq (2.8) there exists a #y := ty(t) € ((t — 7)4,1)
such that 7y > 0 and
fuz(x, to)dx < cg. 3.6)
Q

On the other hand, from Eq (2.24), we know that

10+T
f f |Aw(x, s)|*dxds < Ks, for all t € (0, Ty — 7). 3.7
1o Q

Then integrating Eq (3.5) with respect to ¢ over (#, ), and using the Eqs (3.6) and (3.7) and f < fp+ 7 <
to + 1, one has

1
2 2 cs [ (L+IAwC,8)I, ds
-, DR, < G-, 1) - o 5

o [f0+T a2 ]
< ||u(, tO)”iz . ecs ho (T+]|Aw( ,‘s)||L2)d5 (38)
< ceeSIHKD),
Similarly, we can show that
2
Iv(, Dll7> < 7. (3.9)

Then the combination of Eqs (3.8) and (3.9) gives Eq (3.1). The proof of Lemma 3.1 is completed. O
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Lemma 3.2 (L*-Boundedness). Suppose that the assumptions in Lemma 2.1 hold and let (u,v,w) be
the classical solution of (1.5) defined on its maximal existence time interval [0, Ty.). Then it holds
that

luC, Dl + [V, Dl < K7 for all £ € (0, Tax), (3.10)
where the constant K; > 0 is independent of t.

Proof. Multiplying the first equation of (1.5) by u”~! with p > 2 and integrating the resulting equation

over Q) by parts, one has
1d -2 2
—— | w+(p-1) | v"“dW\Vul"+a; | u°
pdt Jo Q Q

vw

:—(p—l)fup_ld;(w)Vu-Vw+ﬁ1f
Q QM+V

Using Eqs (2.14) and (2.15) and 0 < -+
t € (0, Tax), from Eq (3.11) we get

(3.11)

u?.

< w < K, which is satisfied by the fact u,v > 0 for all

1d
— | W+ (p- 1)d1(K*)fup_2|Vu|2 +a1fu”
pdt Jo 0 0

S(p—1)(52fup_1|Vu||Vw|+,81K*fup
Q Q

(p - Ddy(K.) f L, Sp-1) f , f
<-—" w’\Vul|” + ——— u’|\Vw|” + B1 K, u?,
2 N 2d4\(K.) Jo A

which together with the fact

2(p — 1)d (K, » - Dd(K. -
(p = Ddi( )fmz'z:p(p )i )f“” 2l
p Q 2 Q

gives

d 2(p — 1d, (K,
—fu"+—(p Jh( )f|vu‘z’|2+a1pfup
dt Jg p Q Q

p(p - 163 )
< —= | u’|Vw|]” + K*fu”.
20K Jo Phk ],

(3.12)

Noting the fact ||u||;2 < K¢ in Eq (3.1), and using Lemma 2.3, we can find a constant ¢; > 0 such that
IVwliz+ < c1. (3.13)

Then we can use the Holder inequality, Gagliardo-Nirenberg inequality and Young’s inequality as well
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as Eq (3.13) to obtain

p(p - )63 , _ pp—16 50\ A\
24,(K.) fQ”p'VW' = 24K (fg”p) (fg'vw')

< 2’|
2d\(K.) g
p20=9) p 2 2
<o (||Vu2||L2 N7, + | g)
L? LP
2 20-7)
< oKgllVul[, " + Ky

- 1 K* P K P K*
< (p — Ddi( )f|Vu2|2+( 2Ks ) di( )+c2K”,
p Q d(K.) p

where we have used the fact that

Wbl o = lull?, < K
L? 2= 76"

Moreover, using the Gagliardo-Nirenberg inequality and Eq (3.15) again, we obtain

PﬁlK*fMpSPﬂlK*HugHiz
o

p 200=2) p 2 )
<c (||Vu2||L2 2l + | é)
L? L?P
2o 2203
< o KgllVur|l, *

)4
- P C K2 2 «
< (p 1)dl(K*)f|Vu2|2+ 3Kg ) 2di(K.) + kP,
p Q d\(K,) p

+ CgKg

Then substituting Egs (3.14) and (3.16) into Eq (3.12) yields

d
d—tfgup+a1pfgu”sm(p),

c2Kq )P di(K.) +( c1K? )5 2d,(K.)
d(K.) 4 di(K.)

Then applying the Gronwall’s inequality to Eq (3.17), we get

where

c4(p) = (

+ (e + 3K} .

cs(p)
uC,Ol%, < |luoll?, + )
” ( )”U || Olle pa,

Taking p = 4 in Eq (3.18), one enables ||u(-, )||;+ < cs, which together with Lemma 2.3 gives

IVW(, Dl < ce,

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)
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where the constant ¢ > 0 is independent of # and p. Then using the Moser iteration process [33], there
exists a constant ¢; > 0 independent of ¢ such that

e, Dl < 7. (3.19)
Similarly, we can find a constant c¢g > 0 such that
[VC, Dllz= < cs. (3.20)

Then the combination of Eqgs (3.19) and (3.20) gives Eq (3.10). The proof of Lemma 3.2 is completed.
O

Proof of Theorem 1.1. From Lemma 3.2, we know there exists a constant ¢; > 0 independent of ¢ such
that
e, Dl + [VC Dl + VW, Dl < ey,

which along with the extensibility criterion in Lemma 2.1 and Lemma 2.2 gives Theorem 1.1. O
4. Global stabilization: Proof of Theorem 1.3

Under the condition K > Z—: + g—j, the system (1.5) has only one positive constant steady states
(u., v+, w,) which is defined in Eq (1.8). In what follows, we shall show that the co-existence steady
state (u., v., w.) 1s globally asymptotically stable based on the following energy functional:

IBlIBZ(M* + V*)
Bs

jz(f)=f(z—z*—z*ln£), Z=U,V,W.
Q T

Then we have the following results.

(1) := E(u, v, w) = Bovu Ju(®) + Bru.J (1) + (), 4.1

where

Lemma 4.1. Let (u, v, w) be the solution of system (1.5) obtained in Theorem 1.1. If K > % + % and

Bidi(w) " Bods(w) | 4Kw, 4.2)

then the co-existence steady states (u., v., w.) is globally asymptotically stable.

a O<w<K

1 . (Ia’i(W)lzw2 IdQ(W)IZWZ) K—w,

Proof. Letting Y(f) = f — f.In f and applying Taylor’s expansion, for all positive f, and f, one has

1
F=fom FIn e = ) = U = WS = £+ 50O ~ £
: 4.3)
_b e ey
- 252 (f f:k) H

where ¢ is between f and f.. Then choosing f = u and f, = u., we obtain from Eq (4.3) that there
exists &; is between u and u, such that

ju(t) = L(u_u*_u*lnul*) :L;;%(M—M*)z ZO»
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and J,(t) = 0 iff u = u.. Using the similar way, one has 7,(t), J,,(f) > 0 and “=" holds iff v =
v., w = w,. Hence according to the definition of &(¢) in Eq (4.1), we obtain that E(u, v, w) > 0 for all
(u,v,w) # (u., v.,w,) and moreover E(u,, v, w,.) = 0

Next, we shall show that %S(t) < 0 under the conditions Eq (4.2) and K > ;—: + %. In fact, using
the equations in Eq (1.5), one has

%:ﬁZV*L(u;u*)”t+B1”*L(V_vv*)vf+ﬁ1ﬁ2(22+v*)L(W;W*)W’

2 ’ .
g [N [T Lo (B )
Q Q

12

2 ’
_ﬁlu*v* f Cb(yﬁ)ﬂ _ﬁlu*v*f a (W)Vv VW f(v — V* (ﬁzuw — (1’2)
Q Q

_ BB + vow, f [Vwl|? .\ BB (u, + v*) f(w o )( ow ﬁ3uv)
B3 o W B3 Q ' K u+v)

which can be rewritten as

d&(t) _ T B Bivw B
7— LX BX+ﬁ2V*L(M M*)(u+v aq)
+ﬁlu* ‘L(V_V*)(€2_’it _a2)

4.4
ﬁ@%+MI 7 _ o) )
+— | W=w) |- — -
Q K u-+v
—fXTBX+Jl +Jy + Js,
Q
where
u v.tdi(W)Br 0 ﬁ—zv*u*; L0
N A _ Bruvid,(w)w
X=|-*|and B= 0 ﬂ]l/t*v*dz(W) -
m BZV*u*di(W)W Blu*v*dé(w)w ,Blﬁz(uﬁv*)w*
W 2 2 Bs
After some calculations, we can check that the matrix B is positive definite provided
A, + vIw. |d; (w)[*w? .\ |}, (w)Pw?
Bsu.v. Bidi(w) Bado(w)
. . Bauvse _ Wi :
which, together with the fact ;T = o(l — %) (see Eq (1.7)), gives
1 K-w,
- > F(w), 4.5
3K (w) (4.5)

where the function
ld;(w)Pw?  |dy(w)*w?

=g " b
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If |lwollz~ < K, one can easily check that Eq (4.5) holds provided Eq (4.2) is true. Now, we consider
the cases |[wyl|.~ > K. In fact if Eq (4.2) holds, then there exists a small &y > 0 such that

1 K—-w,

- > 2K OIP&)% F(w) + &. 4.6)

From the assumptions (H,), we know that F(w) belongs to C'([0, o)), which combined with the fact
Eq (2.2), implies that

. - W, K-w, . - w,
lim sup Fw) = lim sup F(w) < max F(w),
t—o00 Wi 4KW* t—00 W, O<ws<kK

and thus for the chosen g in Eq (4.6), there exists a T, > 0 such that

K - w. K —w. i
Y Fowy < =—% max F(w) + &, for all (x,7) € Q x [T, o). 4.7)
4Kw, Kw, 0<w<k

Then the combination of Eqs (4.6) and (4.7) gives
1 K-

> 27" pw), forall (x,7) € Q X [T., o).
o 4Kw,

Hence the matrix B is positive and there is a constant ¢; > 0 such that

Vul> Vv [Vw]?
—fXTBXs—clf A L S 4.8)
o o\ u? V2 w?
On the other hand, using the fact 2+ = == (see Eq (1.7)), one gets

b1 UV

SRy RTE
—ﬁlﬁzv*f(u (Tv ;—:)

:ﬁlﬁzv*f(u—u)( +v_uV*-‘:}>;)

_ BiBav. f(” 4 )ku* + VYWV, — UV W, — VYW,
- — Uy

)

U, + v, u+v
which together with the fact
VWU, + VWV, — UV W, — VW, = V. (W — W,) + VWi, — UV, W,
=w.(w —w,) + vi.(W — w,) + yw, i, — Uv,.w,
= V(U + Vo)W — W) + VWl — VWU + VWU — UV W,
= v(u, + v )W —w,) —vw.(u — u,) + uw.(v —v,),

gives

7y =B, f v — u)(w —w,) N BiBav.w. f u(u —u,)(v —v.)
Q o

u+v Uy + Ve u+v
2 4.9)
B B1B2v.w. f v(u —u,)
u.+ve Jo u+v
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Similarly, we can use the fact Z—i =

. [0 22 )

— B\Bout, f u@ —v)w=w.)  Pisu-w. f v — ) (v — )
° Q

L2 (see Eq (1.7)) to obtain

u-+v u, +v, u-+v
_ ﬁlﬁZu*W* M(V - V*)z
U, +ve Jo u+v

At last, using the fact o~ = &2 v* =2 (see Eq (1.7)), we have

~ BiBa(us +v) B _ow By
= B3 L(W W) (O- K u+ v)
_ IBIIBZ(M* + V) f (,331/!*\/* ,331/!\/) ﬁlﬁZ(u* + V)0 f 2
=—— | w—-wy) - - (w—w,)
Q Q

U, +v., u+v BsK

U v.u+ U, v,V — uvil, — uvv,
= Al v L(W - (u+v)(u. +v.)
B ﬁlﬁZ(ZZ%*)O- L(w —w,)?
ﬁlﬁz(u* + Vo f
(w—w,)%

Combining Egs (4.9) and (4.10) with Eq (4.11), we have

: BiBaw. [ vau + wv)(u — uw)(v —v.)
St |

= U, + v, u+v

B1B2w. f wi(u — 1) + uu,(v = v, BB (us + v)o f 5
- - (W - W*)
Q Q

Us + Vs u+v ﬁ3
_ BiBaw. f f(u’ V) ﬁlﬁZ(u* +v.)o f( —w)
U+ v Jo u+v o

where

f(u’ V) = (V*l/t + M*V)(u - u*)(V - V*) - VV*(M - u*)z - MM*(V - v*)z

vilu — u)(u — u)(v —v,) + v (u — u)(v —v,)
+ M*(V - V*)(I/t - M*)(V - V*) + M*V*(M - M*)(V - V*)

—w(u — ) — un.(v —v,)?

V*(l/l - u*)Z(V - V*) + zv*u*(u - M*)(V - V*)
+ u,(u—u)(v— v*)2 —w.(u— u*)2 — uu, (v — v*)2
= —vf(u - u,k)2 - ui(v — v,k)2 + 2u.v,(u—u)lv-—v,)

= —(Vatt — u,v)>.

(4.10)

4.11)

(4.12)
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Then we can update Eq (4.12) as

= _BiBaw. f Vit — u,v)? _ B +v)o f(w — W) (4.13)
Q Q

Ui +V, u+v BsK

3
-

J

Substituting Eqgs (4.8) and (4.13) into Eq (4.4) gives for all r > T.,

d&® _ _BiBaw. f et = u,v)*  Bifa(us + v.)o f (W = w,)?
Q Q

dt —  u.+v, u+v B:K
IVul> Vv VWP
- C 3 + 5 + ,
ol u v w

which indicates % < O for all u, v, w. Moreover, one can check that if % =0,then Vu = Vv =0
and w = w,, which implies that

with iz, and ¥, are some positive constants. Since (u, v, w) = (il., V., w.) is a solution of (1.5), then one
has

ﬁl"}xwx

., @ =0,
Bolisws _
w27 0,

Bl Vs _ oW, __
i+, o+ K = 0’

which gives

i, :g(l—&)(1+a2—’81):u*, \7*:2(1—&)(1+a1—’82):v*,
Bs K @132 Bs K @231

Thus % = 0 if and only if (u,v,w) = (u.,v., w.). By using the LaSalle’s invariant principle (cf.
[41, Theorem 5.24]), we get that the co-existence steady state (u., v., w,) 1s globally asymptotically
stable. O

Proof of Theorem 1.3. Theorem 1.3 is a consequence of Lemma 4.1. i

5. Spatio-temporal patterns

22 and will study the effect of density-suppressed dispersals on

In this section, we assume K > ;—11 + B

the dynamics of the system (1.5).

5.1. Linear instability analysis

Denote d; := d;(w.), d;. = a"j(w*) (j = 1,2) and linearize (1.5) at (u,, v, w,) to obtain

O, = AAD + BD, xeQ, t>0,
v-V)D =0, xedQ, t>0, (5.1

q)(x’ 0) = (uO - u*’VO - v*’ WO - W*)T’ X € Qa
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12490

where 7 denotes the transpose and

u—u, d 0 d'l U,
O=|v-v. [,LA=|0 d dyv.|, B=(Bijs
w— w, 0 O 1
with
By =- G <0, Bpp= —%ﬁ]u* >0, Bjz= pru.y. > 0,
U, + Vv, Bo(u, +v.,) U, + Vv,
a1B,v. arV, U Vs
321:L>0, B22:_ 2 <0, Bzgzﬁz >O,
ﬁl(u* + V*) U, + v, u, +v,
@183V, a . oW,
B31:—L<O,Bgzz—ﬂ<o,833:— < 0.
181(”* + V*) ﬁZ(u* + V*)

Then by the standard linear stability principle, the linear stability of (u., v.,w.) is determined by the
eigenvalues of the matrix (—A + B) where the sequence {u )2, with O = po <y < pp <3 < ...
denotes the eigenvalues of —A under the Neumann boundary condition. The characteristic equation of
(A + B) is

P + Di(u)p” + Do, |dDp + D3y, |d)) = 0, (5.2)
Where aw aiu, + arv
Di() = pldi +dp + 1)+ — + /"2 5 0,
K U, + v,

, oW, sV, a Uy
Do \d)) = (dydo + dy + do) + i {(d1 +d)— + (d) + D)——— + (dr + 1) — }

K Uy + Vs Uy + Vs
Bau.v, [ aidy  axd;
+ Uk - -
U, + v, ﬁ] ﬂZ

Bsuv.(av. + aau,)  ow.(au, + @rv,)

>0,
(U, + v,)? K(u, +v,)
ow, @V, o, B, [ adidy ardid,
Dy, |d)) :=pidvdsy + i3 { dvd +d +d + - -
3(,Uk|]|) U dirds ,Uk{12 K lu*+v* zu*+v* u*+v*( B B,

2 2

v, [ow, SU au, [ow, 3V

+ w3 dy + Patt. +d, + Pav.
U, +vi. \ K Uy + Vs u, +vi. \ K Uy + Vs

+ ala2ﬁ3u*v* _ﬁ _ ﬁ
M+ B B

a1aP3ULV.

+ Nty > 0.
u, + v,

Hence, by direct calculations, one has

H(py, \d3)) = = D) Do |d3)) — D3, 1))
= YIK + Vol + Y3k + A1Ay — As + Aoy, |d)) + As(u, d5)),

where vy, v,, Y3 are positive constants and A;A, — A3 > 0 are independent of d} (j =1,2) and py (see
details in the Appendix for the precise definitions of y; and A;, i = 1,2, 3), and

5 B3u v, {_(dl + Dad] _ (dr + 1)C¥2d§} -

(5.3)

Aol D) = - —— Bi B
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as well as

Aalio ) = 1y Bauv, {(—d{)al (O'W* L (- az)u*)

(u, +v,) Bi K U, + v,
+(—d§)6¥2 (O‘W* . (ap — al)v*)}'
ﬁz K U, + v,

Then using the Routh-Hurwitz criterion, we have the results stated as below.
Proposition 5.1. The (u.,v.,w.) is linearly stable if one of the following conditions holds:
1) d\(w), d»(w) are constants with o > 0O;

2) d}(w) <Owitho >0ifa; =a,oro > KB1B2 f(Blai—as|

= (@1fa+afr)? ifa1 # ap, where

18) = {azﬁl, ifa) < a, (5.4)

aifa, if @y > ay,
and j=1,2.
Proof. In the case that d;(w) (j = 1,2) are constants, one has

Ao, ) = AgGpags 1)) = 0.

On the other hand, considering the case d}(w) < 0. If a; = a,, we get

Ao, 13D, Al |d]) > 0.

As for a; # a, with

KBiBof Bla; — asl
o2
(12 + aafr)?

we can calculate to get
Ao, |3 > 0, A, 1)) = 0.

All cases discussed above indicate Dy (u)D(ux, |d}|) - Ds3(y, |d;|) > ( for all kK € N. Then by the
Routh-Hurwitz criterion [34], we know (u., v., w.) is linearly stable. O

Hence, we are left to study the possible patterns bifurcating from the co-existence steady state
(u., v«, w,) in the following range of parameters:

KB1Baf(B)lar —az|

(H) a1 # ,0<0 < (@1B2+a2pB1)?

is defined in (5.4).

andd(w) <0, wherei =1ifa; <ayori=2ifa; > a, and f(B)

Proposition 5.2. Let o,K,ay,a,,B1,8, and B3 be fixed positive parameters, and suppose the
assumption (Hy) holds. Then (u.,v.,w.) is linearly unstable provided that |d'1 (w,)| is large enough if
ay < ay (or |dy(w,)| is large enough if a; < ay) and there is some ko > 1 such that

1 |ow. (@1 —ap)u, :
1+d, K Ui Vs ? lfal < @,
0< Miy < (55)
1 |awe | (e-a)v. ;
1+d, | K Us+Vy ’ lfa,l > .
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Proof. Noting that H (u, |d;|) can be rewritten as

H(u |d')) = yip; + oty + v + Atz — As

(—=d})a, Bsu,v. {(d1 1+ (Uw* i az)u*)ﬂk}

Bi(u, +v,) K u, + v,
(=d))asB3u.v. s [ow. (ay—ap)v.
e L sCul b YOS VP fodiia .
Bo(u, +v,) (2 + Dpi K U, + v, Hi

Since (H,) holds, then for some fixed py, > 0 satisfying Eq (5.5), we have

H (i, |d})) := Di(u) D, |d5]) = D3 (g, 1d]) < O
when |d{(w,)| is large enough if a; < a; (or |d}(w,)| is large enough if a, < a;) and (u.,v.,w.) is

linearly unstable by the Routh-Hurwitz criterion [40]. O

Remark 5.3. The above results imply that the density-suppressed diffusion can induce the instability
of (u., v.,w.) and trigger the pattern formation.

5.2. Numerical simulations

In this subsection, we aim to give some numerical simulations to complement the previous analysis
in Section 5.1. Without loss of generality, we assume a; < a, and define the set

H ={(d}l,m) € R} : H(d|,n) =0}

as the bifurcation curve [35], where the linearized system (5.1) admits an eigenvalue with zero real part
and the curve H is the graph of the function

-1
U, + V. oW, o] — @)U AA, — A
b Byt )
“pu. E o wtw n (5.6)
(_dé)a?ﬁ:‘;u*v* OW, (afz — a’])V* .
- =<~ | 1 ,
i ﬁZ(u* + V*) ( 2 )77 - K * U, + v,

where the constants y;,A; > 0 (j = 1,2, 3) are given in the Appendix. Then the characteristic Eq (5.2)
has a pair of purely imaginary eigenvalues if |d{(w.)| = dy(uy,) for some ko € N and py, satisfying Eq
(5.5) and the Hopf bifurcation may emerge.

We first fix parameter values as follows:

ﬁ] = 0.3,,32 = 1,,33 = 1.3,0,’1 = 0.1,61’2 = 1,K =2. (57)
Then by the assumption (H;), one has
81
O<o<—.
T
Hence, we fix o = % in what follows without loss of generality. By Eq (1.8) we have
4 4 4
U, = —, Vs = - (5.8)

390 T T3
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In addition, we choose the motility function d;(w) as
di(w) = e,

where the constant D > 0 and d}(w) = —De %) Then Eq (5.5) is equivalent to

0< < 3
Ho = 5207

v(x,t)

" 800

Space x

0.05
1.25
0.04
12
0.03
o 100 200 300 400 500 600 700 800 o 100 200 300 400 500 600 700 800 o 100 200 300 400 500 600 700 800
Time t Time t Time t

Figure 1. Numerical simulation of spatio-temporal patterns (first panel) and time
evolutionary profiles (second panel) generated by the model (1.5), where d;(w) = ¢ %3
with D = 180 and d,(w) = 1, other parameter values are given in Eq (5.7) with oo = 0.1, and
the initial value (i, vo, wo) is chosen as a small random perturbation of (u., v., w,) given in
Eq (5.8).

Using Theorem 1.3 and Proposition 5.2, the co-existence steady state (%, 147’
stability when the parameter D > 0 satisfies

%) may lose its

10D? . (w)|*w?
max e " Vy? 4 max —=— > 160, (5.9)
3 0<wsK. O<w<K, d2(W)
and
,[4

d 3= D > dy(n) (5.10)

with 0 <7 < 2.
In our numerical simulation, we set the initial value (i, vy, wy) as a small random perturbation of
(%, %, %) and hence K. = 2. Moreover, we perform numerical simulations in one dimension and set

Q = (0,16m). Choosing D > 0 satisfies (5.9) and (5.10) with = (k/16)* < %, which indicates
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Figure 2. Numerical simulation of spatio-temporal patterns (first panel) and oscillatory time-
evolutionary profiles (second panel) generated by the model (1.5), where d;(w) = e D=3
with D = 268 and dp(w) = €%~ other parameter values are given in Eq (5.7) with
o = 0.1, and the initial value is chosen as a small random perturbation of (u., v., w.) given in
Eq (5.8).

allowable unstable modes are k = 1,2,3,4,5,6,7,8. Next, we will consider the following two cases
for d,(w).

Case 1: dy(w) = 1. In this case, d; = dj(w,) = 0 and according to the definition of dy/(77) in
Eq (5.6), we can calculate to obtain that

8n* + —n

157" 7200 " 280007 )’

- 47 2893 733
120

73
d(17) = 90(— =27

and Eq (5.9) can be updated as
P> 12¢

with D > 4. Then after some calculations, one gets dH(256) 647.963, d(]—{(256) 223.026,
d']—{(256) 159.956, dw(256 162.600, d?—{(256 204.933, dH(256 305.214, dH(256 548.498
and dg( 256) ~ 1450.71. Hence, dﬂ(256) ~ 159.956 is the critical value for possible pattern formation.
In our numerical simulations shown in Figure 1, we choose D = 180 and find the spatio-temporal
pattern. In particular the time evolutionary profiles of solutions are oscillatory, which implies the
bifurcation might be Hopf bifurcation.
Case 2: d>(w) = ¢7%"=3)_ For this case, d, = dy(w,) = =50 and hence
)‘1( 97 2131 733 )

8 - ’
T ¥ 157" 2200 T 80007

73
—90( == —2
dg((17) = 90 ( 20 2

and Eq (5.9) can be simplified as

e%ﬂ + ?egl) > 40¢°.
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One also can calculate to get that dy(5i) ~ 722.767, dy(52) ~ 306.961, dy(5) ~ 260.876,
du(32) ~ 291910, du(£) ~ 381.793, du() ~ 567953, du(s¢) =~ 997.112 and
dq{(%) ~ 2546.860. Therefore, d«}-{(%) ~ 260.876 is the critical value for possible pattern formation.
In our numerical simulations, we choose D = 268 and find the spatio-temporal pattern shown in
Figure 2. Again oscillatory time evolutionary profiles indicate the solution bifurcating from the

co-existence steady state may undergo a Hopf bifurcation.
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Appendix
Below we show the details for the parameters y;,y,,¥; > 0 and A;A, — A3 > 0 present in Eq (5.3).

By direct calculations, we obtain

Y1 =(dy +dy + 1)(d\dr +dy +d>) — dd,
=(d +d))(d\dy + dy + do) + (d) + do)
= (d1d2 + d1 + d2 + 1)(d1 + dz) > 0.

As for
72:<d1+d2+1>{(d1+d2>‘m* Fd+ D) b (dy + }
K U, + v, U, + v,
* *+ * * * *
+(d1d2+d1+d2)(gw 4 Qi T @9V )—(dldfw +d -2V g, )
K U, + v, K U, + Vv, U, + v,

= (dy +d» + 1){(611 +d) 2 @+ D22 (g + 1) }
K U, + v, U, + v,
did>(au, + arv,) Fdi+ dz)crw* N diaju, + dzazv*,
Uy + V, K Uy + V,

which implies y, > 0 and is independent of d; (j = 1,2) and y. Now, we calculate the other
parameters:

oW, QU + @V, oW, sV, U,
= + d+d +(d, +1 +(dr+ 1
V3 ( K w + v, ){( 1 2) K (dy )u*+v* (d> )u*+v*}

+ (dl + dZ + 1) ﬁ3u*v*(a’lv* + a’zu*) O-W*(alu* + a’zv*)
(u* + v*)2 K(u* + V*)

2 2
diayv, (oW, N Bau; draqu, [ow, N Bsvi
U, +v. \ K U, + v, U, + v \ K U, + V.

_ d20/2ﬁ3uzv* dla’lﬁﬂ/l*vz ﬁ3u4<v*(a/lv* + Q/ZM*)
(u, +v,)? (u, +v,)? (u, + v,)?
O'W*(a’ll/l* + QZV*)

+2(d+dr,+ 1) KG -0 +(d1+d2)(

oW, )2

K
iU, + @V,

+ ((dl + l)azv* + (d2 + 1)@114*) m

>0,
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and
a U, + @V, oW,
Ap = + > 0,
U, + V, K
Bsuv.(av, + aau,)  ow.(au, + arvy)
A, = ) > 0,
(u, +v,) K(u, +v.,)
a arB3uU,V
Ay = @1@2f33Us Vs > 0.
U, + V.,
Hence, a direct calculation gives
au, + av)(a v, + asu,)B3u.v
A1A2_A3>(l* 2*)(1* 2*)ﬁ3**
(U, +v,)3
~ a1 @B3 (V] + ulv,) + 20 oB3ulv:
(U, +v,)3
20 2.2
_ (CY] - CYZ) ﬁ:’au*v* > O
(U, +v,)? o

) ©2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the

@ AIMS Press terms of the Creative Commons Attribution License
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