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Abstract: In this paper, we consider the following predator-prey system with defense switching
mechanism and density-suppressed dispersal strategy

ut = ∆(d1(w)u) + β1uvw
u+v − α1u, x ∈ Ω, t > 0,

vt = ∆(d2(w)v) + β2uvw
u+v − α2v, x ∈ Ω, t > 0,

wt = ∆w − β3uvw
u+v + σw

(
1 − w

K

)
, x ∈ Ω, t > 0,

∂u
∂ν
= ∂v

∂ν
= ∂w

∂ν
= 0, x ∈ ∂Ω, t > 0,

(u, v,w)(x, 0) = (u0, v0,w0)(x), x ∈ Ω,

where Ω ⊂ R2 is a bounded domain with smooth boundary. Based on the method of energy
estimates and Moser iteration, we establish the existence of global classical solutions with uniform-
in-time boundedness. We further prove the global stability of co-existence equilibrium by using the
Lyapunov functionals and LaSalle’s invariant principle. Finally we conduct linear stability analysis
and perform numerical simulations to illustrate that the density-suppressed dispersal may trigger the
pattern formation.

Keywords: prey-predator system; defense switching; density-suppressed diffusion; global stability;
pattern formation

1. Introduction

Defense switching means that prey species pay more attention on guarding against the relatively
more abundant population predator [1], certain fish species in Lake Tanganyika against two
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phenotypes (dextral and sinistral) of cichlid Perissodus microlepis [2] is a typical example. The
dextral and sinistral phenotypes attack the prey fishes from the left-side and right-side, respectively.
Pretend that the population of dextral individuals is more abundant, then prey fishes tend to be more
defensive against the attacks from left-side, which leads to greater hunting success for sinistral
individuals (relatively rare population). Based on a simple Lotka-Volterra equations of a two-predator
one-prey system, Saleem et al. proposed a defensive switching model [1]

ut = u(−α1 + f1w),
vt = v(−α2 + f2w),
wt = w(σ − f1u − f2v),

(1.1)

with the predatory rates functions  f1(u, v) = β1
1+ u

v
,

f2(u, v) = β2(1 − f1
β1

),
(1.2)

where u := u(x, t) and v := v(x, t) denote the density of two predators while w := w(x, t) is the prey
density. The parameters α j ( j = 1, 2) account the death rate, β j > 0 ( j = 1, 2) are the predation
coefficients and σ > 0 accounts for the growth rate of the prey species. Moreover, the predatory rates
f1 and f2, also called “defensive switching functions”, possess a characteristic property that the rate of
the prey attacked by a predator will decrease if this predator population becomes much more abundant
than the population of another predator. Specifically, when a predator population becomes large, the
prey species guards against it more vigilantly and switches to another predator, which is in relatively
small population, to keep its individual from being hunted too much. Such prey behaviors result in less
successful hunting for abundant population predator species and more successful hunting for relatively
rare one [1].

In light of the defensive switching model Eqs (1.1) and (1.2) in [1], Pang and Wang [3] considered
the following reaction-diffusion system by introducing the random movements of species and the intra-
specific interaction between the prey in Eq (1.1)

ut = d1∆u + β1uvw
u+v − α1u,

vt = d2∆v + β2uvw
u+v − α2v,

wt = d3∆w − (β1+β2)uvw
u+v + σw

(
1 − w

K

)
,

(1.3)

where constants d j > 0 ( j = 1, 2, 3) account for diffusion coefficients and the positive parameter K
represents the environmental carrying capacity to the prey species. We note that the interaction
mechanism between the predators and prey in the defensive switching model is substantially different
from that in the ratio-dependent predator-prey system [4] though they seem to have some similar
structures.

In [1], Saleem et al. proved that the co-existence steady state is globally asymptotically stable
except the case where the two predators have the same mortality rates; Otherwise, the system has a
periodic solution. Pang and Wang [3] proved the co-existence steady states is globally asymptotically
stable no matter α1 and α2 are equal or not and hence no pattern formation will arise from the
system (1.3). If the term d1∆u is replaced by a cross diffusion term ∆(d1u + ku

ϵ+v2 ) (k, ϵ > 0), however,
they showed that the cross diffusion between predators can drive stationary patterns by using
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Leray-Schauder degree theory. Recently, the system (1.3) with prey-taxis (the cross diffusion between
the predators and prey) was considered by Wang and Guo [5]. They established the existence of
globally bounded solutions and global stability of constant steady states for small prey-tactic
coefficient and numerically demonstrated that strong prey-taxis can induce the pattern formation if the
two predators have different mortality rates. Subsequently, the existence of nonconstant steady states
was obtained for some range of repulsive prey-taxis coefficient with more general functional response
functions in [6]. From the above results, we find that the dispersal strategies (like cross-diffusion or
prey-taxis) play important roles in determining the population distribution profiles.

In this paper, we shall consider a different dispersal strategy - density-suppressed diffusion, which
was first used in [7] to describe the directed movement of predators in the predator-prey systems to fit
the experimental observations. This type of diffusion assumes that the predator’s diffusion decreasingly
depends on the density distribution of the prey. As shown in [8], the density-suppressed diffusion can
explain the heterogenous population distribution observed in the field experiment of [7] while random
diffusion can not. Hence density-suppressed diffusion is a dispersal strategy employed in the predator-
prey system. By taking into account the density-suppressed diffusion, the defensive switching model
reads 

ut = ∆(d1(w)u) + β1uvw
u+v − α1u,

vt = ∆(d2(w)v) + β2uvw
u+v − α2v,

wt = d3∆w − (β1+β2)uvw
u+v + σw

(
1 − w

K

)
,

(1.4)

where d j(w) > 0 and d′j(w) < 0 ( j = 1, 2). Note that the property d′j(w) < 0 means that predators will
decrease their random diffusion rates at higher density of the prey species in order for predation. If we
expand the density-suppressed diffusion

∆(d j(w)ϕ) = ∇ · (d j(w)∇ϕ + ϕd′j(w)∇w), ϕ = u, v,

we find that the density-suppressed diffusion indeed intrinsically includes both random diffusion and
advection (prey-taxis) components. The differences from the spatial models considered in [3,5,6] is that
here both diffusion and advection coefficient are not constant but functions of the prey density. It was
shown that the density-suppressed diffusion in the predator-prey systems may generate spatially non-
homogeneous patterns that the random diffusion can not do [8] and may bring substantially different
dynamics [9].

Beyond the predator-prey systems, the density-suppressed diffusion has already been commonly
used in the modeling of other biological processes such as the chemotaxis [10, 11], bacterial
movement [12, 13] and so on. Since the possible degeneracy caused by the density-suppressed
diffusion brings considerable challenges for analysis, the studies of these biological models with
density-suppressed diffusion have been increasingly attracting attentions and produced many
interesting analytical results [14–28] alongside rich numerical simulations demonstrating complex
dynamics and patterns [29–31].

The purpose of this paper is to study the global dynamics of the defensive switching model with
density-suppressed diffusion including global existence and asymptotic behavior of solutions as well
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as pattern formations. Specifically we consider the following problem

ut = ∆(d1(w)u) + β1uvw
u+v − α1u, x ∈ Ω, t > 0,

vt = ∆(d2(w)v) + β2uvw
u+v − α2v, x ∈ Ω, t > 0,

wt = ∆w − β3uvw
u+v + σw

(
1 − w

K

)
, x ∈ Ω, t > 0,

∂u
∂ν
= ∂v

∂ν
= ∂w

∂ν
= 0, x ∈ ∂Ω, t > 0,

(u, v,w)(x, 0) = (u0, v0,w0)(x), x ∈ Ω,

(1.5)

where Ω ⊂ R2 is a bounded domain with smooth boundary. The parameters α j ( j = 1, 2), β j ( j =
1, 2, 3), σ and K are all positive constants. Note that we have assumed d3 = 1 without loss of generality
and consider more general constant β3 compared to Eq (1.4). We suppose the density-suppressed
diffusion coefficients d j(w) satisfy the following conditions:

(H0) d j(w) ∈ C2([0,∞)) with d j(w) > 0 and d′j(w) ≤ 0 for all w ≥ 0, j = 1, 2.

We further suppose the initial data satisfy

(u0, v0,w0) ∈ [W1,∞(Ω)]3 with u0, v0 > 0,w0≥ 0. (1.6)

Then our first result on the global existence of solutions is stated in the following theorem.

Theorem 1.1 (Global boundedness). LetΩ ⊂ R2 be a bounded domain with smooth boundary. Assume
the assumption (H0) holds and the initial data (u0, v0,w0) satisfy Eq (1.6). Then there exists a uniquely
determined triple (u, v,w) of nonnegative functions which solves Eq (1.5) classically in Ω × (0,∞) and
satisfies

∥u(·, t)∥L∞ + ∥v(·, t)∥L∞ + ∥w(·, t)∥W1,∞ ≤ M0 for all t > 0,

where M0 > 0 is a constant independent of t. Particularly, one has

0 <w(x, t) ≤ K∗ := max{∥w0∥L∞ ,K} for all (x, t) ∈ Ω × (0,∞).

Remark 1.2. Note that in works [5, 6] considering the defensive switching model with prey-taxis, the
smallness of prey-taxis coefficient was required to ensure the global boundedness of solutions. Here
we obtain the existence of global classical solutions with uniform-in-time boundedness without any
smallness assumptions on the parameters.

Next, we shall show the global stability of constant steady states. In fact it is straightforward to find
that a positive constant steady state (u∗, v∗,w∗) exists if and only if K > α1

β1
+ α2

β2
, where u∗, v∗,w∗ > 0,

satisfying

α1 =
β1v∗w∗
u∗ + v∗

, α2 =
β2u∗w∗
u∗ + v∗

, σ
(
1 −

w∗
K

)
=
β3u∗v∗
u∗ + v∗

, (1.7)

which can be solved to obtain

u∗ =
σ

β3

(
1 −

w∗
K

) (
1 +

α2β1

α1β2

)
, v∗ =

σ

β3

(
1 −

w∗
K

) (
1 +

α1β2

α2β1

)
, w∗ =

α1

β1
+
α2

β2
. (1.8)

Then we can show that (u∗, v∗,w∗) is globally asymptotically stable under certain conditions, as
stated in the following theorem.
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Theorem 1.3 (Global stabilization). Suppose the conditions in Theorem 1.1 hold and let (u, v,w) be
the solution obtained in Theorem 1.1. If K > α1

β1
+ α2

β2
and

1
σ
> max

0<w≤K

(
|d′1(w)|2w2

β1d1(w)
+
|d′2(w)|2w2

β2d2(w)

)
K − w∗
4Kw∗

, (1.9)

then the co-existence steady state (u∗, v∗,w∗) is globally asymptotically stable.

The rest of this paper is organized as follows. In Section 2, we present the local existence theorem
of solutions and establish some preliminary results. Then in Section 3, we prove Theorem 1.1. We
prove Theorem 1.3 in Section 4 and explore the pattern formation in Section 5.

2. Local existence and preliminaries

In the sequel, the integral
∫
Ω

f (x)dx and ∥ f ∥Lp(Ω) will be abbreviated as
∫
Ω

f and ∥ f ∥Lp , respectively.
The generic constants c j or K j for j = 1, 2, · · · , are independent of t and will vary in the context.
Below we present the local existence result of Eq (1.5), which can be proved in a similar way as [8] by
applying Amann’s theorem [36, 37], and we omit the details for brevity.

Lemma 2.1 (Local existence). Let Ω ⊂ R2 be a bounded domain with smooth boundary. Assume
that the initial data (u0, v0,w0) satisfies (1.6) and suppose the hypothesis (H0) holds. Then there exists
Tmax ∈ (0,∞] such that the system (1.5) admits a unique classical solution (u, v,w) ∈ [C(Ω̄×[0,Tmax))∩
C2,1(Ω̄ × (0,Tmax))]3 satisfying u, v,w > 0 for all t > 0. Moreover, if Tmax < ∞, then

lim
t↗Tmax

(∥u(·, t)∥L∞ + ∥v(·, t)∥L∞ + ∥w(·, t)∥W1,∞) = ∞.

Using the similar argument as in [38, Lemma 2.2], we obtain the global boundedness of w
immediately.

Lemma 2.2. Let (u, v,w) be the classical solution of Eq (1.5) obtained in Lemma 2.1. Then it holds
that

0 < w(x, t) ≤ K∗ := max{∥w0∥L∞ ,K}, for all x ∈ Ω and t ∈ (0,Tmax). (2.1)

Furthermore, one has
lim sup

t→∞
w(x, t) ≤ K for all x ∈ Ω̄. (2.2)

Lemma 2.3. Let (u, v,w) be the classical solution of (1.5) obtained in Lemma 2.1. Assume there is a
constant c1 > 0 such that

∥u(·, t)∥Lr ≤ c1 for all t ∈ (0,Tmax), (2.3)

then one has
∥w(·, t)∥W1,q ≤ c2 for all t ∈ (0,Tmax), (2.4)

with

q ∈


[1, nr

n−r ), if r < n,

[1,∞), if r = n,

[1,∞], if r > n.

(2.5)
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Proof. From the third equation of (1.5), we have

wt = ∆w − w + g(u, v,w) in Ω,
∂w
∂ν
= 0,

with g(u, v,w) := w − β3uvw
u+v + σw

(
1 − w

K

)
. Since 0 < w ≤ K∗ (see Eq (2.1)) and u, v > 0, we have

|g(u, v,w)| ≤ K∗ + β3K∗u + σK∗ +
σK2

∗

K

= K∗
(
1 + β3u + σ +

σK∗
K

)
≤ K∗

(
1 + β3 + σ +

σK∗
K

)
(u + 1),

which, together with Eq (2.3), gives
∥g(u, v,w)∥Lr ≤ c3. (2.6)

With Eq (2.6), we use the results in [39, Lemma 1] to obtain Eq (2.4) with Eq (2.5) directly. □

Now we will show some basic boundedness properties of the solution (u, v,w) obtained in
Lemma 2.1.

Lemma 2.4. Let (u, v,w) be the classical solution of (1.5) obtained in Lemma 2.1. Then it holds that∫
Ω

u +
∫
Ω

v ≤ K1 for all t ∈ (0,Tmax), (2.7)

and ∫ t+τ

t

∫
Ω

u2 +

∫ t+τ

t

∫
Ω

v2 ≤ K2 for all t ∈ (0,Tmax − τ), (2.8)

where the constants K1, K2 > 0 are independent of t and τ := min{1,Tmax/2}.

Proof. Multiplying the first and second equations of (1.5) by β3, and multiplying the third equation
of (1.5) by (β1 + β2), then adding the resulting equations, one obtains

[β3(u + v) + (β1 + β2)w]t =∆[β3(d1(w)u + d2(w)v) + (β1 + β2)w]

− β3(α1u + α2v) + σ(β1 + β2)w
(
1 −

w
K

)
.

(2.9)

Thus, integrating Eq (2.9) with respect to x over Ω, we have

d
dt

∫
Ω

[β3(u + v) + (β1 + β2)w] + β3

∫
Ω

(α1u + α2v) +
σ(β1 + β2)

K

∫
Ω

w2 = σ(β1 + β2)
∫
Ω

w. (2.10)

Using Young’s inequality, one has

(σ + 1)(β1 + β2)
∫
Ω

w ≤
σ(β1 + β2)

K

∫
Ω

w2 +
(σ + 1)2(β1 + β2)K|Ω|

4σ
,

which, substituted into Eq (2.10), gives

d
dt

∫
Ω

[β3u + β3v + (β1 + β2)w] + γ0

∫
Ω

[β3u + β3v + (β1 + β2)w] ≤ c1, (2.11)
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where γ0 := min{α1, α2, 1} and c1 := (σ+1)2(β1+β2)K|Ω|
4σ . Then, applying the Grönwall’s inequality to

Eq (2.11) gives ∫
Ω

(u + v) ≤
∫
Ω

(u0 + v0) +
(β1 + β2)

β3

∫
Ω

w0 +
c1

γ0β3
,

which yields Eq (2.7).
Next, we shall show Eq (2.8) holds based on some ideas in [8]. Under the homogeneous Neumann

boundary conditions, we define a shifted Laplacian operatorB = −∆+γ1 with γ1 := min
{

α1
2d1(0) ,

α2
2d2(0)

}
>

0. ThenB is a sectorial operator in Lp(Ω) for all p ∈ (1,∞) [32], and one can easily show that its inverse
B−1 satisfies

∥B−1ϕ∥L2 ≤ c2∥ϕ∥L2 for all ϕ ∈ L2(Ω), (2.12)

and
∥B−

1
2ϕ∥2L2 ≤ c2∥ϕ∥

2
L2 for all ϕ ∈ L2(Ω) (2.13)

for some constant c2 > 0. Using the assumptions in (H0) and Eq (2.1), we can derive that there exist
two positive constants δ1 and δ2 independent of t such for all j = 1, 2 one has

0 < δ1 ≤ |d′j(w)| ≤ δ2, (2.14)

and
0 < d j(K∗) ≤ d j(w) ≤ d j(0). (2.15)

Using the definition of B, we can rewrite Eq (2.9) as

[β3(u + v) + (β1 + β2)w]t + B[β3(d1(w)u + d2(w)v) + (β1 + β2)w]

= (γ1d1(w) − α1) β3u + (γ1d2(w) − α2) β3v + (γ1 + σ)(β1 + β2)w −
σ(β1 + β2)

K
w2

=: f (u, v,w).

(2.16)

Then applying the facts γ1 := min
{

α1
2d1(0) ,

α2
2d2(0)

}
> 0 and Eq (2.15) as well as 0 < w ≤ K∗ (see Eq (2.1)),

we can derive that

f (u, v,w) ≤ (γ1d1(0) − α1) β3u + (γ1d2(0) − α2) β3v + (γ1 + σ)(β1 + β2)K∗ ≤ c3,

where c3 := (γ1 + σ)(β1 + β2)K∗ > 0.
We multiply Eq (2.16) by B−1[β3(u + v) + (β1 + β2)w] ≥ 0 and integrate the result with respect to x

over Ω to obtain

1
2

d
dt

∫
Ω

∣∣∣∣B− 1
2 [β3(u + v) + (β1 + β2)w]

∣∣∣∣2
+

∫
Ω

[β3(d1(w)u + d2(w)v) + (β1 + β2)w] · [β3(u + v) + (β1 + β2)w]

≤ c3

∫
Ω

B−1[β3(u + v) + (β1 + β2)w],
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which combined with Eq (2.15) enables us to find a positive constant γ2 := min{d1(K∗), d2(K∗), 1} such
that

d
dt

∫
Ω

∣∣∣∣B− 1
2 [β3(u + v) + (β1 + β2)w]

∣∣∣∣2 + 2γ2

∫
Ω

[β3(u + v) + (β1 + β2)w]2

≤2c3

∫
Ω

B−1[β3(u + v) + (β1 + β2)w].
(2.17)

On one hand, using Eq (2.12), the Hölder inequality and Young’s inequality, one has

2c3

∫
Ω

B−1[β3(u + v) + (β1 + β2)w] ≤ 2c3|Ω|
1
2
∥∥∥B−1[β3(u + v) + (β1 + β2)w]

∥∥∥
L2

≤ 2c2c3|Ω|
1
2 ∥β3(u + v) + (β1 + β2)w∥L2

≤
γ2

2

∫
Ω

[β3(u + v) + (β1 + β2)w]2 +
2c2

2c2
3|Ω|

γ2
.

(2.18)

On the other hand, using Eq (2.13), we get

γ2

2c2

∫
Ω

|B−
1
2 [β3(u + v) + (β1 + β2)w]|2 ≤

γ2

2

∫
Ω

[β3(u + v) + (β1 + β2)w]2. (2.19)

Defining z(t) :=
∫
Ω
|B−

1
2 [β3(u+ v)+ (β1 + β2)w]|2, and substituting Eqs (2.18) and (2.19) into Eq (2.17),

we obtain

z′(t) +
γ2

2c2
z(t) + γ2

∫
Ω

[β3(u + v) + (β1 + β2)w]2 ≤
2c2

2c2
3|Ω|

γ2
. (2.20)

Then applying the Grönwall’s inequality to Eq (2.20) alongside Eq (2.13), one has

z(t) ≤
4c3

2c2
3|Ω|

γ2
2

+

∫
Ω

∣∣∣∣B− 1
2 [β3(u0 + v0) + (β1 + β2)w0]

∣∣∣∣2
≤

4c3
2c2

3|Ω|

γ2
2

+ c2

∫
Ω

|β3(u0 + v0) + (β1 + β2)w0|
2 ≤ c4.

(2.21)

Integrating Eq (2.20) over (t, t + τ) for τ = min{1,Tmax/2} and applying Eq (2.21), we get

γ2β
2
3

∫ t+τ

t

∫
Ω

(u2 + v2) ≤ γ2

∫ t+τ

t

∫
Ω

[β3(u + v) + (β1 + β2)w]2

≤
2c2

2c2
3|Ω|τ

γ2
+ z(t)

≤
2c2

2c2
3|Ω|

γ2
+ c4,

which gives Eq (2.8). Then we complete the proof of Lemma 2.4. □

Lemma 2.5. Let (u, v,w) be the classical solution of (1.5) and τ = min{1,Tmax/2}. Then it holds that∫ t+τ

t

∫
Ω

|∇w|2 ≤ K3 for all t ∈ (0,Tmax − τ), (2.22)
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and
∥∇w∥L2 ≤ K4 for all t ∈ (0,Tmax), (2.23)

as well as ∫ t+τ

t

∫
Ω

|∆w|2 ≤ K5 for all t ∈ (0, ,Tmax − τ), (2.24)

where the positive constants K3, K4 and K5 are independent of t.

Proof. Multiplying the third equation of (1.5) by w, integrating the resulting equation by parts and
using 0 < w ≤ K∗ in Eq (2.1), we obtain

d
dt

∫
Ω

w2 + 2
∫
Ω

|∇w|2 + 2β3

∫
Ω

uvw2

u + v
+

2σ
K

∫
Ω

w3 = 2σ
∫
Ω

w2 ≤ 2σK2
∗ |Ω|. (2.25)

Integrating Eq (2.25) over (t, t + τ) and using the facts 0 < τ ≤ 1 and Eq (2.1), one has Eq (2.22)
directly.

Next, we multiply the third equation of (1.5) by −∆w, use the integration by parts to the resulting
equation, and apply Young’s inequality as well as Eq (2.1) to get

d
dt

∫
Ω

|∇w|2 + 2
∫
Ω

|∆w|2 = 2β3

∫
Ω

uvw
u + v

∆w +
2σ
K

∫
Ω

w2∆w − 2σ
∫
Ω

w∆w

≤

∫
Ω

|∆w|2 + 3β2
3

∫
Ω

( uvw
u + v

)2
+

3σ2

K2

∫
Ω

w4 + 3σ2
∫
Ω

w2

≤

∫
Ω

|∆w|2 + 3β2
3K2
∗

∫
Ω

u2 +
3σ2K4

∗ |Ω|

K2 + 3σ2K2
∗ |Ω|,

which entails
d
dt

∫
Ω

|∇w|2 +
∫
Ω

|∆w|2 ≤ 3β2
3K2
∗

∫
Ω

u2 + c1, (2.26)

where c1 := 3σ2K4
∗ |Ω|

K2 + 3σ2K2
∗ |Ω|. Applying a Gagliardo-Nirenberg type inequality derived in [16,

Lemma 2.5] and noting the fact ∥w∥L2 ≤ K∗|Ω|
1
2 , we have∫

Ω

|∇w|2 ≤ c2(∥∆w∥L2∥w∥L2 + ∥w∥2L2)

≤ c2K∗|Ω|
1
2
(
∥∆w∥L2 + K∗|Ω|

1
2
)

≤
1
2

∫
Ω

|∆w|2 +
(2 + c2)c2K2

∗ |Ω|

2
,

which substituted into Eq (2.26) gives

d
dt

∫
Ω

|∇w|2 +
∫
Ω

|∇w|2 +
1
2

∫
Ω

|∆w|2 ≤ c3

(∫
Ω

u2 + 1
)
, (2.27)

with c3 := 3β2
3K2
∗ + c1 +

(2+c2)c2K2
∗ |Ω|

2 . For any t ∈ (0,Tmax), by Eq (2.22) there exists a t0 := t0(t) ∈
((t − τ)+, t) such that t0 ≥ 0 and ∫

Ω

|∇w(x, t0)|2dx ≤ c4. (2.28)
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Moreover, from Eq (2.8), we know that∫ t0+τ

t0

∫
Ω

u2(x, s)dxds ≤ K2 for all t0 ∈ (0,Tmax − τ). (2.29)

Multiplying Eq (2.27) by et and integrating the results with respect to t over (t0, t), and using the facts
Eqs (2.28) and (2.29) and t0 < t ≤ t0 + τ ≤ t0 + 1, one has

∥∇w(·, t)∥2L2 ≤ et0−t∥∇w(·, t0)∥2L2 + e−tc3

∫ t

t0
es

(
∥u(·, s)∥2L2 + 1

)
≤ c4 + c3

∫ t

t0

(
∥u(·, s)∥2L2 + 1

)
≤ c4 + c3

∫ t0+τ

t0

(
∥u(·, s)∥2L2 + 1

)
≤ c4 + c3K2 + c3.

Hence Eq (2.23) holds. On the other hand, integrating Eq (2.27) along with Eqs (2.8) and (2.23), it
holds that ∫ t+τ

t

∫
Ω

|∆w|2 ≤ 2c3

∫ t+τ

t

∫
Ω

u2 + 2c3τ + 2
∫
Ω

|∇w(·, t)|2

≤ 2c3(K2 + 1) + 2K2
4 ,

which gives Eq (2.24). Then we complete the proof of Lemma 2.5. □

3. Global existence: Proof of Theorem 1.1

In this section, we shall show the existence of global classical solution based on some ideas in [8].
To this end, we first establish the a priori L2-estimates of u and v.

Lemma 3.1 (L2-Boundedness). Suppose that the assumptions in Lemma 2.1 hold and let (u, v,w) be
the classical solution of (1.5) which is defined on its maximal existence time interval [0,Tmax). Then
the solution of (1.5) satisfies

∥u(·, t)∥L2 + ∥v(·, t)∥L2 ≤ K6 for all t ∈ (0,Tmax), (3.1)

where the constant K6 > 0 is independent of t.

Proof. Multiplying the first equation of (1.5) by u, integrating the results with respect to x over Ω by
parts and using the fact u, v > 0 for all t ∈ (0,Tmax), we have

1
2

d
dt

∫
Ω

u2 + α1

∫
Ω

u2 +

∫
Ω

d1(w)|∇u|2 = β1

∫
Ω

uvw
u + v

u −
∫
Ω

d′1(w)u∇w · ∇u

≤ β1K∗

∫
Ω

u2 +

∫
Ω

u|d′1(w)||∇w||∇u|,

which along with Eqs (2.14) and (2.15) indicates

1
2

d
dt

∫
Ω

u2 + α1

∫
Ω

u2 + d1(K∗)
∫
Ω

|∇u|2 ≤ β1K∗

∫
Ω

u2 + δ2

∫
Ω

u|∇w||∇u|. (3.2)
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Applying Young’s inequality and the Hölder inequality, one gets

δ2

∫
Ω

u|∇w||∇u| ≤
d1(K∗)

2

∫
Ω

|∇u|2 +
δ2

2

2d1(K∗)

∫
Ω

u2|∇w|2

≤
d1(K∗)

2

∫
Ω

|∇u|2 +
δ2

2

2d1(K∗)
∥u∥2L4∥∇w∥2L4 ,

which updates Eq (3.2) as

d
dt
∥u∥2L2 + 2α1∥u∥2L2 + d1(K∗)∥∇u∥2L2 ≤ 2β1K∗∥u∥2L2 +

δ2
2

d1(K∗)
∥u∥2L4∥∇w∥2L4 . (3.3)

Using the Gagliardo-Nirenberg inequality, the following inequality [16, Lemma 2.5]

∥∇w∥2L4 ≤ c1(∥∆w∥L2∥∇w∥L2 + ∥∇w∥2L2),

and Eq (2.23), we obtain

δ2
2

d1(K∗)
∥u∥2L4∥∇w∥2L4 ≤ c2(∥∇u∥L2∥u∥L2 + ∥u∥2L2)(∥∆w∥L2 K4 + K2

4)

≤ c2K4∥∇u∥L2∥u∥L2∥∆w∥L2 + c2K4∥u∥2L2∥∆w∥L2

+ c2K2
4∥∇u∥L2∥u∥L2 + c2K2

4∥u∥
2
L2

≤ d1(K∗)∥∇u∥2L2 + c3∥u∥2L2∥∆w∥2L2 + c4∥u∥2L2 ,

(3.4)

where c3 := c2
2K2

4
d1(K∗)

and c4 := c2
2K4

4
2d1(K∗)

+
d1(K∗)

2 + c2K2
4 .

Then substituting Eq (3.4) into Eq (3.3), we obtain

d
dt
∥u∥2L2 ≤ (2β1K∗ + c4)∥u∥2L2 + c3∥u∥2L2∥∆w∥2L2

≤ c5∥u∥2L2(1 + ∥∆w∥2L2),
(3.5)

where c5 := 2β1K∗ + c4 + c3. For any t ∈ (0,Tmax), by Eq (2.8) there exists a t0 := t0(t) ∈ ((t − τ)+, t)
such that t0 ≥ 0 and ∫

Ω

u2(x, t0)dx ≤ c6. (3.6)

On the other hand, from Eq (2.24), we know that∫ t0+τ

t0

∫
Ω

|∆w(x, s)|2dxds ≤ K5, for all t ∈ (0,Tmax − τ). (3.7)

Then integrating Eq (3.5) with respect to t over (t0, t), and using the Eqs (3.6) and (3.7) and t ≤ t0 + τ ≤

t0 + 1, one has

∥u(·, t)∥2L2 ≤ ∥u(·, t0)∥2L2 · e
c5

∫ t
t0

(1+∥∆w(·,s)∥2
L2 )ds

≤ ∥u(·, t0)∥2L2 · e
c5

∫ t0+τ
t0

(1+∥∆w(·,s)∥2
L2 )ds

≤ c6ec5(1+K5).

(3.8)

Similarly, we can show that
∥v(·, t)∥2L2 ≤ c7. (3.9)

Then the combination of Eqs (3.8) and (3.9) gives Eq (3.1). The proof of Lemma 3.1 is completed. □
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Lemma 3.2 (L∞-Boundedness). Suppose that the assumptions in Lemma 2.1 hold and let (u, v,w) be
the classical solution of (1.5) defined on its maximal existence time interval [0,Tmax). Then it holds
that

∥u(·, t)∥L∞ + ∥v(·, t)∥L∞ ≤ K7 for all t ∈ (0,Tmax), (3.10)

where the constant K7 > 0 is independent of t.

Proof. Multiplying the first equation of (1.5) by up−1 with p > 2 and integrating the resulting equation
over Ω by parts, one has

1
p

d
dt

∫
Ω

up + (p − 1)
∫
Ω

up−2d1(w)|∇u|2 + α1

∫
Ω

up

= −(p − 1)
∫
Ω

up−1d′1(w)∇u · ∇w + β1

∫
Ω

vw
u + v

up.

(3.11)

Using Eqs (2.14) and (2.15) and 0 < vw
u+v ≤ w ≤ K∗ which is satisfied by the fact u, v > 0 for all

t ∈ (0,Tmax), from Eq (3.11) we get

1
p

d
dt

∫
Ω

up + (p − 1)d1(K∗)
∫
Ω

up−2|∇u|2 + α1

∫
Ω

up

≤ (p − 1)δ2

∫
Ω

up−1|∇u||∇w| + β1K∗

∫
Ω

up

≤
(p − 1)d1(K∗)

2

∫
Ω

up−2|∇u|2 +
δ2

2(p − 1)
2d1(K∗)

∫
Ω

up|∇w|2 + β1K∗

∫
Ω

up,

which together with the fact

2(p − 1)d1(K∗)
p

∫
Ω

|∇u
p
2 |2 =

p(p − 1)d1(K∗)
2

∫
Ω

up−2|∇u|2,

gives

d
dt

∫
Ω

up +
2(p − 1)d1(K∗)

p

∫
Ω

|∇u
p
2 |2 + α1 p

∫
Ω

up

≤
p(p − 1)δ2

2

2d1(K∗)

∫
Ω

up|∇w|2 + pβ1K∗

∫
Ω

up.

(3.12)

Noting the fact ∥u∥L2 ≤ K6 in Eq (3.1), and using Lemma 2.3, we can find a constant c1 > 0 such that

∥∇w∥L4 ≤ c1. (3.13)

Then we can use the Hölder inequality, Gagliardo-Nirenberg inequality and Young’s inequality as well
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as Eq (3.13) to obtain

p(p − 1)δ2
2

2d1(K∗)

∫
Ω

up|∇w|2 ≤
p(p − 1)δ2

2

2d1(K∗)

(∫
Ω

u2p

) 1
2
(∫
Ω

|∇w|4
) 1

2

≤
p(p − 1)c2

1δ
2
2

2d1(K∗)

(∫
Ω

u2p

) 1
2

≤
p(p − 1)c2

1δ
2
2

2d1(K∗)
∥u

p
2 ∥2L4

≤ c2

(
∥∇u

p
2 ∥

2(1− 1
p )

L2 ∥u
p
2 ∥

2
p

L
4
p
+ ∥u

p
2 ∥2

L
4
p

)
≤ c2K6∥∇u

p
2 ∥

2(1− 1
p )

L2 + c2K p
6

≤
(p − 1)d1(K∗)

p

∫
Ω

|∇u
p
2 |2 +

(
c2K6

d1(K∗)

)p d1(K∗)
p
+ c2K p

6 ,

(3.14)

where we have used the fact that
∥u

p
2 ∥

L
4
p
= ∥u∥

p
2
L2 ≤ K

p
2

6 . (3.15)

Moreover, using the Gagliardo-Nirenberg inequality and Eq (3.15) again, we obtain

pβ1K∗

∫
Ω

up ≤ pβ1K∗∥u
p
2 ∥2L2

≤ c3

(
∥∇u

p
2 ∥

2(1− 2
p )

L2 ∥u
p
2 ∥

4
p

L
4
p
+ ∥u

p
2 ∥2

L
4
p

)
≤ c3K2

6∥∇u
p
2 ∥

2(1− 2
p )

L2 + c3K p
6

≤
(p − 1)d1(K∗)

p

∫
Ω

|∇u
p
2 |2 +

(
c3K2

6

d1(K∗)

) p
2 2d1(K∗)

p
+ c3K p

6 .

(3.16)

Then substituting Eqs (3.14) and (3.16) into Eq (3.12) yields

d
dt

∫
Ω

up + α1 p
∫
Ω

up ≤ c4(p), (3.17)

where

c4(p) :=
(

c2K6

d1(K∗)

)p d1(K∗)
p
+

(
c3K2

6

d1(K∗)

) p
2 2d1(K∗)

p
+ (c2 + c3)K p

6 .

Then applying the Grönwall’s inequality to Eq (3.17), we get

∥u(·, t)∥pLp ≤ ∥u0∥
p
Lp +

c4(p)
pα1

. (3.18)

Taking p = 4 in Eq (3.18), one enables ∥u(·, t)∥L4 ≤ c5, which together with Lemma 2.3 gives

∥∇w(·, t)∥L∞ ≤ c6,
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where the constant c6 > 0 is independent of t and p. Then using the Moser iteration process [33], there
exists a constant c7 > 0 independent of t such that

∥u(·, t)∥L∞ ≤ c7. (3.19)

Similarly, we can find a constant c8 > 0 such that

∥v(·, t)∥L∞ ≤ c8. (3.20)

Then the combination of Eqs (3.19) and (3.20) gives Eq (3.10). The proof of Lemma 3.2 is completed.
□

Proof of Theorem 1.1. From Lemma 3.2, we know there exists a constant c1 > 0 independent of t such
that

∥u(·, t)∥L∞ + ∥v(·, t)∥L∞ + ∥∇w(·, t)∥L∞ ≤ c1,

which along with the extensibility criterion in Lemma 2.1 and Lemma 2.2 gives Theorem 1.1. □

4. Global stabilization: Proof of Theorem 1.3

Under the condition K > α1
β1
+ α2

β2
, the system (1.5) has only one positive constant steady states

(u∗, v∗,w∗) which is defined in Eq (1.8). In what follows, we shall show that the co-existence steady
state (u∗, v∗,w∗) is globally asymptotically stable based on the following energy functional:

E(t) := E(u, v,w) = β2v∗Ju(t) + β1u∗Jv(t) +
β1β2(u∗ + v∗)

β3
Jw(t), (4.1)

where

Jz(t) =
∫
Ω

(
z − z∗ − z∗ ln

z
z∗

)
, z = u, v,w.

Then we have the following results.

Lemma 4.1. Let (u, v,w) be the solution of system (1.5) obtained in Theorem 1.1. If K > α1
β1
+ α2

β2
and

1
σ
> max

0<w≤K

(
|d′1(w)|2w2

β1d1(w)
+
|d′2(w)|2w2

β2d2(w)

)
K − w∗
4Kw∗

, (4.2)

then the co-existence steady states (u∗, v∗,w∗) is globally asymptotically stable.

Proof. Letting ψ( f ) = f − f∗ ln f and applying Taylor’s expansion, for all positive f∗ and f , one has

f − f∗ − f∗ ln
f
f∗
= ψ( f ) − ψ( f∗) = ψ′( f∗)( f − f∗) +

1
2
ψ′′(ξ)( f − f∗)2

=
f∗

2ξ2 ( f − f∗)2,

(4.3)

where ξ is between f and f∗. Then choosing f = u and f∗ = u∗, we obtain from Eq (4.3) that there
exists ξ1 is between u and u∗ such that

Ju(t) =
∫
Ω

(
u − u∗ − u∗ ln

u
u∗

)
=

∫
Ω

u∗
2ξ2

1

(u − u∗)2 ≥ 0,
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and Ju(t) = 0 iff u = u∗. Using the similar way, one has Jv(t), Jw(t) ≥ 0 and “=” holds iff v =
v∗, w = w∗. Hence according to the definition of E(t) in Eq (4.1), we obtain that E(u, v,w) > 0 for all
(u, v,w) , (u∗, v∗,w∗) and moreover E(u∗, v∗,w∗) = 0.

Next, we shall show that d
dtE(t) ≤ 0 under the conditions Eq (4.2) and K > α1

β1
+ α2

β2
. In fact, using

the equations in Eq (1.5), one has

dE(t)
dt
= β2v∗

∫
Ω

(u − u∗
u

)
ut + β1u∗

∫
Ω

(v − v∗
v

)
vt +

β1β2(u∗ + v∗)
β3

∫
Ω

(w − w∗
w

)
wt

= −β2v∗u∗

∫
Ω

d1(w)|∇u|2

u2 − β2v∗u∗

∫
Ω

d′1(w)∇u · ∇w
u

+ β2v∗

∫
Ω

(u − u∗)
(
β1vw
u + v

− α1

)
− β1u∗v∗

∫
Ω

d2(w)|∇v|2

v2 − β1u∗v∗

∫
Ω

d′2(w)∇v · ∇w
v

+ β1u∗

∫
Ω

(v − v∗)
(
β2uw
u + v

− α2

)
−
β1β2(u∗ + v∗)w∗

β3

∫
Ω

|∇w|2

w2 +
β1β2(u∗ + v∗)

β3

∫
Ω

(w − w∗)
(
σ −

σw
K
−
β3uv
u + v

)
,

which can be rewritten as

dE(t)
dt
= −

∫
Ω

XT BX + β2v∗

∫
Ω

(u − u∗)
(
β1vw
u + v

− α1

)
+ β1u∗

∫
Ω

(v − v∗)
(
β2uw
u + v

− α2

)
+
β1β2(u∗ + v∗)

β3

∫
Ω

(w − w∗)
(
σ −

σw
K
−
β3uv
u + v

)
=: −

∫
Ω

XT BX + J1 + J2 + J3,

(4.4)

where

X =


∇u
u
∇v
v
∇w
w

 and B =


v∗u∗d1(w)β2 0 β2v∗u∗d′1(w)w

2

0 β1u∗v∗d2(w) β1u∗v∗d′2(w)w
2

β2v∗u∗d′1(w)w
2

β1u∗v∗d′2(w)w
2

β1β2(u∗+v∗)w∗
β3

 .
After some calculations, we can check that the matrix B is positive definite provided

4(u∗ + v∗)w∗
β3u∗v∗

>
|d′1(w)|2w2

β1d1(w)
+
|d′2(w)|2w2

β2d2(w)
,

which, together with the fact β3u∗v∗
u∗+v∗

= σ(1 − w∗
K ) (see Eq (1.7)), gives

1
σ
>

K − w∗
4Kw∗

F(w), (4.5)

where the function

F(w) :=
|d′1(w)|2w2

β1d1(w)
+
|d′2(w)|2w2

β2d2(w)
.
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If ∥w0∥L∞ ≤ K, one can easily check that Eq (4.5) holds provided Eq (4.2) is true. Now, we consider
the cases ∥w0∥L∞ ≥ K. In fact if Eq (4.2) holds, then there exists a small ε0 > 0 such that

1
σ
>

K − w∗
4Kw∗

max
0<w≤K

F(w) + ε0. (4.6)

From the assumptions (H0), we know that F(w) belongs to C1([0,∞)), which combined with the fact
Eq (2.2), implies that

lim sup
t→∞

K − w∗
4Kw∗

F(w) =
K − w∗
4Kw∗

lim sup
t→∞

F(w) ≤
K − w∗
4Kw∗

max
0<w≤K

F(w),

and thus for the chosen ε0 in Eq (4.6), there exists a T∗ > 0 such that

K − w∗
4Kw∗

F(w) ≤
K − w∗
4Kw∗

max
0<w≤K

F(w) + ε0 for all (x, t) ∈ Ω̄ × [T∗,∞). (4.7)

Then the combination of Eqs (4.6) and (4.7) gives

1
σ
>

K − w∗
4Kw∗

F(w), for all (x, t) ∈ Ω̄ × [T∗,∞).

Hence the matrix B is positive and there is a constant c1 > 0 such that

−

∫
Ω

XT BX ≤ −c1

∫
Ω

(
|∇u|2

u2 +
|∇v|2

v2 +
|∇w|2

w2

)
for all t ≥ T∗. (4.8)

On the other hand, using the fact α1
β1
= v∗w∗

u∗+v∗
(see Eq (1.7)), one gets

J1 : = β2v∗

∫
Ω

(u − u∗)
(
β1vw
u + v

− α1

)
= β1β2v∗

∫
Ω

(u − u∗)
(

vw
u + v

−
α1

β1

)
= β1β2v∗

∫
Ω

(u − u∗)
(

vw
u + v

−
v∗w∗

u∗ + v∗

)
=
β1β2v∗
u∗ + v∗

∫
Ω

(u − u∗)
vwu∗ + vwv∗ − uv∗w∗ − vv∗w∗

u + v
,

which together with the fact

vwu∗ + vwv∗ − uv∗w∗ − vv∗w∗ = vv∗(w − w∗) + vwu∗ − uv∗w∗
= vv∗(w − w∗) + vu∗(w − w∗) + vw∗u∗ − uv∗w∗
= v(u∗ + v∗)(w − w∗) + vw∗u∗ − vw∗u + vw∗u − uv∗w∗
= v(u∗ + v∗)(w − w∗) − vw∗(u − u∗) + uw∗(v − v∗),

gives

J1 =β1β2v∗

∫
Ω

v(u − u∗)(w − w∗)
u + v

+
β1β2v∗w∗
u∗ + v∗

∫
Ω

u(u − u∗)(v − v∗)
u + v

−
β1β2v∗w∗
u∗ + v∗

∫
Ω

v(u − u∗)2

u + v
.

(4.9)
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Similarly, we can use the fact α2
β2
= u∗w∗

u∗+v∗
(see Eq (1.7)) to obtain

J2 : = β1u∗

∫
Ω

(v − v∗)
(
β2uw
u + v

− α2

)
= β1β2u∗

∫
Ω

u(v − v∗)(w − w∗)
u + v

+
β1β2u∗w∗
u∗ + v∗

∫
Ω

v(u − u∗)(v − v∗)
u + v

−
β1β2u∗w∗
u∗ + v∗

∫
Ω

u(v − v∗)2

u + v
.

(4.10)

At last, using the fact σ = β3u∗v∗
u∗+v∗

+ σw∗
K (see Eq (1.7)), we have

J3 : =
β1β2(u∗ + v∗)

β3

∫
Ω

(w − w∗)
(
σ −

σw
K
−
β3uv
u + v

)
=
β1β2(u∗ + v∗)

β3

∫
Ω

(w − w∗)
(
β3u∗v∗
u∗ + v∗

−
β3uv
u + v

)
−
β1β2(u∗ + v∗)σ

β3K

∫
Ω

(w − w∗)2

= β1β2(u∗ + v∗)
∫
Ω

(w − w∗)
u∗v∗u + u∗v∗v − uvu∗ − uvv∗

(u + v)(u∗ + v∗)

−
β1β2(u∗ + v∗)σ

β3K

∫
Ω

(w − w∗)2

= −β1β2u∗

∫
Ω

u(v − v∗)(w − w∗)
u + v

− β1β2v∗

∫
Ω

v(u − u∗)(w − w∗)
u + v

−
β1β2(u∗ + v∗)σ

β3K

∫
Ω

(w − w∗)2.

(4.11)

Combining Eqs (4.9) and (4.10) with Eq (4.11), we have

3∑
j=1

J j =
β1β2w∗
u∗ + v∗

∫
Ω

(v∗u + u∗v)(u − u∗)(v − v∗)
u + v

−
β1β2w∗
u∗ + v∗

∫
Ω

vv∗(u − u∗)2 + uu∗(v − v∗)2

u + v
−
β1β2(u∗ + v∗)σ

β3K

∫
Ω

(w − w∗)2

=
β1β2w∗
u∗ + v∗

∫
Ω

f (u, v)
u + v

−
β1β2(u∗ + v∗)σ

β3K

∫
Ω

(w − w∗)2,

(4.12)

where

f (u, v) = (v∗u + u∗v)(u − u∗)(v − v∗) − vv∗(u − u∗)2 − uu∗(v − v∗)2

= v∗(u − u∗)(u − u∗)(v − v∗) + v∗u∗(u − u∗)(v − v∗)
+ u∗(v − v∗)(u − u∗)(v − v∗) + u∗v∗(u − u∗)(v − v∗)
− vv∗(u − u∗)2 − uu∗(v − v∗)2

= v∗(u − u∗)2(v − v∗) + 2v∗u∗(u − u∗)(v − v∗)
+ u∗(u − u∗)(v − v∗)2 − vv∗(u − u∗)2 − uu∗(v − v∗)2

= −v2
∗(u − u∗)2 − u2

∗(v − v∗)2 + 2u∗v∗(u − u∗)(v − v∗)
= −(v∗u − u∗v)2.
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Then we can update Eq (4.12) as

3∑
j=1

J j = −
β1β2w∗
u∗ + v∗

∫
Ω

(v∗u − u∗v)2

u + v
−
β1β2(u∗ + v∗)σ

β3K

∫
Ω

(w − w∗)2. (4.13)

Substituting Eqs (4.8) and (4.13) into Eq (4.4) gives for all t ≥ T∗

dE(t)
dt
≤ −

β1β2w∗
u∗ + v∗

∫
Ω

(v∗u − u∗v)2

u + v
−
β1β2(u∗ + v∗)σ

β3K

∫
Ω

(w − w∗)2

− c1

∫
Ω

(
|∇u|2

u2 +
|∇v|2

v2 +
|∇w|2

w

)
,

which indicates dE(t)
dt ≤ 0 for all u, v,w. Moreover, one can check that if dE(t)

dt = 0, then ∇u = ∇v = 0
and w = w∗, which implies that

u = ũ∗, v = ṽ∗

with ũ∗ and ṽ∗ are some positive constants. Since (u, v,w) = (ũ∗, ṽ∗,w∗) is a solution of (1.5), then one
has 

β1ṽ∗w∗
ũ∗+ṽ∗

− α1 = 0,
β2ũ∗w∗
ũ∗+ṽ∗

− α2 = 0,
β3ũ∗ṽ∗
ũ∗+ṽ∗

− σ + σw∗
K = 0,

which gives

ũ∗ =
σ

β3

(
1 −

w∗
K

) (
1 +

α2β1

α1β2

)
= u∗, ṽ∗ =

σ

β3

(
1 −

w∗
K

) (
1 +

α1β2

α2β1

)
= v∗,

Thus dE(t)
dt = 0 if and only if (u, v,w) = (u∗, v∗,w∗). By using the LaSalle’s invariant principle (cf.

[41, Theorem 5.24]), we get that the co-existence steady state (u∗, v∗,w∗) is globally asymptotically
stable. □

Proof of Theorem 1.3. Theorem 1.3 is a consequence of Lemma 4.1. □

5. Spatio-temporal patterns

In this section, we assume K > α1
β1
+ α2

β2
and will study the effect of density-suppressed dispersals on

the dynamics of the system (1.5).

5.1. Linear instability analysis

Denote d j := d j(w∗), d
′

j := d
′

j(w∗) ( j = 1, 2) and linearize (1.5) at (u∗, v∗,w∗) to obtain
Φt = A∆Φ + BΦ, x ∈ Ω, t > 0,
(ν · ∇)Φ = 0, x ∈ ∂Ω, t > 0,
Φ(x, 0) = (u0 − u∗, v0 − v∗,w0 − w∗)T , x ∈ Ω,

(5.1)
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where T denotes the transpose and

Φ =


u − u∗
v − v∗
w − w∗

 , A =

d1 0 d

′

1u∗
0 d2 d

′

2v∗
0 0 1

 , B = (Bi j)3×3

with

B11 = −
α1u∗

u∗ + v∗
< 0, B12 =

α2β1u∗
β2(u∗ + v∗)

> 0, B13 =
β1u∗v∗
u∗ + v∗

> 0,

B21 =
α1β2v∗

β1(u∗ + v∗)
> 0, B22 = −

α2v∗
u∗ + v∗

< 0, B23 =
β2u∗v∗
u∗ + v∗

> 0,

B31 = −
α1β3v∗

β1(u∗ + v∗)
< 0, B32 = −

α2β3u∗
β2(u∗ + v∗)

< 0, B33 = −
σw∗

K
< 0.

Then by the standard linear stability principle, the linear stability of (u∗, v∗,w∗) is determined by the
eigenvalues of the matrix (−µkA + B) where the sequence {µk}

∞
k=0 with 0 = µ0 < µ1 ≤ µ2 ≤ µ3 ≤ . . .

denotes the eigenvalues of −∆ under the Neumann boundary condition. The characteristic equation of
(−µkA + B) is

ρ3 + D1(µk)ρ2 + D2(µk, |d′j|)ρ + D3(µk, |d′j|) = 0, (5.2)

where
D1(µk) := µk(d1 + d2 + 1) +

σw∗
K
+
α1u∗ + α2v∗

u∗ + v∗
> 0,

D2(µk, |d′j|) :=µ2
k(d1d2 + d1 + d2) + µk

{
(d1 + d2)

σw∗
K
+ (d1 + 1)

α2v∗
u∗ + v∗

+ (d2 + 1)
α1u∗

u∗ + v∗

}
+ µk

{
β3u∗v∗
u∗ + v∗

(
−
α1d′1
β1
−
α2d′2
β2

)}
+
β3u∗v∗(α1v∗ + α2u∗)

(u∗ + v∗)2 +
σw∗(α1u∗ + α2v∗)

K(u∗ + v∗)
> 0,

D3(µk, |d′j|) :=µ3
kd1d2 + µ

2
k

{
d1d2

σw∗
K
+ d1

α2v∗
u∗ + v∗

+ d2
α1u∗

u∗ + v∗
+
β3u∗v∗
u∗ + v∗

(
−
α1d′1d2

β1
−
α2d1d′2
β2

)}
+ µk

{
d1

α2v∗
u∗ + v∗

(
σw∗

K
+

β3u2
∗

u∗ + v∗

)
+ d2

α1u∗
u∗ + v∗

(
σw∗

K
+

β3v2
∗

u∗ + v∗

)}
+ µk

{
α1α2β3u∗v∗

u∗ + v∗

(
−

d′1
β1
−

d′2
β2

)}
+
α1α2β3u∗v∗

u∗ + v∗
> 0.

Hence, by direct calculations, one has

H(µk, |d′j|) : = D1(µk)D2(µk, |d′j|) − D3(µk, |d′j|)

= γ1µ
3
k + γ2µ

2
k + γ3µk + A1A2 − A3 + A0(µk, |d′j|) + A4(µk, |d′j|),

(5.3)

where γ1, γ2, γ3 are positive constants and A1A2 − A3 > 0 are independent of d′j ( j = 1, 2) and µk (see
details in the Appendix for the precise definitions of γi and Ai, i = 1, 2, 3), and

A0(µk, |d′j|) := µ2
k
β3u∗v∗
u∗ + v∗

{
−

(d1 + 1)α1d′1
β1

−
(d2 + 1)α2d′2

β2

}
≥ 0,
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as well as

A4(µk, |d′j|) := µk
β3u∗v∗

(u∗ + v∗)

{
(−d′1)α1

β1

(
σw∗

K
+

(α1 − α2)u∗
u∗ + v∗

)
+

(−d′2)α2

β2

(
σw∗

K
+

(α2 − α1)v∗
u∗ + v∗

)}
.

Then using the Routh-Hurwitz criterion, we have the results stated as below.

Proposition 5.1. The (u∗, v∗,w∗) is linearly stable if one of the following conditions holds:

1) d1(w), d2(w) are constants with σ > 0;
2) d′j(w) < 0 with σ > 0 if α1 = α2 or σ ≥ Kβ1β2 f (β)|α1−α2 |

(α1β2+α2β1)2 if α1 , α2, where

f (β) :=

α2β1, if α1 < α2,

α1β2, if α1 > α2,
(5.4)

and j = 1, 2.

Proof. In the case that d j(w) ( j = 1, 2) are constants, one has

A0(µk, |d′j|) = A4(µk, |d′j|) = 0.

On the other hand, considering the case d′j(w) < 0. If α1 = α2, we get

A0(µk, |d′j|), A4(µk, |d′j|) > 0.

As for α1 , α2 with

σ ≥
Kβ1β2 f (β)|α1 − α2|

(α1β2 + α2β1)2 ,

we can calculate to get
A0(µk, |d′j|) > 0, A4(µk, |d′j|) ≥ 0.

All cases discussed above indicate D1(µk)D2(µk, |d′j|) − D3(µk, |d′j|) > 0 for all k ∈ N. Then by the
Routh-Hurwitz criterion [34], we know (u∗, v∗,w∗) is linearly stable. □

Hence, we are left to study the possible patterns bifurcating from the co-existence steady state
(u∗, v∗,w∗) in the following range of parameters:

(H1) α1 , α2, 0 < σ < Kβ1β2 f (β)|α1−α2 |

(α1β2+α2β1)2 and d′i (w) < 0, where i = 1 if α1 < α2 or i = 2 if α1 > α2 and f (β)
is defined in (5.4).

Proposition 5.2. Let σ,K, α1, α2, β1, β2 and β3 be fixed positive parameters, and suppose the
assumption (H1) holds. Then (u∗, v∗,w∗) is linearly unstable provided that |d

′

1(w∗)| is large enough if
α1 < α2 (or |d′2(w∗)| is large enough if α2 < α1) and there is some k0 ≥ 1 such that

0 < µk0 <


1

1+d1

∣∣∣∣σw∗
K +

(α1−α2)u∗
u∗+v∗

∣∣∣∣ , if α1 < α2,

1
1+d2

∣∣∣∣σw∗
K +

(α2−α1)v∗
u∗+v∗

∣∣∣∣ , if α1 > α2.

(5.5)
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Proof. Noting that H(µk, |d′j|) can be rewritten as

H(µk, |d′j|) = γ1µ
3
k + γ2µ

2
k + γ3µk + A1A2 − A3

+
(−d′1)α1β3u∗v∗
β1(u∗ + v∗)

{
(d1 + 1)µ2

k +

(
σw∗

K
+

(α1 − α2)u∗
u∗ + v∗

)
µk

}
+

(−d′2)α2β3u∗v∗
β2(u∗ + v∗)

{
(d2 + 1)µ2

k +

(
σw∗

K
+

(α2 − α1)v∗
u∗ + v∗

)
µk

}
.

Since (H1) holds, then for some fixed µk0 > 0 satisfying Eq (5.5), we have

H(µk, |d′j|) := D1(µk)D2(µk, |d′j|) − D3(µk, |d′j|) < 0

when |d′1(w∗)| is large enough if α1 < α2 (or |d′2(w∗)| is large enough if α2 < α1) and (u∗, v∗,w∗) is
linearly unstable by the Routh-Hurwitz criterion [40]. □

Remark 5.3. The above results imply that the density-suppressed diffusion can induce the instability
of (u∗, v∗,w∗) and trigger the pattern formation.

5.2. Numerical simulations

In this subsection, we aim to give some numerical simulations to complement the previous analysis
in Section 5.1. Without loss of generality, we assume α1 < α2, and define the set

H = {(|d′1|, η) ∈ R2
+ : H(|d′1|, η) = 0}

as the bifurcation curve [35], where the linearized system (5.1) admits an eigenvalue with zero real part
and the curveH is the graph of the function

dH (η) =
β1(u∗ + v∗)
α1β3u∗v∗

(
−(d1 + 1)η −

σw∗
K
−

(α1 − α2)u∗
u∗ + v∗

)−1

·

{(
η2γ1 + ηγ2 + γ3 +

A1A2 − A3

η

)
+

(−d′2)α2β3u∗v∗
β2(u∗ + v∗)

(
(d2 + 1)η +

σw∗
K
+

(α2 − α1)v∗
u∗ + v∗

)}
,

(5.6)

where the constants γ j, A j > 0 ( j = 1, 2, 3) are given in the Appendix. Then the characteristic Eq (5.2)
has a pair of purely imaginary eigenvalues if |d′1(w∗)| = dH (µk0) for some k0 ∈ N and µk0 satisfying Eq
(5.5) and the Hopf bifurcation may emerge.

We first fix parameter values as follows:

β1 = 0.3, β2 = 1, β3 = 1.3, α1 = 0.1, α2 = 1,K = 2. (5.7)

Then by the assumption (H1), one has

0 < σ <
81
80
.

Hence, we fix σ = 1
10 in what follows without loss of generality. By Eq (1.8) we have

u∗ =
4
39
, v∗ =

4
117

, w∗ =
4
3
. (5.8)
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In addition, we choose the motility function d1(w) as

d1(w) = e−D(w− 4
3 ),

where the constant D > 0 and d′1(w) = −De−D(w− 4
3 ). Then Eq (5.5) is equivalent to

0 < µk0 <
73

240
.
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Figure 1. Numerical simulation of spatio-temporal patterns (first panel) and time
evolutionary profiles (second panel) generated by the model (1.5), where d1(w) = e−D(w− 4

3 )

with D = 180 and d2(w) = 1, other parameter values are given in Eq (5.7) with σ = 0.1, and
the initial value (u0, v0,w0) is chosen as a small random perturbation of (u∗, v∗,w∗) given in
Eq (5.8).

Using Theorem 1.3 and Proposition 5.2, the co-existence steady state ( 4
39 ,

4
117 ,

4
3 ) may lose its

stability when the parameter D > 0 satisfies

10D2

3
max

0<w≤K∗
e−D(w− 4

3 )w2 + max
0<w≤K∗

|d′2(w)|2w2

d2(w)
≥ 160, (5.9)

and ∣∣∣∣∣∣d′1
(
4
3

)∣∣∣∣∣∣ = D ≥ dH (η) (5.10)

with 0 < η < 73
240 .

In our numerical simulation, we set the initial value (u0, v0,w0) as a small random perturbation of
( 4

39 ,
4

117 ,
4
3 ) and hence K∗ = 2. Moreover, we perform numerical simulations in one dimension and set

Ω = (0, 16π). Choosing D > 0 satisfies (5.9) and (5.10) with η = (k/16)2 < 73
240 , which indicates
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Figure 2. Numerical simulation of spatio-temporal patterns (first panel) and oscillatory time-
evolutionary profiles (second panel) generated by the model (1.5), where d1(w) = e−D(w− 4

3 )

with D = 268 and d2(w) = e−50(w− 4
3 ), other parameter values are given in Eq (5.7) with

σ = 0.1, and the initial value is chosen as a small random perturbation of (u∗, v∗,w∗) given in
Eq (5.8).

allowable unstable modes are k = 1, 2, 3, 4, 5, 6, 7, 8. Next, we will consider the following two cases
for d2(w).

Case 1: d2(w) = 1. In this case, d′2 = d′2(w∗) = 0 and according to the definition of dH (η) in
Eq (5.6), we can calculate to obtain that

dH (η) = 90
(

73
120
− 2η

)−1 (
8η2 +

47
15
η +

2893
7200

+
733

48000η

)
,

and Eq (5.9) can be updated as
e

4
3 D ≥ 12e2

with D > 4. Then after some calculations, one gets dH ( 1
256 ) ≈ 647.963, dH ( 4

256 ) ≈ 223.026,
dH ( 9

256 ) ≈ 159.956, dH ( 16
256 ) ≈ 162.600, dH ( 25

256 ) ≈ 204.933, dH ( 36
256 ) ≈ 305.214, dH ( 49

256 ) ≈ 548.498
and dH ( 64

256 ) ≈ 1450.71. Hence, dH ( 9
256 ) ≈ 159.956 is the critical value for possible pattern formation.

In our numerical simulations shown in Figure 1, we choose D = 180 and find the spatio-temporal
pattern. In particular the time evolutionary profiles of solutions are oscillatory, which implies the
bifurcation might be Hopf bifurcation.

Case 2: d2(w) = e−50(w− 4
3 ). For this case, d′2 = d′2(w∗) = −50 and hence

dH (η) = 90
(

73
120
− 2η

)−1 (
8η2 +

97
15
η +

2131
2400

+
733

48000η

)
,

and Eq (5.9) can be simplified as

e
200
3 +

10
3

e
4
3 D ≥ 40e2.

Mathematical Biosciences and Engineering Volume 19, Issue 12, 12472–12499.



12495

One also can calculate to get that dH ( 1
256 ) ≈ 722.767, dH ( 4

256 ) ≈ 306.961, dH ( 9
256 ) ≈ 260.876,

dH ( 16
256 ) ≈ 291.910, dH ( 25

256 ) ≈ 381.793, dH ( 36
256 ) ≈ 567.953, dH ( 49

256 ) ≈ 997.112 and
dH ( 64

256 ) ≈ 2546.860. Therefore, dH ( 9
256 ) ≈ 260.876 is the critical value for possible pattern formation.

In our numerical simulations, we choose D = 268 and find the spatio-temporal pattern shown in
Figure 2. Again oscillatory time evolutionary profiles indicate the solution bifurcating from the
co-existence steady state may undergo a Hopf bifurcation.
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Appendix

Below we show the details for the parameters γ1, γ2, γ3 > 0 and A1A2 − A3 > 0 present in Eq (5.3).
By direct calculations, we obtain

γ1 = (d1 + d2 + 1)(d1d2 + d1 + d2) − d1d2

= (d1 + d2)(d1d2 + d1 + d2) + (d1 + d2)
= (d1d2 + d1 + d2 + 1)(d1 + d2) > 0.

As for

γ2 = (d1 + d2 + 1)
{

(d1 + d2)
σw∗

K
+ (d1 + 1)

α2v∗
u∗ + v∗

+ (d2 + 1)
α1u∗

u∗ + v∗

}
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(
σw∗

K
+
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u∗ + v∗

)
−

(
d1d2

σw∗
K
+ d1

α2v∗
u∗ + v∗

+ d2
α1u∗

u∗ + v∗
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σw∗
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+
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,

which implies γ2 > 0 and is independent of d′j ( j = 1, 2) and µk. Now, we calculate the other
parameters:

γ3 =

(
σw∗

K
+
α1u∗ + α2v∗

u∗ + v∗
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> 0,
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and

A1 :=
α1u∗ + α2v∗

u∗ + v∗
+
σw∗

K
> 0,

A2 :=
β3u∗v∗(α1v∗ + α2u∗)

(u∗ + v∗)2 +
σw∗(α1u∗ + α2v∗)

K(u∗ + v∗)
> 0,

A3 :=
α1α2β3u∗v∗

u∗ + v∗
> 0.

Hence, a direct calculation gives

A1A2 − A3 >
(α1u∗ + α2v∗)(α1v∗ + α2u∗)β3u∗v∗

(u∗ + v∗)3

−
α1α2β3(u∗v3

∗ + u3
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2
∗
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=
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2
∗

(u∗ + v∗)3 ≥ 0.
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