
http://www.aimspress.com/journal/mbe

MBE, 19(12): 12387–12404.
DOI: 10.3934/mbe.2022578
Received: 13 May 2022
Revised: 14 July 2022
Accepted: 17 July 2022
Published: 25 August 2022

Research article

A novel discrete-time COVID-19 epidemic model including the
compartment of vaccinated individuals

A Othman Almatroud1, Noureddine Djenina2,∗, Adel Ouannas2, Giuseppe Grassi3 and M Mossa
Al-sawalha1

1 Department of Mathematics, Faculty of Science, University of Ha’il, Ha’il 81451, Saudi Arabia
2 Laboratory of Dynamical Systems and Control, University of Larbi Ben M’hidi, Oum El-Bouaghi,

Algeria
3 Dipartimento Ingegneria Innovazione, Universita Del Salento, Lecce 73100, Italy

* Correspondence: Email: noureddinedjenina1996@gmail.com, noureddine.djenina@univ-oeb.dz.

Abstract: Referring tothe study of epidemic mathematical models, this manuscript presents a
noveldiscrete-time COVID-19 model that includes the number of vaccinated individuals as an addi-
tional state variable in the system equations. The paper shows that the proposed compartment model,
described by difference equations, has two fixed points, i.e., a disease-free fixed point and an epidemic
fixed point. By considering both the forward difference system and the backward difference system,
some stability analyses of the disease-free fixed point are carried out.In particular, for the backward
difference system a novel theorem is proved, which gives a condition for the disappearance of the pan-
demic when an inequality involving some epidemic parameters is satisfied. Finally, simulation results
of the conceived discrete model are carried out, along with comparisons regarding the performances of
both the forward difference system and the backward difference system.

Keywords: Discrete-time systems; forward difference systems; backward difference systems;
Covid-19 model; epidemic model; stability

1. Introduction

Epidemic models have received considerable attention over the last years [1]. They can be repre-
sented by either dynamic continuous-time or discrete-time systems, i.e., they are described by either
differential or difference equations [1]. Recently, several epidemic models have been proposed with the
aim to understand, describe and control the spread of the COVID-19 pandemic. These models analyse
the evolution of the disease over time by dividing the communities into some compartments, which
mainly include the susceptible class (S), the exposed class (E), the infected class (I) and the removed
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class (R). For example, in [2] a SIR model is utilized for estimating the infectivity and recovery rates
from COVID-19 real data. Then, the estimated rates have been exploited to analyse the evolution of
the pandemic over time. In [3] another SIR model is presented, with the aim to describe the spread
of the COVID-19 epidemic in Wuhan. The model is updated with real-time input data in order to
derive clinical parameters that could support public officials in decision-makings. In [4] a dynamic
continuous-time model of the COVID-19 pandemic is introduced. By using phase portraits and time-
series plots, the authors of reference [4] highlight the chaotic dynamics of their epidemic model. In [5]
a nonlinear dynamic SIR model, which includes the effect of social distancing, is proposed to carefully
analyse the spread of the COVID-19 pandemic. In [6] an accurate model that includes eight com-
partments (i.e., susceptible (S), infected (I), diagnosed (D), ailing (A), recognized (R), threatened (T),
healed (H) and extinct (E)) is presented. The model is called SIDARTHE and introduces the distinction
between diagnosed/non-diagnosed individuals, being the former isolated and, consequently, less likely
to spread the infection.In [7] a COVID-19 model is illustrated, which includes the effects of media on
public awareness as well as a removal rate based on the hospital-bed population ratio. The approaches
to modelling the spread of the COVID-19 pandemic have become to change, at the beginning of the
year 2021, by virtue of the introduction of the vaccines. Namely, a number of papers have been pub-
lished, which take into account (in different ways) the role of vaccination for controlling the pandemic.
Most of these models are described by differential equations, whereas very few models involve differ-
ence equations. Referring to continuous-time models, in [8] a novel SEIRS system that includes the
vaccine rate is illustrated. The model clearly shows that, when the vaccine rate increases, the infection
decreases and the recovered population increases over time. In [9] a continuous-time model based on
eight state variables is presented, where the vaccination is considered as preventive action, rather than
as a system variable. In particular, the approach in [9] highlights that vaccination is a key solution to
eliminate the coronavirus among healthcare workers. In [10] an extended Kalman filter is developed
to estimate the state variables of the model. In particular, the spread of COVID-19 is modelled by a
set of ordinary differential equations where vaccinations represent the control input signals. In [11]
a nonlinear robust control policy is exploited to analyse the role of vaccinations on the spread of the
COVID-19 pandemic. The proposed continuous-time dynamic model includes eight state variables,
i.e., susceptible, exposed, infected, quarantined, hospitalized, recovered, deceased and insusceptible
populations. In [12] an innovative SEIR model that takes into account the effect of vaccination on the
spread of COVID-19 is illustrated. Some properties of the model, including output-reach ability and
non-negativity of the solution, are carefully analysed. In [13] a continuous-time SEIR model, which
includes both a feedback vaccination law and an antiviral treatment control law, is illustrated. In par-
ticular, the existence of a unique disease-free equilibrium point is proved, along with the attainability
of the endemic equilibrium point. In [14] a SEIR-type epidemic model with time delay and vaccina-
tion control is developed. The vaccination strategy is expressed as a state delayed feedback, which is
related to the current and previous state of the epidemic model.Reference [15] is devoted to modelling
and predicting COVID-19 confirmed cases through a multiple linear regression. In particular, a novel
trial is illustrated, which combines both growth rates and vaccination rates in modelling the spread of
the COVID-19 pandemic.

It is worth noting that discrete-time epidemic models present the advantage, over the continuous-
time model, to allows a direct acquisition of recorded data, given that the sampling period (i.e., the
unity), may correspond to one day or one week, depending on the available data [16]. In spite of these
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considerations, just a few papers have been published so far (to the best of the authors’ knowledge)
regarding discrete-time models that take into account the effect of vaccination on the COVID-19 pan-
demic. Namely, in [17] a novel discrete SEIR COVID-19 model is developed. In particular, a feedback
vaccination control law is introduced to control the “susceptible class”, in [18] the authors present
a separate new epidemiological model for susceptible to have recovered infection (SEIR) subject to a
two-dose feedback vaccination efforts, in [19] the authors developed a susceptible- infected- recovered-
vaccine-1- vaccine-2- death model to analyze the behavior of the epidemic in Japan. Besides the fact
that the topic of discrete-time models including vaccination is almost unexplored, it should be also
noted that most the COVID-19 models (both continuous-time and discrete-time) published to date
consider the vaccination as a control law or as a preventive action. Based on these considerations, this
paper makes a contribution to the topic of discrete mathematical modelling of epidemics by introduc-
ing a new discrete-time COVID-19 model, which includes the number of vaccinated individuals as an
additional state variable describing the system dynamics and it has the same characteristics as the Sus-
ceptible class. The paper shows the existence of two fixed points at most in the proposed compartment
model described by difference equations, i.e., the disease-free fixed point and the epidemic fixed point.
By considering both the forward difference system and the backward difference system, some stabil-
ity analyses of the disease-free fixed point are carried out. In particular, for the backward difference
system a theorem is proved, which gives a condition for the disappearance of the pandemic when an
inequality involving some epidemic parameters is satisfied. The paper is organized as follows. In Sec-
tion 2 a new discrete-time compartment model for describing the spread of the COVID-19 pandemic is
illustrated. The discrete system involves five state variables, i.e., the Susceptible class S, the Recovered
class R, the Infection class I, the Infection dangerous class Id and the Vaccinated class V.In Section 3it
is shown that the system possesses two fixed points, i.e., the disease-free fixed point and the epidemic
fixed point. Moreover, the basic reproduction number is computed. In Section 4 a stability analysis for
the forward difference system is conducted, whereas in Section 5 a similar analysis is carried out for
the backward difference system. In particular, in Section 5 a novel theorem is proved, which assures
the global stability of the disease-free fixed point, indicating that the pandemic disappears provided
that an inequality involving some epidemic parameters is satisfied. Finally, in Section 6 simulation re-
sults of the conceived discrete COVID-19 compartment model are carried out, along with comparisons
regarding the performances of both the forward difference system and the backward difference system.

2. A novel discrete-time compartment model including the vaccinated class

For the proposed model, the study population (N) is divided into two main classes: the class of
individuals exposed to infection and the class of individuals infected. Each of the previous classes
is also divided into secondary class, so the class of people who are exposed to infection is divided
into three sub-class: people who are exposed to infection and were not previously infected and did
not receive vaccination (S), people who were previously infected and recovered from the disease and
are at risk of being infected again (R), and the class of vaccinated people against the epidemic (V).
As for the class of infected persons, it is divided into two secondary classes: The people with good
immunity and for whom infection does not pose a great risk and suppose that their ratio in the society
is λ, (λ ≤ 1), so the class of infected people from this group are going to I. The infected persons for
whom the infection is dangerous and consists of the elderly, pregnant women and people with chronic
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diseases (whose their ratio in the society is (1−λ))Id. The transition between classes is described in the
following diagram: So the mathematical model that we will be interested in, which is given in detail in

Figure 1. A descriptive scheme for moving from one class to another.

[20] as follow:



dS
dt = Ω′ − r′1 (I (t) + Id (t)) S (t) − (µ′ + υ′) S (t) ,
dR
dt = ρ′ (I (t) + Id (t)) − r′2 (I (t) + Id (t)) R (t) − (υ′ + µ′) R (t) ,
dV
dt = υ′ (S (t) + R (t)) − r′3 (I(t) + Id(t)) V (t) − µ′V (t) ,
dI
dt =

(
λ
(
r′1S (t) + r′2R (t)

)
+ r′3V (t)

)
(I (t) + Id (t)) − (µ′ + ρ′) I (t) ,

dId
dt = (1 − λ)

(
r′1S (t) + r′2R (t)

)
(I (t) + Id (t)) − (µ′ + δ′ + ρ′) Id (t) .

t ∈ R+. (2.1)
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The proposed model’s flowchart and parameters descriptors are well explained in (2.2).

Variable Description
S Susceptible class
R Recovered class
V Vaccinated class
I Infection class
Id Infection dangerous class
Ω′ The birth rate
µ′ Natural death rate

r′1, r
′
2, r
′
3 Infection rates

ρ′ Recovered rate
υ′ Vaccinated rate
δ′ Death due to infection rate

(2.2)

Where r′i =
pik
N , i = 1, 2, 3, k is the average numbers of contacts per capita (per unit of time), pi is the

probabilities of contagion (p1 > p2 > p3) and N is the total population (It can be considered as the
maximum value of the population)

Adding up the equations given in (2.1), we find

N = S + R + V + I + Id.

In addition, the following initial conditions take into consideration:

S (0),R(0),V(0), I(0), Id(0) ≥ 0. (2.3)

In real life, the statistics are discrete, so the discrete system is closer to modeling the spread of
Corona virus, and in light of this we will use the following approximation:

dX (t)
dt

'
X (t + h) − X (t)

h
. (2.4)

System 2.1 becomes:

S (t+h)−S (t)
h = Ω′ − r′1 (I (t) + Id (t)) S (t) − (µ′ + υ′) S (t) ,

R(t+h)−R(t)
h = ρ′ (I (t) + Id (t)) − r′2 (I (t) + Id (t)) R (t) − (υ′ + µ′) R (t) ,

V(t+h)−V(t)
h = υ′ (S (t) + R (t)) − r′3 (I(t) + Id(t)) V (t) − µ′V (t) ,

I(t+h)−I(t)
h =

(
λ
(
r′1S (t) + r′2R (t)

)
+ r′3V (t)

)
(I (t) + Id (t)) − (µ′ + ρ′) I (t) ,

Id(t+h)−Id(t)
h = (1 − λ)

(
r′1S (t) + r′2R (t)

)
(I (t) + Id (t)) − (µ′ + δ′ + ρ′) Id (t) .

t ∈ R+.

We multiply both sides by h, and put
X (t) = X (n) ,

and
X (t + h) = X (n + 1) ,
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where n ∈ N, X(t) = (S (t) ,R (t) ,V (t) , I (t) , Id (t))t . And we also put

Ω = hΩ′,

µ = hµ′,
ri = hr′i , i = 1, 2, 3,

ρ = hρ′,
υ = hυ′,
δ = hδ′.

We finally get the following system:

∆X (n) = F (X (n)) , n ∈ N, (2.5)

where

F (X (n)) =


F1 (X (n))
F2 (X (n))
F3 (X (n))
F4 (X (n))
F5 (X (n))


=


Ω − r1 (I (n) + Id (n)) S (t) − (µ + υ) S (n)

ρ (I (n) + Id (n)) − r2 (I (n) + Id (n)) R (n) − (υ + µ) R (n)
υ (S (n) + R (n)) − r3 (I(n) + Id(n)) V (n) − µV (n)

(λ (r1S (n) + r2R (n)) + r3V (n)) (I (n) + Id (n)) − (µ + ρ) I (n)
(1 − λ) (r1S (n) + r2R (n)) (I (n) + Id (n)) − (µ + δ + ρ) Id (n)


,

and where ∆ is the forward difference operator (∆X (n) = X (n + 1) − X (n)).
We can also use the following approximation:

dX (t)
dt

'
X (t) − X (t − h)

h
, (2.6)

and by following similar steps to the above, we get:

∇X (n) = F (X (n)) , n ∈ N − {1} , (2.7)

where ∇ is the backward difference operator (∇X (n) = X (n) − X (n − 1)).

3. Fixed points and basic reproduction number

3.1. Fixed points

To study the dynamics of the systems 2.5 and 2.7, one must first find the fixed points, and to find
the fixed points must be solved the following nonlinear system:

Ω − r1

(
I∗ + I∗d

)
S ∗ − (µ + υ) S ∗ = 0,

ρ
(
I∗ + I∗d

)
− r2

(
I∗ + I∗d

)
R∗ − (υ + µ) R∗ = 0,

υ (S ∗ + R∗) − r3

(
I∗ + I∗d

)
V∗ − µV∗ = 0,

(λ (r1S ∗ + r2R∗) + r3V∗)
(
I∗ + I∗d

)
− (µ + ρ) I∗ = 0

(1 − λ) (r1S ∗ + r2R∗)
(
I∗ + I∗d

)
− (µ + δ + ρ) I∗d = 0.

(3.1)

The previous equation has the point E0 =
(

Ω
(µ+υ) , 0,

υΩ
µ(µ+υ) , 0, 0

)
as a solution. It can be seen that the

disease at this point is non-exist and therefore it is called the disease-free fixed point which we will
focus on studying later.
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If we suppose that
(
I∗ + I∗d

)
, 0, So we will get:

Ω

r1(I∗+I∗d)+(µ+υ)
= S ∗,

ρ(I∗+I∗d)
r2(I∗+I∗d)+(υ+µ)

= R∗,
υ(S ∗+R∗)

r3(I∗+I∗d)+µ
= V∗,

(λ(r1S ∗+r2R∗)+r3V∗)
(µ+ρ) = I∗

(I∗+I∗d)
,

(1−λ)(r1S ∗+r2R∗)
(µ+δ+ρ) =

I∗d
(I∗+I∗d)

.

(3.2)

This system is complex and difficult to solve in the abstract case. Even if we can solve it, studying
the stability of this fixed point contains many obstacles. In general, this point is called the endemic
equilibrium point E∗ =

(
S ∗,R∗,V∗, I∗, I∗d

)
and its existence and stability can be studied numerically.

3.2. The basic reproduction number

The basic reproduction number is a very important number for studying the behavior of epidemic
systems. According to [21] the basic reproduction number is defined as the spectral radius of the next
generation matrix FV−1, where F and V are the Jacobian matrices for F and V respectively at the
disease-free fixed point, and where F the rate of appearance of new infections:

F =

(
(λ (r1S (t) + r2R (t)) + r3V (t)) (I (t) + Id (t))

(1 − λ) (r1S (t) + r2R (t)) (I (t) + Id (t))

)
,

andV the disappearance rate of infections:

V =

(
(µ + ρ) I (t)

(µ + δ + ρ) Id (t)

)
.

The Jacobite matrices are:

F =

 Ω
(µ+υ)

(
λr1 + υr3

µ

)
Ω

(µ+υ)

(
λr1 + υr3

µ

)
(1 − λ)

(
Ωr1

(µ+υ)

)
(1 − λ)

(
Ωr1

(µ+υ)

)  ,
and

V =

(
(µ + ρ) 0

0 (µ + δ + ρ)

)
.

So the next generation matrix is:

FV−1 =

 Ω
µ

υr3+λµr1
(µ+υ)(µ+ρ)

Ω
µ

υr3+λµr1
(µ+υ)(µ+δ+ρ)

−Ωr1
λ−1

(µ+υ)(µ+ρ) −Ωr1
λ−1

(µ+υ)(µ+δ+ρ)

 .
According to it the basic reproductive number is given by:

R0 =
Ω

(µ + υ)

(
(1 − λ) r1

(µ + δ + ρ)
+
υr3 + λµr1

µ (µ + ρ)

)
. (3.3)
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4. Stability analysis for the forward difference system

4.1. Existence and uniqueness

System 2.5 can be written as:

X (n + 1) = X (n) + F (X (n)) , n ∈ N. (4.1)

Thus, it is defined by a regression relationship, we can notice that knowing each term allows us to
know the term after it, so existence and uniqueness are trivial in this case. It cannot be shown that the
solution is positive for system 2.5. In fact, the solution to system 2.5 is not always positive even when
the initial conditions are positive.

4.2. Stability analysis

We are now studying the stability of the disease-free fixed point, we mention the following theorem
that we need in the study of stability:

Theorem 1. [22] System 4.1 is asymptotically stable if each eigenvalue λ∗ of the Jacobite matrix J∗ of
X (n) + F (X (n)) at the fixed point is satisfied

|λ∗| < 1. (4.2)

Using the above theorem we result:

Theorem 2. Suppose that R0 < 1, if
µ + υ < 2,
A2 < 4B,

(4.3)

where
A = (µ + ρ) + (µ + δ + ρ) (1 − R0) +

Ωδ(υr3+λµr1)
µ(µ+ρ)(µ+υ) ,

B = (µ + ρ) (µ + δ + ρ) (1 − R0) .

Then the disease-free fixed point E0 of system 2.5 is locally asymptotically stable.

Proof. System 2.5 is equivalent to system 4.1, and the Jacobian matrix of X (n) + F (X (n)) at E0 is:

J∗ = I + J,

where I is the identity matrix and J is the Jacobian matrix of F(X(n)) at E0:

J =



− (µ + υ) 0 0 −
Ωr1

(µ+υ) −
Ωr1

(µ+υ)

0 − (υ + µ) 0 ρ ρ

υ υ −µ −
Ωυr3
µ(µ+υ) −

Ωυr3
µ(µ+υ)

0 0 0
(
λr1Ω

(µ+υ) + υr3Ω

µ(µ+υ)

)
− (µ + ρ)

(
λr1Ω

(µ+υ) + υr3Ω

µ(µ+υ)

)
0 0 0 (1−λ)r1Ω

(µ+υ)
(1−λ)r1Ω

(µ+υ) − (µ + δ + ρ)


. (4.4)

The characteristic polynomial of J∗ is:

(X − 1 + µ) (X − 1 + µ + υ)2 (X2 + (A − 2) X + (B − A + 1)) .
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So the matrix J∗ has λ1 = 1 − µ as normal eigenvalue and λ2 = 1 − (µ + υ) as a double eigenvalue, so
according to conditions 4.3 and because all parameters are positives (µ + υ < 2 and µ, υ > 0), we get:

|λ1| < |λ2| < 1,

so λ1 and λ2 satisfy the condition of Theorem 1. Stayed the roots of the polynomial:

X2 + (A − 2) X + (B − A + 1) .

If R0 < 1 then A, B > 0, we have from the conditions 4.3 (A2 < 4B):

(A − 2)2
− 4 (B − A + 1) = A2 − 4B < 0.

So B− A + 1 > (A−2)2

4 > 0, and the roots are complex and conjugated, we not them λ and λ̄ and we have

|λ| =
∣∣∣λ̄∣∣∣ =

√
B − A + 1 =

√
1 −

Ωδ (υr3 + λµr1)
µ (µ + ρ) (µ + υ)

< 1,

(because Ωδ(υr3+λµr1)
µ(µ+ρ)(µ+υ) > 0). So all the eigenvalues of the characteristic equation of J∗ satisfy the condition

of Theorem 1. Accordingly the disease-free fixed point E0 of system 2.5 is locally asymptotically
stable. �

The structure of this system does not allow us to study the global stability, therefore we will move
to the backward difference system.

5. Stability analysis for the backward difference system

5.1. Existence and uniqueness

System 2.7 can be written as:

X (n + 1) − F (X (n + 1)) = X (n) , n ∈ N. (5.1)

So, to calculate each term, the term before it must belong to the image of the function x → x − F(x),
and this makes the existence not trivial like the previous case, for this purpose, we give the following
result:

Theorem 3. For any n∗ ∈ N, there exists δ∗ > 0, so that the solution of system 2.7 (for n ≤ n∗) is exists
when ‖x (0) − E0‖ < δ

∗. Also, this solution is positive when the initial condition is positive.

Proof. System 2.7 is equivalent to system 5.1, and from the system 4.5:

X (n) = X (0) +

n∑
i=1

F (X (i)) ,

so the solution is the fixed point of T (X (n)), where:

T (X (n)) = X (0) +

n∑
i=1

F (X (i)) ,

Mathematical Biosciences and Engineering Volume 19, Issue 12, 12387–12404.
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in the space `∞ ([0, n∗] ∩ N), with its norm (‖.‖∞) , so for x1, x2 ∈ `
∞ ([0, n∗] ∩ N), we have:

‖T (x1) − T (x2)‖ ≤
n∑

i=1

‖F (x1 (i)) − F (x2 (i))‖ ,

since F continues in the neighborhood of E0, we have ∀ε > 0,∃δ > 0 : x1 (i) , x2 (i) ∈ B (E0, δ) for
i ≤ n =⇒ ‖F (x1 (i)) − F (x2 (i))‖ < ε ‖x1 (i) − x2 (i)‖ . Take ε∗ > 0 check that nε∗ < 1 for n ∈ [0, n∗]∩N,
then ∃δ∗ > 0, check that:

‖T (x1) − T (x2)‖∞ ≤ nε ‖x1 − x2‖∞ .

So T is contraction map in `∞ ([0, n∗] ∩ N), and from it, by Banach fixed point theorem there exists one
solution for the system 5.1 for n ≤ n∗.
To prove the positivity of the solution we assume the opposite. Let S be the first component to become
negative at n1 ∈ N, (i.e R (n1) ,V (n1) , I (n1) , Id (n1) ≥ 0 and S (n1) ≤ 0), then:

S (n1) − S (n1 − 1) = Ω − r1 (I (n1) + Id (n1)) S (n1) − (µ + υ) S (n1) ≥ 0,

this means
S (n1) ≥ S (n1 − 1) ≥ 0,

a contradiction so S (n) ≥ 0 for n ≤ n∗. If R the first component to become negative at n2 ∈ N, (i.e
S (n2) ,V (n2) , I (n2) , Id (n2) ≥ 0 and R (n2) ≤ 0), then:

R (n2) − R (n2 − 1) = ρ (I (n2) + Id (n2)) − r2 (I (n2) + Id (n2)) R (n2) − (υ + µ) R (n2) ≥ 0,

this means
R (n2) ≥ R (n2 − 1) ≥ 0,

a contradiction so R (n) ≥ 0 for n ≤ n∗. If V the first component to become negative at n3 ∈ N, (i.e
S (n3) ,R (n3) , I (n3) , Id (n3) ≥ 0 and V (n3) ≤ 0) then:

V (n3) − V (n3 − 1) = υ (S (n3) + R (n3)) − r3 (I + Id) V (n3) − µV (n3) ≥ 0,

this means
V (n3) ≥ V (n3 − 1) ≥ 0,

a contradiction so V (n) ≥ 0 for n ≤ n∗. If I the first component to become negative at n4 ∈ N, (i.e
S (n4) ,R (n4) ,V (n4) , Id (n4) ≥ 0 and I (n4) ≤ 0) then:

I (n4) − I (n4 − 1) = (λ (r1S (n4) + r2R (n4)) + r3V (n4)) (I (n4) + Id (n4)) − (µ + ρ) I (n4) ,

so
I (n4) =

I (n4 − 1) + (λ (r1S (n4) + r2R (n4)) + r3V (n4)) Id (n4)
(1 + µ + ρ − (λ (r1S (n4) + r2R (n4)) + r3V (n4)))

≥ 0,

because we know that:
λ (r1S (n4) + r2R (n4)) + r3V (n4) < λkp1 < 1,

a contradiction, so I (n) ≥ 0 for n ≤ n∗. If Id the first component to become negative at n5 ∈ N, (i.e
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S (n5) ,R (n5) ,V (n5) , I (n5) ≥ 0 and Id (n5) ≤ 0) then:

Id (n5) − Id (n5 − 1) = (1 − λ) (r1S (n5) + r2R (n5)) (I (n5) + Id (n5)) − (µ + δ + ρ) Id (n5) ,

so
Id (n5) =

Id (n5 − 1) + (1 − λ) (r1S (n5) + r2R (n5)) I (n5)
(1 + µ + δ + ρ − (1 − λ) (r1S (n5) + r2R (n5)))

≥ 0,

because we know that:
(1 − λ) (r1S (n5) + r2R (n5)) < (1 − λ)kp1 < 1,

a contradiction, so I (n) ≥ 0 for n ≤ n∗.In the end, we conclude that:

R (n) ≥ 0,
V (n) ≥ 0,
I (n) ≥ 0,
Id (n) ≥ 0.

�

5.2. Invariant region

Theorem 4. The System 2.7 have

Ψ =

{
(S ,R,V, I, Id) ∈ R5

+ and S + R + V + I + Id ≤
Ω

µ

}
,

as invariant region, where R5
+ =

{
(x1, x2, x3, x4, x5) ∈ R5 and xi ≥ 0 for i = 1..5

}
.

Proof. Adding the equations of system 2.7, we get:

∇N (n) = Ω − µN(n) − δId (n) .

Since Id is positive, we get:
∇N (n) ≤ Ω − µN(n)

where
N(0) = S (0) + R(0) + V(0) + I(0) + Id(0),

and from it we find:
N(n) ≤

Ω + N(n − 1)
1 + µ

.

Let N(0) ≤ Ω
µ
, and suppose that N(n) ≤ Ω

µ
for a natural number n, we get:

N(n + 1) ≤
Ω + N(n)

1 + µ
≤

Ω + Ω
µ

1 + µ
=

Ω

µ
,

then by induction for all n when the solution exists:

0 ≤ N(n) ≤
Ω

µ
.

Therefore, the solution belongs to the invariant region:

Ψ =

{
(S ,R,V, I, Id) ∈ R5

+ and S + R + V + I + Id ≤
Ω

µ

}
.

�
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5.3. Local stability

We are now studying the stability of the disease-free fixed point, so we present the following result:

Theorem 5. Suppose that R0 < 1. Then the disease-free fixed point E0 of the system 2.7 is locally
asymptotically stable.

Proof. Locally, system 2.7 behaves the same as that of:

∇X (n) = JX (n) , n ≥ 1, (5.2)

⇔

X (n + 1) − JX (n + 1) = X (n) ,

since
det (Id − J) = (1 + µ) (1 + µ + υ)2 (A + B + 1) > 0,

when R0 < 1, so
X (n + 1) = (Id − J)−1 X (n) . (5.3)

According to Theorem 1, the system 5.3 is stable when each eigenvalue λ∗ of (I − J)−1 is satisfied

|λ∗| < 1, (5.4)

its meaning that each eigenvalue λ−1
∗ of (I − J) is satisfied∣∣∣λ−1

∗

∣∣∣ > 1. (5.5)

and whereas ∣∣∣λ−1
∗

∣∣∣ = |1 − λ| ,

where λ an eigenvalue for J, the condition of stability becomes:

|1 − λ| > 1. (5.6)

The characteristic polynomial of J is :

(X + µ) (X + µ + υ)2
(
X2 + AX + B

)
.

So the matrix J has λ1 = −µ, as normal eigenvalue and λ2 = − (µ + υ), as a double eigenvalue, and
from it:

|1 − λ1| = 1 + µ > 1,

and
|1 − λ2| = 1 + υ + µ > 1.

Stayed the roots of the polynomial:
X2 + AX + B,

if R0 < 1, then A, B > 0, so according to Routh-Hurwitz criterion, the roots of this polynomial called
λ3 and λ3 have a negative real part, so:

|1 − λ3| > 1 − Re(λ3) > 1,

and
|1 − λ4| > 1 − Re(λ3) > 1,

where Re(λ) is the real part of λ. Therefore, all eigenvalues of matrix J satisfying the condition 5.6, so
the disease-free fixed point is locally asymptotically stable. �
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5.4. A condition for the disappearance of the disease

The main purpose of studying epidemic models is to find applicable conditions in the real life and
contribute to the disappearance of the epidemic, so we will now give a condition related to reducing
friction to get rid of the epidemic.

Theorem 6. If
(1 − p1k + (µ + ρ)) > 1, (5.6)

then the disease will disappear.

Proof. Adding the last two equations in the system 2.7 together, we find that the infected class is
described by the following equation:

∇ (I + Id) (n) = (λ (r1S (n) + r2R (n)) + r3V (n)) (I (n) + Id (n)) − (µ + ρ) I (n)
+ (1 − λ) (r1S (n) + r2R (n)) (I (n) + Id (n)) − (µ + δ + ρ) Id (n) ,

= (r1S (n) + r2R (n) + r3V (n) − (µ + ρ)) (I (n) + Id (n)) − δId (n) .

Since I is positive and ri =
pik
N , i = 1, 2, 3, (p3 ≤ p2 ≤ p1) :

∇ (I + Id) (n) ≤ (r1S (n) + r2R (n) + r3V (n)) (I (n) + Id (n)) − (µ + ρ) (I (n) + Id (n)) ,
≤

(
p1k
N S (n) +

p2k
N R (n) +

p3k
N V (n)

)
(I (n) + Id (n)) − (µ + ρ) (I (n) + Id (n)) ,

≤ kmax
1≤i≤3
{pi}

(
S (n)+R(n)+V(n)

N

)
(I (n) + Id (n)) − (µ + ρ) (I (n) + Id (n)) ,

≤ (kp1 − (µ + ρ)) (I (n) + Id (n)) ,

⇔

(I + Id) (n) − (I + Id) (n − 1) ≤ (kp1 − (µ + ρ)) (I (n) + Id (n)) , n = 1, 2, 3, · · · ,

⇔

(I + Id) (n) ≤ (1 − p1k + (µ + ρ))−1 (I + Id) (n − 1) , n = 1, 2, 3, · · · ,

⇔

(I + Id) (n) ≤ (1 − p1k + (µ + ρ))−n (I + Id) (0) .

We note that if (1 − p1k + (µ + ρ))−1 < 1, then (I + Id) (t)→ 0 when t → ∞. �

6. Numerical simulations and comparisons

In this section we will compare systems 2.5 and 2.7, note that the solution of the system 2.5 has
always existed, but it is not always positive and also it cannot be proven that it is bounded. In system
2.7 the solution does not always exist, but if it is exists by taking a positive initial condition the solution
is positive, and it also belongs to an invariant region. As for stability, the system 2.5 and even when
R0 < 1, stability is not guaranteed except by adding other conditions, contrary to system 2.7 the only
condition for local stability is R0 < 1 and therefore it is the one who maintains the characteristics of
the continuous system 2.1. In the system 2.5 We couldn’t find a condition for global stability, which
was so easily formulated in the system 2.7.
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In the following, we will do some numerical simulations with the same initial value and the same
parameters, and note the essential differences between the two systems 2.5 and 2.7. Therefore, we
choose a divided population as follows:

S (0) = 500000,
R (0) = 23000,

V (0) = 100000,
I (0) = 3000,
Id (0) = 170.

(6.1)

And we take the parameters as:

Ω = 38; µ = 4.4 × 10−6; λ = 7 × 10−6;
r1 = 4.4 × 10−7; r2 = 3.215 × 10−7; r3 = 1.4925 × 10−7;

ρ = 0.4; υ = 0.08; δ = 1.3 × 10−5.

(6.2)

We get the simulation as:
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Figure 2. Numerical simulation of the forward difference system.

Mathematical Biosciences and Engineering Volume 19, Issue 12, 12387–12404.



12401

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7
x 10

5

Time

C
la

s
s

 

 

S

R

V

I

I
d

Figure 3. Numerical simulation of the backward difference system.

We notice that there is no difference in the previous example. In fact, essential differences some-
times do not appear in short periods of time. We now take the same system as before and make

r1 = 4.4 × 10−6.3; r2 = 3.215 × 10−6.3; r3 = 1.4925 × 10−6.3;

we get
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Figure 4. Numerical simulation of the forward difference system.
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Figure 5. Numerical simulation of the backward difference system.

There is no difference at the beginning, but when we take long periods of time, we notice the
differences. We have increased the rate of spread of the disease. We note that the disease is spreading
quickly. In this case, we notice an increase in I and a decrease in S for the forward difference system,
but the opposite happens to the backward difference system.

7. Conclusion

Referring to the epidemic models that take into account the effect of vaccination on the COVID-
19 pandemic, all the models (both continuous-time and discrete-time) published to date consider the
vaccination as a control law or as a preventive action. No paper includes the vaccination as an ad-
ditional compartment, to be added to the remaining compartments when describing the system dy-
namics. This manuscript has presented a novel discrete-time COVID-19 model, which includes the
number of vaccinated individuals as an additional state variable in the system equations. The paper
has shown that the proposed compartment model, described by difference equations, has a disease-free
fixed point and an epidemic fixed point. By considering both the forward difference system and the
backward difference system, some stability analyses of the disease-free fixed point have been carried
out. In particular, for the backward difference system a novel theorem has been proved, which has
provided a condition for the disappearance of the pandemic when an inequality involving some epi-
demic parameters is satisfied.This result represents a remarkable finding of the proposed approach,
which may help decision-makers to better understand the epidemiological behaviour of the COVID-19
over time.Finally, numerical simulations of the proposed discrete model have been carried out, along
with comparisons regarding the performances of both the forward difference system and the backward
difference system.

Mathematical Biosciences and Engineering Volume 19, Issue 12, 12387–12404.



12403

Acknowledgments

This research has been funded by Scientific Research Deanship at University of Ha’il - Saudi Arabia
through project number RG-21067.

Conflict of interest

The authors declare no conflict of interest.

References

1. H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599–653.
https://doi.org/10.1137/S0036144500371907

2. T. T. Marinov, R. S. Marinova, Dynamics of COVID-19 using inverse problem
for coefficient identification in SIR epidemic models, Chaos Solit. Fract., 5 (2020).
https://doi.org/10.1016/j.csfx.2020.100041

3. J. T. Wu, K. Leung, M. Bushman, N. Kishore, R. Niehus, P. M. de Salazar, et al., Estimating
clinical severity of COVID-19 from the transmission dynamics in Wuhan, China, Nat. Med., 26
(2020), 506–510. https://doi.org/10.1038/s41591-020-0822-7

4. S. Mangiarotti, M. Peyre, Y. Zhang, M. Huc, F. Roger, Y. Kerr, Chaos theory applied to the
outbreak of COVID-19: An ancillary approach to decision making in pandemic context, Epidem.
Infect, 148 (2020), 1–29. https://doi.org/10.1017/S0950268820000990

5. S. Gounane, Y. Barkouch, A. Atlas, M. Bendahmane, F. Karami, D. Meskine, An adaptive social
distancing SIR model for COVID-19 disease spreading and forecasting, Epidem. Methods, 10
(2021), 20200044. https://doi.org/10.1515/em-2020-0044

6. G. Giordano, F. Blanchini, R. Bruno, P. Colaneri, A. Di Filippo, A. Di Matteo, et al., Modelling
the COVID-19 epidemic and implementation of population-wide interventions in Italy, Nat. Med.,
26 (2020), 855–860. https://doi.org/10.1038/s41591-020-0883-7

7. A. Ajbar, R. T. Alqahtani, M. Boumaza1, Dynamics of an SIR-Based COVID-19 Model With
Linear Incidence Rate, Nonlinear Removal Rate, and Public Awareness, Front. Phys., (2021).
https://doi.org/10.3389/fphy.2021.634251

8. P. Kumara, V. S. Erturk, M. Murillo-Arcila, A new fractional mathematical modelling
of COVID-19 with the availability of vaccine, Results Phys., 24 (2021), 2211–3797.
https://doi.org/10.1016/j.rinp.2021.104213

9. N. Gozalpour, E. Badfar, A. Nikoofard,Transmission dynamics of novel coronavirus SARS-CoV-
2 among healthcare workers, a case study in Iran, Nonlinear Dynam., 105 (2021), 3749—3761.
https://doi.org/10.1007/s11071-021-06778-5

10. E. Badfar, E. J. Zaferani, A. Nikoofard, Design a robust sliding mode controller based on the
state and parameter estimation for the nonlinear epidemiological model of Covid-19, Nonlinear
Dynam., (2021), 5—18. https://doi.org/10.1007/s11071-021-07036-4

Mathematical Biosciences and Engineering Volume 19, Issue 12, 12387–12404.

http://dx.doi.org/https://doi.org/10.1137/S0036144500371907
http://dx.doi.org/https://doi.org/10.1016/j.csfx.2020.100041
http://dx.doi.org/https://doi.org/10.1038/s41591-020-0822-7
http://dx.doi.org/https://doi.org/10.1017/S0950268820000990
http://dx.doi.org/https://doi.org/10.1515/em-2020-0044
http://dx.doi.org/https://doi.org/10.1038/s41591-020-0883-7
http://dx.doi.org/https://doi.org/10.3389/fphy.2021.634251
http://dx.doi.org/https://doi.org/10.1016/j.rinp.2021.104213
http://dx.doi.org/https://doi.org/10.1007/s11071-021-06778-5
http://dx.doi.org/https://doi.org/10.1007/s11071-021-07036-4


12404

11. A. Rajaei, M. Raeiszadeh, V. Azimi, M. Sharifi, State estimation-based control of COVID-
19 epidemic before and after vaccine development, J. Pro. Control, 102 (2021), 1–14.
https://doi.org/10.1016/j.jprocont.2021.03.008

12. M. De la Sen, A. Ibeas, R. Nistal,About partial reachability issues in an SEIR epidemic model and
related infectious disease tracking in finite time under vaccination and treatment controls, Discrete
Dynam. Nat. Soc., (2021). https://doi.org/10.1155/2021/5556897

13. M. De la Sen, A. Ibeas, On an SE(Is)(Ih)AR epidemic model with combined vacci-
nation and antiviral controls for COVID-19 pandemic, Adv. Difference Equ., 92 (2021).
https://doi.org/10.1186/s13662-021-03248-5

14. S. Zhai, G. Luo, T. Huang, X. Wang, J. Tao, P. Zhou, Vaccination control of an epidemic model
with time delay and its application to COVID-19, Nonlinear Dynam., 106 (2021), 1279–1292.
https://doi.org/10.1007/s11071-021-06533-w

15. E. Hwang, Prediction intervals of the COVID-19 cases by HAR models with growth rates and
vaccination rates in top eight affected countries: Bootstrap improvement, Chaos Solit. Fract., 155
(2022). https://doi.org/10.1016/j.chaos.2021.111789

16. P. Mahmood, M. Saeed, Stability of the equilibria in a discrete-time sivs epidemic model with
standard incidence, Filomat, 33 (2019), 2393–2408. https://doi.org/10.1016/j.chaos.2021.111789

17. M. De la Sen, S. Alonso-Quesada, A. Ibeas, On a Discrete SEIR Epidemic Model with Exposed
Infectivity, Feedback Vaccination and Partial Delayed Re-Susceptibility, Mathematics, 9 (2021),
5–9. https://doi.org/10.3390/math9050520

18. M. De la Sen, S. Alonso-Quesada, A. Ibeas, R. Nistal, On a Discrete SEIR Epidemic Model
with Two-Doses Delayed Feedback Vaccination Control on the Susceptible, Vaccines, 9 (2021).
https://doi.org/10.3390/vaccines9040398

19. Y. Omae, Y. Kakimoto, M. Sasaki, J. Toyotani, K. Hara, Y. Gon, et al., SIRVVD model-based
verification of the effect of first and second doses of COVID-19/SARS-CoV-2 vaccination in Japan,
Math. Biosci. Eng. , 19 (2021), 1026–1040. https://doi.org/10.3934/mbe.2022047

20. N. Djenina, I. Rezzoug, A. Ouannas, T-E. Oussaeif, Giuseppe Grassi,A new COVID-19 pandemic
model including the compartment of vaccinated individuals: Global stability of the disease-free
fixed point, Submitted to CMMM, 2022 (2022).

21. P. van den Driesschea, J. Watmough, Reproduction numbers and sub-threshold endemic
equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002).
https://doi.org/10.1016/S0025-5564(02)00108-6

22. S. Elaydi, An introduction to difference equations, Springer SBM, 3 (2005).
https://doi.org/10.1007/0-387-27602-5

c© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 19, Issue 12, 12387–12404.

http://dx.doi.org/https://doi.org/10.1016/j.jprocont.2021.03.008
http://dx.doi.org/https://doi.org/10.1155/2021/5556897
http://dx.doi.org/https://doi.org/10.1186/s13662-021-03248-5
http://dx.doi.org/https://doi.org/10.1007/s11071-021-06533-w
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2021.111789
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2021.111789
http://dx.doi.org/https://doi.org/10.3390/math9050520
http://dx.doi.org/https://doi.org/10.3390/vaccines9040398
http://dx.doi.org/https://doi.org/10.3934/mbe.2022047
http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.1016/S0025-5564(02)00108-6
http://dx.doi.org/https://doi.org/10.1007/0-387-27602-5
http://creativecommons.org/licenses/by/4.0

	Introduction
	A novel discrete-time compartment model including the vaccinated class
	Fixed points and basic reproduction number
	Fixed points
	The basic reproduction number

	Stability analysis for the forward difference system
	Existence and uniqueness
	Stability analysis

	Stability analysis for the backward difference system
	Existence and uniqueness
	Invariant region
	Local stability
	A condition for the disappearance of the disease

	Numerical simulations and comparisons
	Conclusion

