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Abstract: Background: Polygenic risk score (PRS) can evaluate the individual-level genetic risk of 
breast cancer. However, standalone single nucleotide polymorphisms (SNP) data used for PRS may 
not provide satisfactory prediction accuracy. Additionally, current PRS models based on linear 
regression have insufficient power to leverage non-linear effects from thousands of associated SNPs. 
Here, we proposed a transcriptional risk score (TRS) based on multiple omics data to estimate the risk 
of breast cancer. Methods: The multiple omics data and clinical data of breast invasive carcinoma 
(BRCA) were collected from the cancer genome atlas (TCGA) and the gene expression omnibus 
(GEO). First, we developed a novel TRS model for BRCA utilizing single omic data and LightGBM 
algorithm. Subsequently, we built a combination model of TRS derived from each omic data to further 
improve the prediction accuracy. Finally, we performed association analysis and prognosis prediction 
to evaluate the utility of the TRS generated by our method. Results: The proposed TRS model achieved 
better predictive performance than the linear models and other ML methods in single omic dataset. An 
independent validation dataset also verified the effectiveness of our model. Moreover, the combination 
of the TRS can efficiently strengthen prediction accuracy. The analysis of prevalence and the 
associations of the TRS with phenotypes including case-control and cancer stage indicated that the risk 
of breast cancer increases with the increases of TRS. The survival analysis also suggested that TRS for 
the cancer stage is an effective prognostic metric of breast cancer patients. Conclusions: Our proposed 
TRS model expanded the current definition of PRS from standalone SNP data to multiple omics data 
and outperformed the linear models, which may provide a powerful tool for diagnostic and prognostic 
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prediction of breast cancer. 
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1. Introduction  

Breast cancer is the most frequently diagnosed cancer in women worldwide [1]. In 2020, there 
were over 2 million new cases reported [2]. Although morbidity and mortality have declined in recent 
years due to changes in risk factors and improvements in screening tests and treatments, breast cancer 
survival rates vary widely across countries and regions. The establishment of effective prevention and 
treatment measures is essential to prevent breast cancer occurrence and reduce breast cancer mortality. 
Although carriers of BRCA1 and BRCA2 gene mutations confer a high risk of breast cancer, these 
gene mutations can be found in only a small part of breast cancer patients [3]. In recent years, genome-
wide association study (GWAS) identified multiple high frequency and low penetrance susceptibility 
variants of breast cancer [4]. The accumulation effects of these susceptibility variants can be 
summarized as a polygenic risk score (PRS). Researchers have developed several PRS models for 
breast cancer by using a large amount of single nucleotide polymorphisms (SNPs) data [5]. These 
studies maintained the PRS to be an effective and reliable predictor of breast cancer risk that may 
provide screening and prevention strategies [6–8].  

However, the PRS calculated using SNPs data can only assess the genetic risk of an individual, 
while ignoring the influence of the external environmental exposure on gene expression. With the 
development of high-throughput omics technology, a large number of related studies based on 
genomics and transcriptomics emerged [9,10]. Omics data have been widely used for cancer 
classification based on identified gene signatures [11], gene pathways [12], and protein-protein 
interaction networks, etc. [13,14]. For example, Zhang Y et al. [15] proposed a novel approach to 
predict prognosis in glioblastoma multiforme (GBM) by integrating histopathological images and 
multi-omics data. Zhang X et al. [16] used XGBoost to upgrade a previously developed cancer-related 
lncRNA classifier to improve the prediction accuracy of lncRNA-cancer associations, which was 
expected to contribute to the functional annotation of lncRNAs and guide cancer treatment. Tong D et 
al. [17] collected the clinical, DNA methylation and miRNA expression data of colon cancer from 
TCGA and proposed a predictive model based on the integration of clinical data and multi-omics data, 
and the results showed better predictive outcomes. These high-throughput molecular markers can 
dynamically reflect the comprehensive effects of genetic background, environmental exposure and 
lifestyle habits individually [18,19]. The analyses of multiple omics data may lead to new insights into 
diagnosis and prognosis of breast cancer [20]. In addition, in the standard approach of PRS, the effect 
sizes of the genetic variants are usually estimated in linear statistical models [21]. However, linear statistical 
model has some limitations and only be applied when specific requirements are satisfied [22]. Advanced 
machine learning (ML) models [23,24] such as LightGBM can account for non-linear relationships 
among large-scale variables and have an increasing trend on the applications for breast cancer research. 
Using these ML models may further improve the prediction accuracy of breast cancer. 

Here, we used multiple omics data and LightGBM model to construct a novel transcriptional risk 
score (TRS) for breast cancer. The results illustrated that our proposed method outperforms traditional 
linear models and other ML models and can effectively predict individual risk of breast cancer. 
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2. Materials and methods 

2.1. Data collection 

The datasets in this study were downloaded from the cancer genome atlas (TCGA) project. Now, 
all TCGA data are accessible without limitations in publications or presentations according to the 
posted announcement from the TCGA website [25]. We collected four kinds of omics datasets on breast 
invasive carcinoma (BRCA), including DNA methylation data (Illumina Infinium Human DNA 
Methylation 450 K; Level 3) measured from 782 tumor tissues and 96 normal tissues (Paracancerous 
tissue), miRNA-seq data (IlluminaHiSeq_miRNASeq; Level 3) measured from 1078 tumor tissues 
and 104 normal tissues, mRNA expression (Illumina mRNA-seq; Level 3) measured from 1102 
tumor tissues and 113 normal tissues, lncRNA expression (Illumina lncRNA-seq; Level 3) 
measured from 1102 tumor tissues and 113 normal tissues. We also collected the stage of tumor for 
the BRCA patients, including stages I–IV. According to the literature [26], the annotation of stages I 
and II were labelled as early-stage, stages III and IV as late-stage. For BRCA patients, most of the 
individuals are white, and a small number of individuals are black or African American and Asian. 
The ages of volunteers used in our study range from 26 to 90. Tables 1 and 2 show the sample sizes 
and clinical data of patients in BRCA datasets, respectively. An independent dataset (GSE66695) 
from the gene expression omnibus (GEO) measured by the Illumina Infinium 450 k Human DNA 
methylation Beadchip was used to validate the predictive performance of the proposed method. 
This dataset includes 80 BRCA tumor tissues and 40 normal tissues, and all volunteers are from 
Detroit, USA. 

Table 1. The description of BRCA datasets from TCGA. 

Omic type 
Total of early-stage and late-

stage tumor samples 

Total of tumor 

samples 

Total of normal 

samples 

Total of biological 

variables 

DNA 

methylation 

Early-stage 562 
782 96 14,797 

Late-stage 209 

miRNA 
Early-stage 790 

1078 104 360 
Late-stage 264 

mRNA 
Early-stage 800 

1102 113 16,499 

Late-stage 267 

lncRNA 
Early-stage 800 

1102 113 5382 

Late-stage 267 

The total of tumor samples is not equal to the sum of the early-stage and the late-stage samples, because some tumor 

samples have unknown breast cancer stage.  
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Table 2. Statistics of clinical data of patients in BRCA datasets from TCGA. 

Clinical data Sample size Percentage (%) 

Race 

White 575 62.8 

Black or African American 183 20.0 

Asian– 96 10.5 

Not available 61 6.7 

Age 
Average 58 — 

Range 2690 — 

Survival 

status 

Alive 947 88.7 

Dead 149 11.3 

2.2. Data pre-processing 

For DNA methylation, we retained the CpG sites that most negatively correlated with gene 
expression according to Firehose [27] and removed CpG sites with missing value to ensure the quality 
of the datasets [28]. For miRNA, mRNA, and lncRNA, two steps were performed to deal with the 
missing values in the datasets [29]. First, the probes were excluded if there is missing value in more 
than 20% of samples. Second, all data were normalized by Min-Max scaling to map the range from 0 
to 1. For convenience, CpG sites of DNA methylation and probes of miRNA, mRNA and lncRNA are 
collectively referred to as biological variables. Table 1 also shows the summary of biological variables. 

2.3. Construction of transcriptional risk scores 

2.3.1. Overview of TRS model 

According to the different phenotypes, we proposed to utilize multiple omics data and breast 
cancer status to construct two kinds of TRS models. The first phenotype only contains the normal 
samples (control) and tumor samples (case), which were labelled 0 and 1, respectively. The second 
phenotype contains the normal samples, early-stage and late-stage tumor samples, which were labelled 
0, 1 and 2, respectively. We defined the above-mentioned two TRS models as TRS for case-control 
status and TRS for cancer stage status. The TRS can evaluate the individual risk of breast cancer and 
may improve the diagnosis of breast cancer. Moreover, since recent studies found the stage of cancer 
is highly associated with the prognosis [30], accurate construction of TRS for cancer stage status may 
facilitate the prediction of breast cancer prognosis. The framework of this study is shown in Figure 1. 
We provided an executable python program, which is available for downloading from the GitHub 
website (https://github.com/lab319/TRS_BRCA_omics_LightGBM). 
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Figure 1. Schematic overview of the framework for constructing TRS model based on 
multiple omics data.  

The dataset of BRCA was split into two groups as training dataset and testing dataset based on 
five-fold cross validation. We constructed TRS model by using MCP, LASSO, elastic net, SVM and 
LightGBM based on training dataset. The hyper-parameters of five models were optimized by using 
bayesian optimization and three-fold cross validation. The TRS of testing dataset was predicted by 
optimized model. The predictive performance of final models was evaluated with R2. 

2.3.2. TRS based on LightGBM 

LightGBM is an ensemble model of classification and regression trees (CART) [31], in which 
each step generates a basic CART model and adds it to the overall model. The TRS models based on 
LightGBM were built using a training dataset to predict TRS in a testing dataset. We defined each omic 

dataset 1 1 1{( , )}(| | , , )m
i i i iD y D n y   X X R R   as training dataset, where ix  represents a matrix 

containing 𝑛ଵ  samples and 𝑚  biological variables, 𝑦௜  is the corresponding outcome (phenotype). 

Let 𝑦ො௜ be the prediction of 𝑦ො௜. 
* * * *

2 2 2{( , )}(| | , , )m
i i i iD y D n y   X X R R  was the testing dataset, 

where *
iX  represents a matrix containing 2n   samples and m  biological variables, *

iy   denotes the 

TRS. We used T  additive CART models to predict the TRS in the training dataset. 
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here ˆ( , )i il y y  is a differentiable convex loss function that measures the difference between the 
prediction ˆiy  and true phenotype iy . The K  and kw  respectively represent the number and value 
of leaf nodes in each CART model,   and   are constant coefficients. In general setting, the 
second-order approximation can be utilized to quickly optimize the objective function. 
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where ig  and ih  are the first and second-order gradient statistics of the loss function. 

{ | ( ) }k iI i q k X  was defined as the instance set of leaf nodes. LightGBM used two techniques 

including gradient-based one-side sampling and exclusive feature bundling to estimate the information 
gain in a high speed [23]. The structure and value of each CART model can be determined by the 
information gain. Thus, we generated the TRS model consisting of T  additive CART models. For 

the samples in a testing dataset, TRS 
*
iy  can be calculated by applying *

iX  to the TRS model. 

2.3.3. TRS based on linear model and other ML model 

To evaluate the predictive performance of LightGBM objectively, we applied the linear model 
and other ML models to construct TRS. The traditional linear model contains minimax concave penalty 
(MCP) [32], least absolute shrinkage and selection operator (LASSO)[33] and elastic net [34]. The 
ML model contains support vector regression (SVR) [35]. Here, we compared the TRS methods 
that only utilize omics data, without considering the methods that use GWAS summary statistics, 
such as LDpred [36], Lassosum [37] and so on. Similar to the TRS method based on LightGBM model, 
we used each omic dataset as the input of these models, and the corresponding phenotypes as the output. 

2.3.4. Model training and evaluation 

To ensure the robustness and stability of the model, we trained and evaluated the proposed TRS 
model by five-fold cross validation. The five-fold cross-validation method used in this study is shown 
in Figure 2. This procedure divided each omic dataset into five subsets. In each fold, one of the five 
subsets was used as the testing dataset and the other four subsets were put together to form a training 
dataset. We applied bayesian optimization and 3-fold inner cross validation to optimize the hyper-
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parameters of the TRS model in each training dataset. Specifically, for LASSO, we optimized the 
parameter “alpha”. For MCP, we adjusted regularization parameter “lambda”. For elastic net, the 
parameter “alpha” and “l1_ratio” were optimized. For SVR, we choose “rbf kernel” and optimized the 
regularization parameter “C”. For LightGBM, the optimized parameters were “num_leaves”, 
“n_estimators”, “learning_rate”, “max_depth”, “max_bin”, “min_split_gain”, “subsample”, 
“subsample_freq”, “colsample_bytree”, “min_child_sample”, “min_child_weight”, “reg_alpha”, 
“reg_lambda”. Finally, we obtained the TRS of each testing dataset which was predicted by the model 
with the optimized parameters. Each TRS was standardized based on its mean and standard deviation. 
The predictive performance of TRS model was evaluated by square of the Pearson correlation 
coefficient (R2).  

2 2
ˆ( , )

( )
ˆ( ) ( )

Cov Y Y
R

Var Y Var Y
                                                      (4)                

where  ˆ( , )Cov Y Y    represents the covariation of true phenotype and predicted TRS, ( )Var Y   is the 

variance of true phenotype, and  ˆ( )Var Y  is the variance of predicted TRS. In addition, for case-control 

status, we can also evaluate the predictive performance by the area under the receiver operating 
characteristic curve (AUC). 

 

Figure 2. Five-fold cross-validation block diagram. 

The procedure divided the dataset into five folds of approximate equal size. Each fold was used 
as a test set separately, and the other four folds were utilized as the training set. The performance of 
the prediction algorithm was estimated by averaging the accuracy on five test sets. 

2.4. Combination model of TRS 

To further improve the predictive performance of TRS, we utilized the TRS based on each omic 
dataset to construct a new combination model [38,39]. We first matched a common dataset from the 
four kinds of omics datasets for BRCA. In the common dataset of case-control status, there are 786 
tumor samples and 75 normal samples. In the common dataset of cancer stage status, there are 553 
early-stage samples, 205 late-stage samples and 75 normal samples. Next, we used the TRS based on 
four kinds of omics datasets as new feature variables for the combination model. Then, we built the 
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combination model using the LightGBM model. Bayesian optimization was applied to adjust hyper-
parameters and five-fold cross validation was used to evaluate the overall predictive performance. To 
evaluate the performance of combination model of TRS, we standardized the TRS based on its mean 
and standard deviation. The framework of the combination model is shown in Figure 3. 

 

Figure 3. Schematic overview of the framework for constructing combination model of TRS. 

We utilized proposed TRS model based on each omic data (DNA methylation, miRNA, mRNA 
and lncRNA) as new feature variables. The combination model was constructed by LightGBM model. 
The hyper-parameters of combination model were optimized by using bayesian optimization and 3-
fold cross validation. The predictive performance was evaluated by five-fold cross validation. 

3. Results 

3.1. Predictive performance of TRS based on multiple omics data 

We first compared our prediction model to the linear methods and other ML methods for case-
control status. Figure 4.a shows the results of these methods on four kinds of omics datasets from TCGA. 
We observed that elastic net achieves the best performance in traditional linear models. The R2 of SVR 
is 3.3, 7.7 and 0.5% higher than elastic net on DNA methylation, miRNA and lncRNA datasets and 3.1% 
lower than elastic net on mRNA dataset. The R2 of our proposed model improved by 8.3, 14.8, 5.1 and 
7.2% than elastic net on four kinds of omics datasets. Overall, our model outperformed other models and 
mRNA data exhibited better performance than other omics data.  

Next, we applied our proposed model and other linear and ML methods for cancer stage status. 
Compared with the case-control status, this phenotype contains normal and two stage statuses of breast 
cancer. Thus, the predictive performance of TRS for cancer stage status is not as good. Nevertheless, 
the present results are consistent with the TRS for case-control status. According to the comparison 
results of our proposed model with other methods (Figure 4b), the LightGBM model performs the best 
predictive performance, outscoring other methods on four kinds of omics datasets from TCGA. The 
TRS based on LightGBM obtains the R2 of 0.405, 0.371, 0.437 and 0.407, respectively. Compared with 
the elastic net with the highest prediction accuracy in the linear models, the R2 of LightGBM improved 
by 12.8, 20.9, 9.8 and 12.4%, respectively. Compared with SVR, the R2 of our proposed model 
improved by 10.4, 14.4, 10.6 and 3.3%, respectively. Moreover, the results showed mRNA data 
obtained better results than other omics data. Table 3 shows more detailed results about predictive 
performance of TRS based on multiple omics data. 
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Figure 4. Predictive performance of MCP, LASSO, elastic net, SVR and LightGBM in 
four kinds of omics datasets. (A) Comparison results of multiple omics datasets for case-
control status. (B) Comparison results of multiple omics datasets for cancer stage status. 
(C) Comparison results of multiple omics datasets and combination model in the common 
samples for case-control and cancer stage status. 
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Table 3. Predictive performance of MCP, LASSO, elastic net, SVR and LightGBM in four 
kinds of omics datasets. 

 Omic type MCP Lasso Elastic net SVR LightGBM 

case-control 

status 

DNA methylation 0.751 0.796 0.808 0.836 0.875 

miRNA 0.715 0.740 0.762 0.821 0.875 

mRNA 0.814 0.871 0.882 0.855 0.927 

lncRNA 0.752 0.839 0.839 0.843 0.900 

cancer stage 

status 

DNA methylation 0.283 0.323 0.359 0.367 0.405 

miRNA 0.300 0.310 0.316 0.334 0.382 

mRNA 0.296 0.381 0.398 0.395 0.437 

lncRNA 0.309 0.340 0.362 0.394 0.407 

3.2. Predictive performance of TRS in independent dataset 

To further validate the predictive performance of the proposed TRS model, we utilized the 
GSE66695 as an independent validation dataset. We first applied the LightGBM algorithm to 
construct the TRS model for case-control status using DNA methylation dataset from TCGA. The 
hyper-parameters of LightGBM were optimized by bayesian optimization of 3-fold cross validation. 
Next, we predicted TRS of each sample of GSE66695 dataset and obtained the R2 of 0.887. Compared to 
the BRCA dataset from TCGA, although the predictive performance of the independent validation 
dataset has slightly decreased, the proposed TRS model can still achieve satisfactory results. 

3.3. Predictive performance of TRS based on combination model 

In this part, we evaluated the performance of combination model of TRS. Figure 4c shows the 
results of TRS models based on four types of omics datasets and combination model in the common 
samples. For four kinds of omics datasets from TCGA, although the prediction accuracy in the common 
samples has decreased, we found that TRS based on mRNA still obtained the best prediction accuracy. 
For case-control and cancer stage status, the R2 of combination model were 0.932 and 0.397, respectively. 
Compared with the TRS model based on mRNA dataset, the R2 of combination model improved by 5.1 
and 2.8%, respectively. Thus, the combination of four types of molecular data can achieve better results 
of TRS for case-control and cancer stage status. Table 4 shows more detailed results about predictive 
performance of TRS based on combination model. 
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Table 4. Comparison results of multiple omics datasets and combination model in the 
common samples for case-control and cancer stage status. 

  DNA 

methylation 
miRNA mRNA lncRNA Combination 

case-control 

status 
0.846 0.848 0.887 0.839 0.932 

cancer stage 

status 
0.358 0.371 0.386 0.367 0.397 

3.4. Prevalence of breast cancer 

 

Figure 5. The prevalence curve of TRS for case-control status. (A) The prevalence strata 
plot of increasing TRS derived by TCGA. The 1st stratum can be regarded as a low-risk 
TRS stratum and the 2nd to 10th stratum as a high-risk stratum. (B) The prevalence strata 
plot of increasing TRS derived by GSE66695. The 1st to 3th stratum can be regarded as a 
low-risk TRS stratum and the 5th to 10th stratum as a high-risk stratum. 
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Exploring the prevalence of different TRS strata has a positive impact on the prevention and 
treatment of breast cancer [40]. The main goal of this part is to analyze the risk stratification of case-
control status. Thus, we divided the common samples into 10 strata of increasing TRS from the 
combination model and calculated the prevalence of each stratum (Figure 5a). We defined the 
prevalence as the proportion of breast cancer patients in each stratum. 

Across the common samples, we observed that the prevalence is about 10% in the first stratum 
then upgrades to 100% in the second stratum and remains steady afterward. The prevalence changes 
significantly at one stratum because our proposed method achieved relatively accurate prediction of 
breast cancer risk for case-control status. The trend plot of the prevalence also indicated that the 
individuals with high-TRS strata have greater breast cancer risk than the individuals with lower-TRS 
strata. In addition, we built the LightGBM model based on the DNA methylation dataset of TCGA, 
and then calculated the TRS using the GSE66695 dataset. We subsequently plotted the prevalence 
curve (Figure 5b) and obtained a similar result with the TCGA dataset. 

3.5. Associations between TRS and breast cancer risk 

We investigated the relationship of TRS with different phenotypes of breast cancer in this section 
(Table 5). For case-control status, the association of TRS was evaluated in predicted results from the 
combination model by logistic regression. The TRS generated by combination model and phenotype 
(case-control status) of breast cancer are used as the variable (x) and outcome (y) of the logistic 
regression model, respectively. We observed that TRS was associated with occurrence risk of breast 
cancer (odds ratio (OR) = 18.48; 95% confidence interval (CI): 9.60-35.55; P = 2.4610-18), suggesting 
that per one standard deviation increase in TRS is associated with risk increase of breast cancer. In 
addition, we calculated the OR value by the association of TRS and outcome of breast cancer using 
the GSE66695 dataset (odds ratio (OR) = 58.19; 95%CI: 12.78-264.90; P = 1.4810-7), and further 
verified the above conclusion. For cancer stage status, we performed a multinomial logistic regression 
model to evaluate the association of TRS and set the normal sample as the reference group. The TRS 
was associated with early-stage breast cancer risk (OR = 21.05; 95%CI: 10.26-43.19; P = 9.63   10-17) 
and late-stage breast cancer risk (OR = 46.62; 95%CI: 19.72-110.25; P = 2.14   10-18). The results 
indicated higher TRS is associated with a significantly increased risk for early-stage and late-stage 
breast cancer. 

Table 5. Associations between TRS and breast cancer risk. 

Phenotype OR 95%CI P-value 

The TRS for case-control status 

(TCGA) 
18.48 9.60–35.55 2.46  10-18 

The TRS for case-control status 

(GSE66695) 
58.19 12.78–264.90 1.48  10-7 

The TRS for cancer 

stage status (TCGA) 

Early-stage 21.05 10.26–43.19 9.63  10-17 

Late-stage 46.62 19.72–110.25 2.14  10-18 
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3.6. Prognosis prediction of breast cancer 

We explored whether the TRS for cancer stage status can effectively assess the prognosis of 
patients. According to the predicted results of tumor samples using combination model, we firstly 
divided 758 patients of breast cancer into high-risk and low-risk groups based on the 50th percentile 
of TRS. Next, we utilized the survival time and the status at the end of their survival time for each 
patient to generate Kaplan-Meier curves (KM curve). We observed that high-risk patients had 
statistically significantly worse prognosis (Figure 6). The results showed the TRS for cancer stage may 
provide an effective prognostic tool of breast cancer patients. 

 

Figure 6. The KM survival curve of BRCA patients in the high-risk and low-risk groups. 

We divided patients into high-risk and low-risk groups based on the 50th TRS. The patients with 
low-risk group have better prognosis than those with high-risk group. 

4. Discussion 

In our study, first of all, we have developed a novel TRS method for breast cancer using multiple 
omics data and LightGBM model. For case-control and cancer stage status, we showed that the 
proposed method had better prediction performance than linear models and other ML models using 
multiple omics data. Meanwhile, the prediction results of five-fold cross validation demonstrated the 
robustness and reliability of our proposed method. Second, the combination of TRS further improved 
the predictive performance for breast cancer. Finally, by analyzing the trend of prevalence and 
associations between TRS and breast cancer risk, the results bolstered the clinical understanding and 
application for breast cancer TRS. In addition, we also found that our TRS models for cancer stage 
status can improve the prognosis prediction of breast cancer patients. 

Most of the previous PRS studies focused on the analysis of individual-level genotype data (SNPs) 
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using linear models. For example, Mavaddat et al. [15] utilized PRS derived from 313 SNPs in 69 
studies of the Breast Cancer Association Consortium (BCAC) to predict the breast cancer risk and the 
AUC was 0.63. Khera et al. [14] derived a PRS based on 5218 SNPs in the UK Biobank and the AUC 
was 0.68. Although these studies obtain individual-level genetic risk of breast cancer, the current 
prediction accuracy still maintains at low level. In the independent validation dataset (GSE66695), our 
TRS model obtained the AUC of 0.98. Thus, the TRS based on multiple omics data and LightGBM 
not only improved the risk of predicting breast cancer, but also expanded the current definition of PRS 
from SNP data to genomics and transcriptomics data. In addition, some studies used gene expression 
data and clinical data to establish prognostic models to assess disease risk. For example, wang et 
al. [41] established an immune-related prognostic score in 22 breast cancer cohorts with a total of 6415 
samples. Yang et al. [42] undertook a study of tumor infiltrating lymphocytes in a large group of 
ovarian cancer patients and found that high expression levels of the immune-related genes were 
associated with good prognosis in high-grade serous carcinomas. Distinct with these studies our 
investigation utilized the LightGBM algorithm and multi-omics data to build a transcriptional risk 
score (TRS) model and estimate the risk of breast cancer. 

Our proposed method has the following advantages. First, the LightGBM model we used exploits 
gradient boosted trees to fits all biological variables simultaneously, especially high-dimensional data 
such as multiple omics data [23]. In addition, the LightGBM model takes advantage of ensemble 
learning, which helps to minimize the main causes of error in ML model such as noise, bias and 
variance than a single model [43]. Second, it is not easy to obtain SNP data because of ethical and legal 
constraints. With the development of high-throughput omics technology, related studies accumulate 
vast amounts of genomic and transcriptomic data which can be downloaded from many public databases. 
Third, as representative of genomics data, DNA methylation can be modulated by physiological and 
environmental exposures and provide biomarkers for diagnosis and prognosis for cancer [44–46]. 
Transcriptomics data including miRNA, mRNA, and lncRNA reveals the transcription and regulation 
mechanism of large-scale genes, which play an important role in determining the mechanism and treatment 
of cancer [47,48]. Compared to the individual-level genotype data, using multiple omics data to construct 
breast cancer TRS considered the interaction of genetic and environmental factors, and thus can provide 
higher prediction accuracy. 

Although our TRS methods provide good predictive performance, they have some limitations. 
First, the LightGBM model has more hyper-parameters than traditional linear models such as MCP, 
LASSO and elastic net. Thus, we need more time to train the proposed model. We applied 
multithreading technology to effectively utilize computing resources and correspondingly reduced 
some running time. Second, the sample size of breast cancer from TCGA is relatively small compared 
to large-scale genome-wide association studies data. In addition, there are significantly more tumor 
samples than normal samples in our study. Imbalanced datasets significantly compromise the 
performance of most standard learning algorithms, because these models assume the balanced class 
distributions. Third, the results we obtained on the independent validation set are lower than the results 
on the TCGA breast cancer dataset. The reasons are as the following, the two datasets are collected 
from different studies. Besides, the sample size of the independent validation (GEO) set is much 
smaller than that of TCGA. In the future, one of our tasks is to collect more omics data and clinical 
information from public datasets (TCGA, GEO, METABRIC, et al.), more cancer datasets are needed 
to improve and validate the proposed TRS model for breast cancer. 
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5. Conclusions 

We proposed a novel TRS model for two kinds of breast cancer phenotypes by using multiple 
omics data and LightGBM. The results demonstrated that our model improved the prediction 
accuracy of current PRS methods indeed and may provide an effective diagnosis and prognosis 
tool for breast cancer. 
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