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Abstract: Background: Polygenic risk score (PRS) can evaluate the individual-level genetic risk of
breast cancer. However, standalone single nucleotide polymorphisms (SNP) data used for PRS may
not provide satisfactory prediction accuracy. Additionally, current PRS models based on linear
regression have insufficient power to leverage non-linear effects from thousands of associated SNPs.
Here, we proposed a transcriptional risk score (TRS) based on multiple omics data to estimate the risk
of breast cancer. Methods: The multiple omics data and clinical data of breast invasive carcinoma
(BRCA) were collected from the cancer genome atlas (TCGA) and the gene expression omnibus
(GEO). First, we developed a novel TRS model for BRCA utilizing single omic data and LightGBM
algorithm. Subsequently, we built a combination model of TRS derived from each omic data to further
improve the prediction accuracy. Finally, we performed association analysis and prognosis prediction
to evaluate the utility of the TRS generated by our method. Results: The proposed TRS model achieved
better predictive performance than the linear models and other ML methods in single omic dataset. An
independent validation dataset also verified the effectiveness of our model. Moreover, the combination
of the TRS can efficiently strengthen prediction accuracy. The analysis of prevalence and the
associations of the TRS with phenotypes including case-control and cancer stage indicated that the risk
of breast cancer increases with the increases of TRS. The survival analysis also suggested that TRS for
the cancer stage is an effective prognostic metric of breast cancer patients. Conclusions: Our proposed
TRS model expanded the current definition of PRS from standalone SNP data to multiple omics data
and outperformed the linear models, which may provide a powerful tool for diagnostic and prognostic
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prediction of breast cancer.
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1. Introduction

Breast cancer is the most frequently diagnosed cancer in women worldwide [1]. In 2020, there
were over 2 million new cases reported [2]. Although morbidity and mortality have declined in recent
years due to changes in risk factors and improvements in screening tests and treatments, breast cancer
survival rates vary widely across countries and regions. The establishment of effective prevention and
treatment measures is essential to prevent breast cancer occurrence and reduce breast cancer mortality.
Although carriers of BRCA1 and BRCA2 gene mutations confer a high risk of breast cancer, these
gene mutations can be found in only a small part of breast cancer patients [3]. In recent years, genome-
wide association study (GWAS) identified multiple high frequency and low penetrance susceptibility
variants of breast cancer [4]. The accumulation effects of these susceptibility variants can be
summarized as a polygenic risk score (PRS). Researchers have developed several PRS models for
breast cancer by using a large amount of single nucleotide polymorphisms (SNPs) data [5]. These
studies maintained the PRS to be an effective and reliable predictor of breast cancer risk that may
provide screening and prevention strategies [6—8].

However, the PRS calculated using SNPs data can only assess the genetic risk of an individual,
while ignoring the influence of the external environmental exposure on gene expression. With the
development of high-throughput omics technology, a large number of related studies based on
genomics and transcriptomics emerged [9,10]. Omics data have been widely used for cancer
classification based on identified gene signatures [11], gene pathways [12], and protein-protein
interaction networks, etc. [13,14]. For example, Zhang Y et al. [15] proposed a novel approach to
predict prognosis in glioblastoma multiforme (GBM) by integrating histopathological images and
multi-omics data. Zhang X et al. [16] used XGBoost to upgrade a previously developed cancer-related
IncRNA classifier to improve the prediction accuracy of IncRNA-cancer associations, which was
expected to contribute to the functional annotation of IncRNAs and guide cancer treatment. Tong D et
al. [17] collected the clinical, DNA methylation and miRNA expression data of colon cancer from
TCGA and proposed a predictive model based on the integration of clinical data and multi-omics data,
and the results showed better predictive outcomes. These high-throughput molecular markers can
dynamically reflect the comprehensive effects of genetic background, environmental exposure and
lifestyle habits individually [18,19]. The analyses of multiple omics data may lead to new insights into
diagnosis and prognosis of breast cancer [20]. In addition, in the standard approach of PRS, the effect
sizes of the genetic variants are usually estimated in linear statistical models [21]. However, linear statistical
model has some limitations and only be applied when specific requirements are satisfied [22]. Advanced
machine learning (ML) models [23,24] such as LightGBM can account for non-linear relationships
among large-scale variables and have an increasing trend on the applications for breast cancer research.
Using these ML models may further improve the prediction accuracy of breast cancer.

Here, we used multiple omics data and LightGBM model to construct a novel transcriptional risk
score (TRS) for breast cancer. The results illustrated that our proposed method outperforms traditional
linear models and other ML models and can effectively predict individual risk of breast cancer.
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2. Materials and methods
2.1. Data collection

The datasets in this study were downloaded from the cancer genome atlas (TCGA) project. Now,
all TCGA data are accessible without limitations in publications or presentations according to the
posted announcement from the TCGA website [25]. We collected four kinds of omics datasets on breast
invasive carcinoma (BRCA), including DNA methylation data (Illumina Infinium Human DNA
Methylation 450 K; Level 3) measured from 782 tumor tissues and 96 normal tissues (Paracancerous
tissue), miRNA-seq data (IlluminaHiSeq miRNASeq; Level 3) measured from 1078 tumor tissues
and 104 normal tissues, mRNA expression (Illumina mRNA-seq; Level 3) measured from 1102
tumor tissues and 113 normal tissues, IncRNA expression (Illumina IncRNA-seq; Level 3)
measured from 1102 tumor tissues and 113 normal tissues. We also collected the stage of tumor for
the BRCA patients, including stages I-IV. According to the literature [26], the annotation of stages |
and II were labelled as early-stage, stages III and IV as late-stage. For BRCA patients, most of the
individuals are white, and a small number of individuals are black or African American and Asian.
The ages of volunteers used in our study range from 26 to 90. Tables 1 and 2 show the sample sizes
and clinical data of patients in BRCA datasets, respectively. An independent dataset (GSE66695)
from the gene expression omnibus (GEO) measured by the [llumina Infinium 450 k Human DNA
methylation Beadchip was used to validate the predictive performance of the proposed method.
This dataset includes 80 BRCA tumor tissues and 40 normal tissues, and all volunteers are from
Detroit, USA.

Table 1. The description of BRCA datasets from TCGA.

Omi Total of early-stage and late-  Total of tumor Total of normal Total of biological
mic type
P stage tumor samples samples samples variables
DNA Early-stage 562
) 782 96 14,797

methylation Late-stage 209
Early-stage 790

miRNA 1078 104 360
Late-stage 264
Early-stage 800

mRNA 1102 113 16,499
Late-stage 267
Early-stage 800

IncRNA 1102 113 5382
Late-stage 267

The total of tumor samples is not equal to the sum of the early-stage and the late-stage samples, because some tumor

samples have unknown breast cancer stage.
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Table 2. Statistics of clinical data of patients in BRCA datasets from TCGA.

Clinical data Sample size Percentage (%)

White 575 62.8

Black or African American 183 20.0
Race

Asian— 96 10.5

Not available 61 6.7

Average 58 —
Age

Range 2690 —
Survival Alive 947 88.7
status Dead 149 11.3

2.2. Data pre-processing

For DNA methylation, we retained the CpG sites that most negatively correlated with gene
expression according to Firehose [27] and removed CpG sites with missing value to ensure the quality
of the datasets [28]. For miRNA, mRNA, and IncRNA, two steps were performed to deal with the
missing values in the datasets [29]. First, the probes were excluded if there is missing value in more
than 20% of samples. Second, all data were normalized by Min-Max scaling to map the range from 0
to 1. For convenience, CpG sites of DNA methylation and probes of miRNA, mRNA and IncRNA are
collectively referred to as biological variables. Table 1 also shows the summary of biological variables.

2.3. Construction of transcriptional risk scores

2.3.1.  Overview of TRS model

According to the different phenotypes, we proposed to utilize multiple omics data and breast
cancer status to construct two kinds of TRS models. The first phenotype only contains the normal
samples (control) and tumor samples (case), which were labelled 0 and 1, respectively. The second
phenotype contains the normal samples, early-stage and late-stage tumor samples, which were labelled
0, 1 and 2, respectively. We defined the above-mentioned two TRS models as TRS for case-control
status and TRS for cancer stage status. The TRS can evaluate the individual risk of breast cancer and
may improve the diagnosis of breast cancer. Moreover, since recent studies found the stage of cancer
is highly associated with the prognosis [30], accurate construction of TRS for cancer stage status may
facilitate the prediction of breast cancer prognosis. The framework of this study is shown in Figure 1.
We provided an executable python program, which is available for downloading from the GitHub
website (https://github.com/lab319/TRS BRCA omics_LightGBM).

Mathematical Biosciences and Engineering Volume 19, Issue 12, 12353-12370.
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Figure 1. Schematic overview of the framework for constructing TRS model based on
multiple omics data.

The dataset of BRCA was split into two groups as training dataset and testing dataset based on
five-fold cross validation. We constructed TRS model by using MCP, LASSO, elastic net, SVM and
LightGBM based on training dataset. The hyper-parameters of five models were optimized by using
bayesian optimization and three-fold cross validation. The TRS of testing dataset was predicted by
optimized model. The predictive performance of final models was evaluated with R?.

2.3.2. TRS based on LightGBM

LightGBM is an ensemble model of classification and regression trees (CART) [31], in which
each step generates a basic CART model and adds it to the overall model. The TRS models based on
LightGBM were built using a training dataset to predict TRS in a testing dataset. We defined each omic

dataset D, ={(X,,»)}(| D, =n,X, e R",y, e R) as training dataset, where X, represents a matrix
containing n, samples and m biological variables, y; is the corresponding outcome (phenotype).

Let §; be the prediction of 9;. D,={(X;,y)}(|D,|=n,,X; eR",y, €R) was the testing dataset,

where X, represents a matrix containing 7, samplesand 77 biological variables, y, denotes the

1

TRS. Weused 7' additive CART models to predict the TRS in the training dataset.

Mathematical Biosciences and Engineering Volume 19, Issue 12, 12353-12370.
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where ﬂ (Xl) corresponds to an independent CART model and F' is the space of CART models.
To learn the set of CART used in the TRS model, we minimize the following objective function.

n . 1 K
L(ﬁ)=Zl(yi,yi)+7K+5/IZw,f (2)
i=1 k=1

here l(y,-,)?,.) is a differentiable convex loss function that measures the difference between the
prediction )A/,- and true phenotype ;. The K and W, respectively represent the number and value
of leaf nodes in each CART model, ¥ and A are constant coefficients. In general setting, the
second-order approximation can be utilized to quickly optimize the objective function.

L =YX g)w +§<Zh,.+ﬂ)wi1+ﬂ< (3)

= iel, iel;

where & and ]/l,- are the first and second-order gradient statistics of the loss function.

I = {i | q(X) =k} was defined as the instance set of leaf nodes. LightGBM used two techniques

including gradient-based one-side sampling and exclusive feature bundling to estimate the information
gain in a high speed [23]. The structure and value of each CART model can be determined by the
information gain. Thus, we generated the TRS model consisting of 7' additive CART models. For

the samples in a testing dataset, TRS yf can be calculated by applying x* to the TRS model.

2.3.3. TRS based on linear model and other ML model

To evaluate the predictive performance of LightGBM objectively, we applied the linear model
and other ML models to construct TRS. The traditional linear model contains minimax concave penalty
(MCP) [32], least absolute shrinkage and selection operator (LASSO)[33] and elastic net [34]. The
ML model contains support vector regression (SVR) [35]. Here, we compared the TRS methods
that only utilize omics data, without considering the methods that use GWAS summary statistics,
such as LDpred [36], Lassosum [37] and so on. Similar to the TRS method based on LightGBM model,
we used each omic dataset as the input of these models, and the corresponding phenotypes as the output.

2.3.4. Model training and evaluation

To ensure the robustness and stability of the model, we trained and evaluated the proposed TRS
model by five-fold cross validation. The five-fold cross-validation method used in this study is shown
in Figure 2. This procedure divided each omic dataset into five subsets. In each fold, one of the five
subsets was used as the testing dataset and the other four subsets were put together to form a training
dataset. We applied bayesian optimization and 3-fold inner cross validation to optimize the hyper-

Mathematical Biosciences and Engineering Volume 19, Issue 12, 12353—-12370.
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parameters of the TRS model in each training dataset. Specifically, for LASSO, we optimized the
parameter “alpha”. For MCP, we adjusted regularization parameter “lambda”. For elastic net, the
parameter “alpha” and “11_ratio” were optimized. For SVR, we choose “rbf kernel” and optimized the
regularization parameter “C”. For LightGBM, the optimized parameters were ‘“num_leaves”,
“n_estimators”, “learning rate”, “max_depth”, “max bin”, “min_split gain”, ‘“subsample”,
“subsample freq”, “colsample bytree”, “min_child sample”, “min_child weight”, “reg alpha”,
“reg_lambda”. Finally, we obtained the TRS of each testing dataset which was predicted by the model
with the optimized parameters. Each TRS was standardized based on its mean and standard deviation.
The predictive performance of TRS model was evaluated by square of the Pearson correlation
coefficient (R?).

Cov(Y, Y ) )

= 4)
Var(YYWar(Y)

where Cov(Y, Y ) represents the covariation of true phenotype and predicted TRS, Var(Y) is the

R =(

variance of true phenotype, and Var(f’ ) is the variance of predicted TRS. In addition, for case-control

status, we can also evaluate the predictive performance by the area under the receiver operating
characteristic curve (AUC).

Training set Test set

DI |D2 | D3| D4 | | |D5 [ resurl | 1
e
D1 | D3 | D4 | D5 : D2 —>| result2

i D2 | D3 | D4| D5 ; DI —_ m
| : .

Figure 2. Five-fold cross-validation block diagram.

The procedure divided the dataset into five folds of approximate equal size. Each fold was used
as a test set separately, and the other four folds were utilized as the training set. The performance of
the prediction algorithm was estimated by averaging the accuracy on five test sets.

2.4. Combination model of TRS

To further improve the predictive performance of TRS, we utilized the TRS based on each omic
dataset to construct a new combination model [38,39]. We first matched a common dataset from the
four kinds of omics datasets for BRCA. In the common dataset of case-control status, there are 786
tumor samples and 75 normal samples. In the common dataset of cancer stage status, there are 553
early-stage samples, 205 late-stage samples and 75 normal samples. Next, we used the TRS based on
four kinds of omics datasets as new feature variables for the combination model. Then, we built the

Mathematical Biosciences and Engineering Volume 19, Issue 12, 12353-12370.
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combination model using the LightGBM model. Bayesian optimization was applied to adjust hyper-
parameters and five-fold cross validation was used to evaluate the overall predictive performance. To
evaluate the performance of combination model of TRS, we standardized the TRS based on its mean
and standard deviation. The framework of the combination model is shown in Figure 3.

output TRS
TRS (DNA methylation) >
- output TRS -
TRS (miRNA) » o o
= . ; ; 5-fold
= B Combination y :
o o crossvalidation
siit TG P < B mode| of > el
outpu ;
TRS (mRNA) 5| & TRE N ghreral evaluation
output TRS
TRS (IncRNA) >

Figure 3. Schematic overview of the framework for constructing combination model of TRS.

We utilized proposed TRS model based on each omic data (DNA methylation, miRNA, mRNA
and IncRNA) as new feature variables. The combination model was constructed by LightGBM model.
The hyper-parameters of combination model were optimized by using bayesian optimization and 3-
fold cross validation. The predictive performance was evaluated by five-fold cross validation.

3. Results

3.1. Predictive performance of TRS based on multiple omics data

We first compared our prediction model to the linear methods and other ML methods for case-
control status. Figure 4.a shows the results of these methods on four kinds of omics datasets from TCGA.
We observed that elastic net achieves the best performance in traditional linear models. The R? of SVR
1s 3.3, 7.7 and 0.5% higher than elastic net on DNA methylation, miRNA and IncRNA datasets and 3.1%
lower than elastic net on mRNA dataset. The R? of our proposed model improved by 8.3, 14.8, 5.1 and
7.2% than elastic net on four kinds of omics datasets. Overall, our model outperformed other models and
mRNA data exhibited better performance than other omics data.

Next, we applied our proposed model and other linear and ML methods for cancer stage status.
Compared with the case-control status, this phenotype contains normal and two stage statuses of breast
cancer. Thus, the predictive performance of TRS for cancer stage status is not as good. Nevertheless,
the present results are consistent with the TRS for case-control status. According to the comparison
results of our proposed model with other methods (Figure 4b), the LightGBM model performs the best
predictive performance, outscoring other methods on four kinds of omics datasets from TCGA. The
TRS based on LightGBM obtains the R?0f 0.405, 0.371, 0.437 and 0.407, respectively. Compared with
the elastic net with the highest prediction accuracy in the linear models, the R? of LightGBM improved
by 12.8, 20.9, 9.8 and 12.4%, respectively. Compared with SVR, the R? of our proposed model
improved by 10.4, 14.4, 10.6 and 3.3%, respectively. Moreover, the results showed mRNA data
obtained better results than other omics data. Table 3 shows more detailed results about predictive
performance of TRS based on multiple omics data.

Mathematical Biosciences and Engineering Volume 19, Issue 12, 12353-12370.
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Figure 4. Predictive performance of MCP, LASSO, elastic net, SVR and LightGBM in
four kinds of omics datasets. (A) Comparison results of multiple omics datasets for case-
control status. (B) Comparison results of multiple omics datasets for cancer stage status.
(C) Comparison results of multiple omics datasets and combination model in the common
samples for case-control and cancer stage status.
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Table 3. Predictive performance of MCP, LASSO, elastic net, SVR and LightGBM in four
kinds of omics datasets.

Omic type MCP Lasso Elastic net SVR LightGBM

DNA methylation 0.751 0.796 0.808 0.836 0.875
case-control miRNA 0.715 0.740 0.762 0.821 0.875
status

mRNA 0.814 0.871 0.882 0.855 0.927

IncRNA 0.752 0.839 0.839 0.843 0.900

DNA methylation 0.283 0.323 0.359 0.367 0.405
cancer stage miRNA 0.300 0.310 0.316 0.334 0.382
status mRNA 0.296 0.381 0.398 0.395 0.437

IncRNA 0.309 0.340 0.362 0.394 0.407

3.2. Predictive performance of TRS in independent dataset

To further validate the predictive performance of the proposed TRS model, we utilized the
GSE66695 as an independent validation dataset. We first applied the LightGBM algorithm to
construct the TRS model for case-control status using DNA methylation dataset from TCGA. The
hyper-parameters of LightGBM were optimized by bayesian optimization of 3-fold cross validation.
Next, we predicted TRS of each sample of GSE66695 dataset and obtained the R? of 0.887. Compared to
the BRCA dataset from TCGA, although the predictive performance of the independent validation
dataset has slightly decreased, the proposed TRS model can still achieve satisfactory results.

3.3. Predictive performance of TRS based on combination model

In this part, we evaluated the performance of combination model of TRS. Figure 4c shows the
results of TRS models based on four types of omics datasets and combination model in the common
samples. For four kinds of omics datasets from TCGA, although the prediction accuracy in the common
samples has decreased, we found that TRS based on mRNA still obtained the best prediction accuracy.
For case-control and cancer stage status, the R? of combination model were 0.932 and 0.397, respectively.
Compared with the TRS model based on mRNA dataset, the R? of combination model improved by 5.1
and 2.8%, respectively. Thus, the combination of four types of molecular data can achieve better results
of TRS for case-control and cancer stage status. Table 4 shows more detailed results about predictive
performance of TRS based on combination model.

Mathematical Biosciences and Engineering Volume 19, Issue 12, 12353—-12370.
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Table 4. Comparison results of multiple omics datasets and combination model in the
common samples for case-control and cancer stage status.

DNA . ..
) miRNA mRNA IncRNA Combination
methylation
case-control
0.846 0.848 0.887 0.839 0.932
status
cancer stage
0.358 0.371 0.386 0.367 0.397

status

3.4. Prevalence of breast cancer

100

Prevalence (%)

1 2 3 a 5 6 7 8 9 10

Strata for BRCA TRS from TCGA

Prevalence (%)
-

1 2 3 4 5 6 7 8 9 10

Strata for BRCA TRS from GSE66695

Figure 5. The prevalence curve of TRS for case-control status. (A) The prevalence strata
plot of increasing TRS derived by TCGA. The 1st stratum can be regarded as a low-risk
TRS stratum and the 2nd to 10th stratum as a high-risk stratum. (B) The prevalence strata
plot of increasing TRS derived by GSE66695. The 1st to 3th stratum can be regarded as a
low-risk TRS stratum and the 5th to 10th stratum as a high-risk stratum.
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Exploring the prevalence of different TRS strata has a positive impact on the prevention and
treatment of breast cancer [40]. The main goal of this part is to analyze the risk stratification of case-
control status. Thus, we divided the common samples into 10 strata of increasing TRS from the
combination model and calculated the prevalence of each stratum (Figure 5a). We defined the
prevalence as the proportion of breast cancer patients in each stratum.

Across the common samples, we observed that the prevalence is about 10% in the first stratum
then upgrades to 100% in the second stratum and remains steady afterward. The prevalence changes
significantly at one stratum because our proposed method achieved relatively accurate prediction of
breast cancer risk for case-control status. The trend plot of the prevalence also indicated that the
individuals with high-TRS strata have greater breast cancer risk than the individuals with lower-TRS
strata. In addition, we built the LightGBM model based on the DNA methylation dataset of TCGA,
and then calculated the TRS using the GSE66695 dataset. We subsequently plotted the prevalence
curve (Figure 5b) and obtained a similar result with the TCGA dataset.

3.5. Associations between TRS and breast cancer risk

We investigated the relationship of TRS with different phenotypes of breast cancer in this section
(Table 5). For case-control status, the association of TRS was evaluated in predicted results from the
combination model by logistic regression. The TRS generated by combination model and phenotype
(case-control status) of breast cancer are used as the variable (x) and outcome (y) of the logistic
regression model, respectively. We observed that TRS was associated with occurrence risk of breast
cancer (odds ratio (OR) = 18.48; 95% confidence interval (CI): 9.60-35.55; P =2.46x 10"'%), suggesting
that per one standard deviation increase in TRS is associated with risk increase of breast cancer. In
addition, we calculated the OR value by the association of TRS and outcome of breast cancer using
the GSE66695 dataset (odds ratio (OR) = 58.19; 95%CI: 12.78-264.90; P = 1.48x107), and further
verified the above conclusion. For cancer stage status, we performed a multinomial logistic regression
model to evaluate the association of TRS and set the normal sample as the reference group. The TRS
was associated with early-stage breast cancer risk (OR = 21.05; 95%CI: 10.26-43.19; P=9.63 = 10"7)
and late-stage breast cancer risk (OR = 46.62; 95%CI: 19.72-110.25; P = 2.14 x 107'%). The results
indicated higher TRS is associated with a significantly increased risk for early-stage and late-stage
breast cancer.

Table 5. Associations between TRS and breast cancer risk.

Phenotype OR 95%ClI P-value
The TRS for case-control status 8
18.48 9.60-35.55 246 x 10
(TCGA)
The TRS for case-control status ;
58.19 12.78-264.90 1.48 x 10
(GSE66695)
~ 17
The TRS for cancer Early-stage 21.05 10.26-43.19 9.63 x 10
stage status (TCGA) 1o stage 46,62 19.72-110.25 214 x 1078

Mathematical Biosciences and Engineering Volume 19, Issue 12, 12353-12370.
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3.6. Prognosis prediction of breast cancer

We explored whether the TRS for cancer stage status can effectively assess the prognosis of
patients. According to the predicted results of tumor samples using combination model, we firstly
divided 758 patients of breast cancer into high-risk and low-risk groups based on the 50th percentile
of TRS. Next, we utilized the survival time and the status at the end of their survival time for each
patient to generate Kaplan-Meier curves (KM curve). We observed that high-risk patients had
statistically significantly worse prognosis (Figure 6). The results showed the TRS for cancer stage may
provide an effective prognostic tool of breast cancer patients.

1.001 — low risk
~+ high risk

0.751

Survival probality
3

p = 0.00018

0 2000 4000 6000 8000
Time in days

Figure 6. The KM survival curve of BRCA patients in the high-risk and low-risk groups.

We divided patients into high-risk and low-risk groups based on the 50th TRS. The patients with
low-risk group have better prognosis than those with high-risk group.

4. Discussion

In our study, first of all, we have developed a novel TRS method for breast cancer using multiple
omics data and LightGBM model. For case-control and cancer stage status, we showed that the
proposed method had better prediction performance than linear models and other ML models using
multiple omics data. Meanwhile, the prediction results of five-fold cross validation demonstrated the
robustness and reliability of our proposed method. Second, the combination of TRS further improved
the predictive performance for breast cancer. Finally, by analyzing the trend of prevalence and
associations between TRS and breast cancer risk, the results bolstered the clinical understanding and
application for breast cancer TRS. In addition, we also found that our TRS models for cancer stage
status can improve the prognosis prediction of breast cancer patients.

Most of the previous PRS studies focused on the analysis of individual-level genotype data (SNPs)
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using linear models. For example, Mavaddat et al. [15] utilized PRS derived from 313 SNPs in 69
studies of the Breast Cancer Association Consortium (BCAC) to predict the breast cancer risk and the
AUC was 0.63. Khera et al. [14] derived a PRS based on 5218 SNPs in the UK Biobank and the AUC
was 0.68. Although these studies obtain individual-level genetic risk of breast cancer, the current
prediction accuracy still maintains at low level. In the independent validation dataset (GSE66695), our
TRS model obtained the AUC of 0.98. Thus, the TRS based on multiple omics data and LightGBM
not only improved the risk of predicting breast cancer, but also expanded the current definition of PRS
from SNP data to genomics and transcriptomics data. In addition, some studies used gene expression
data and clinical data to establish prognostic models to assess disease risk. For example, wang et
al. [41] established an immune-related prognostic score in 22 breast cancer cohorts with a total of 6415
samples. Yang et al. [42] undertook a study of tumor infiltrating lymphocytes in a large group of
ovarian cancer patients and found that high expression levels of the immune-related genes were
associated with good prognosis in high-grade serous carcinomas. Distinct with these studies our
investigation utilized the LightGBM algorithm and multi-omics data to build a transcriptional risk
score (TRS) model and estimate the risk of breast cancer.

Our proposed method has the following advantages. First, the LightGBM model we used exploits
gradient boosted trees to fits all biological variables simultaneously, especially high-dimensional data
such as multiple omics data [23]. In addition, the LightGBM model takes advantage of ensemble
learning, which helps to minimize the main causes of error in ML model such as noise, bias and
variance than a single model [43]. Second, it is not easy to obtain SNP data because of ethical and legal
constraints. With the development of high-throughput omics technology, related studies accumulate
vast amounts of genomic and transcriptomic data which can be downloaded from many public databases.
Third, as representative of genomics data, DNA methylation can be modulated by physiological and
environmental exposures and provide biomarkers for diagnosis and prognosis for cancer [44-46].
Transcriptomics data including miRNA, mRNA, and IncRNA reveals the transcription and regulation
mechanism of large-scale genes, which play an important role in determining the mechanism and treatment
of cancer [47,48]. Compared to the individual-level genotype data, using multiple omics data to construct
breast cancer TRS considered the interaction of genetic and environmental factors, and thus can provide
higher prediction accuracy.

Although our TRS methods provide good predictive performance, they have some limitations.
First, the LightGBM model has more hyper-parameters than traditional linear models such as MCP,
LASSO and elastic net. Thus, we need more time to train the proposed model. We applied
multithreading technology to effectively utilize computing resources and correspondingly reduced
some running time. Second, the sample size of breast cancer from TCGA is relatively small compared
to large-scale genome-wide association studies data. In addition, there are significantly more tumor
samples than normal samples in our study. Imbalanced datasets significantly compromise the
performance of most standard learning algorithms, because these models assume the balanced class
distributions. Third, the results we obtained on the independent validation set are lower than the results
on the TCGA breast cancer dataset. The reasons are as the following, the two datasets are collected
from different studies. Besides, the sample size of the independent validation (GEO) set is much
smaller than that of TCGA. In the future, one of our tasks is to collect more omics data and clinical
information from public datasets (TCGA, GEO, METABRIC, et al.), more cancer datasets are needed
to improve and validate the proposed TRS model for breast cancer.
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5. Conclusions

We proposed a novel TRS model for two kinds of breast cancer phenotypes by using multiple
omics data and LightGBM. The results demonstrated that our model improved the prediction
accuracy of current PRS methods indeed and may provide an effective diagnosis and prognosis
tool for breast cancer.

Acknowledgements

All procedures performed in studies involving human participants were in accordance with the
ethical standards of the institutional and/or national research committee and with the 1964 Helsinki
declaration and its later amendments or comparable ethical standards. All TCGA data are accessible
without limitations in publications or presentations according to the posted announcement from the
TCGA website.

Conflict of interest

The authors have no conflicts of interest to declare.
References

1. K. L. Britt, J. Cuzick, K. Phillips, Key steps for effective breast cancer prevention, Nat. Rev.
Cancer, 20 (2020), 417-436. https://doi.org/10.1038/s41568-020-0266-x

2. C. Wild, E. Weiderpass, B. Stewart, World cancer report: cancer research for cancer prevention,
Lyon: Int. Agency Res. Cancer, 1 (2020), 23-33. https://www.paho.org/en/node/69005

3. D. Thompson, D. Easton, The genetic epidemiology of breast cancer genes, J. Mammary Gland
Biol. Neoplasia, 9 (2004), 221-236. https://doi.org/10.1023/B:JOMG.0000048770.90334.3b

4. L. Wu, W. Shi, J. Long, X. Guo, K. Michailidou, J. Beesley, et al., A transcriptome-wide
association study of 229,000 women identifies new candidate susceptibility genes for breast
cancer, Nat. Genet., 50 (2018), 968-978. https://doi.org/10.1038/s41588-018-0132-x

5. P.Maas, M. Barrdahl, A. D. Joshi, P. L. Auer, M. M. Gaudet, R. L. Milne, et al., Breast cancer risk
from modifiable and nonmodifiable risk factors among white women in the United States, JAMA
Oncol., 2 (2016), 1295-1302. https://doi.org/10.1001/jamaoncol.2016.1025

6. N.Mavaddat, P. D. Pharoah, K. Michailidou, J. Tyrer, M. N. Brook, M. K. Bolla, et al., Prediction
of breast cancer risk based on profiling with common genetic variants, J. Nat. Cancer Inst., 107
(2015), djv036. https://doi.org/10.1093/jnci/djv036

7. A. V. Khera, M. Chaffin, K. G. Aragam, M. E. Haas, C. Roselli, S. H. Choi, et al., Genome-wide
polygenic scores for common diseases identify individuals with risk equivalent to monogenic
mutations, Nat. Genet., 50 (2018), 1219-1224. https://doi.org/10.1038/s41588-018-0183-z

8. N. Mavaddat, K. Michailidou, J. Dennis, M. Lush, L. Fachal, A. Lee, et al., Polygenic risk scores
for prediction of breast cancer and breast cancer subtypes, Am. J. Hum. Genet., 104 (2019), 21—
34. https://doi.org/10.1016/j.ajhg.2018.11.002

9. Y. Dor, H. Cedar, Principles of DNA methylation and their implications for biology and medicine,
Lancet, 392 (2018), 777-786. https://doi.org/10.1016/S0140-6736(18)31268-6

Mathematical Biosciences and Engineering Volume 19, Issue 12, 12353-12370.



12368

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

R. Lowe, N. Shirley, M. Bleackley, S. Dolan, T. Shafee, Transcriptomics technologies, PLoS
Comput. Biol., 13 (2017), €1005457. https://doi.org/10.1371/journal.pcbi.1005457

Y. C. Chen, Y. C. Chang, W. C. Ke, H. W. Chiu, Cancer adjuvant chemotherapy strategic
classification by artificial neural network with gene expression data: An example for non-small
cell lung cancer, J. Biomed. Inf., 56 (2015), 1-7. https://doi.org/10.1016/j.jb1.2015.05.006

H. Jin, H. C. Lee, S. S. Park, Y. S. Jeong, S. Y. Kim, Serum cancer biomarker discovery through
analysis of gene expression data sets across multiple tumor and normal tissues, J. Biomed. Inf., 44
(2011), 1076-85. https://doi.org/10.1016/5.jbi.2011.08.010

L. P. Zhao, H. Bolouri, Object-oriented regression for building predictive models with high
dimensional omics data from translational studies, J. Biomed. Inf., 60 (2016), 431-445.
https://doi.org/10.1016/5.jb1.2016.03.001

S. Joe, H. Nam, Prognostic factor analysis for breast cancer using gene expression profiles, BMC
Med. Inf. Decis. Making, 16 (2016), 56. https://doi.org/10.1186/s12911-016-0292-5

Y. Zhang, A. Li, J. He, M. Wang, A novel MKL method for GBM prognosis prediction by
integrating histopathological image and multi-omics data, /[EEE J. Biomed. Health. Inf., 24 (2020),
171-179. https://doi.org/10.1109/JBHI.2019.2898471

X. Zhang, T. Li, J. Wang, J. Li, L. Chen, C. Liu, Identification of cancer-related long non-coding
RNAs using XGBoost with high accuracy, Front. Genet., 10 (2019), 735.
https://doi.org/10.3389/fgene.2019.00735

D. Tong, Y. Tian, T. Zhou, Q. Ye, J. Li, K. Ding, et al., Improving prediction performance of colon
cancer prognosis based on the integration of clinical and multi-omics data, BMC Med. Inf. Decis.
Making, 20 (2020), 22. https://doi.org/10.1186/s12911-020-1043-1

J. A. Alegria-Torres, A. Baccarelli, V. Bollati, Epigenetics and lifestyle, Epigenomics, 3 (2011),
267-277. https://doi.org/10.2217/ep1.11.22

C. P. Wild, The exposome: from concept to utility, Int. J. Epidemiol., 41 (2012), 24-32.
https://doi.org/10.1093/ije/dyr236

Y. V. Sun, Y. J. Hu, Integrative analysis of multi-omics data for discovery and functional studies
of complex human diseases, Adv. Genet., 93 (2016), 147-190.
https://doi.org/10.1016/bs.adgen.2015.11.004

S. W. Choi, T. S. Mak, P. F. O'Reilly, Tutorial: a guide to performing polygenic risk score analyses,
Nat. Protoc., 15 (2020), 2759-2772. https://doi.org/10.1038/s41596-020-0353-1

J. Erenpreisa, A. Giuliani, Resolution of complex issues in genome regulation and cancer requires
non-linear and network-based thermodynamics, Int. J. Mol Sci., 21 (2019), 240.
https://doi.org/10.3390/ijms21010240

G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, et al., Lightgbm: A highly efficient gradient
boosting decision tree, Adv. Neural Inf. Process. Syst., 30 (2017), 3146-3154.
https://www.microsoft.com/en-us/research/publication/lightgbm-a-highly-efficient-gradient-
boosting-decision-tree/

E. Zhu, F. Jiang, C. Liu, J. Xu, Partition independent set and reduction-based approach for
partition  coloring  problem, [EEE  Trans. Cybern., 52 (2022), 4960—4969.
https://doi.org/10.1109/TCYB.2020.3025819

K. Tomczak, P. Czerwinska, M. Wiznerowicz, The Cancer Genome Atlas (TCGA): an
immeasurable source of knowledge, Contemp. Oncol., 19 (2015), A68-77.
https://doi.org/10.5114/w0.2014.47136

Mathematical Biosciences and Engineering Volume 19, Issue 12, 12353-12370.



12369

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

A. Rahimi, M. G6nen, Discriminating early-and late-stage cancers using multiple kernel learning
on gene sets, Bioinformatics, 34 (2018),1412—-1421. https://doi.org/10.1093/bioinformatics/bty239
Y. Yuan, E. M. V. Allen, L. Omberg, N. Wagle, A. Amin-Mansour, A. Sokolov, et al., Assessing
the clinical utility of cancer genomic and proteomic data across tumor types, Nat. Biotechnol., 32
(2014), 644—652. https://doi.org/10.1038/nbt.2940

B. Liu, Y. Liu, X. Pan, M. Li, S. Yang, S. C. Li, DNA methylation markers for pan-cancer
prediction by deep learning, Genes, 10 (2019) 778. https://doi.org/10.3390/genes10100778

B. Ma, F. Meng, G. Yan, H. Yan, B. Chai, F. Song, Diagnostic classification of cancers using
extreme gradient boosting algorithm and multi-omics data, Comput. Biol. Med., 121 (2020),
103761. https://doi.org/10.1016/j.compbiomed.2020.103761

A. Weiss, M. Chavez-MacGregor, D. Y. Lichtensztajn, M. Yi, A. Tadros, G. N. Hortobagyi, et al.,
Validation study of the American joint committee on cancer eighth edition prognostic stage
compared with the anatomic stage in breast cancer, JAMA Oncol., 4 (2018), 203-209.
https://doi.org/10.1001/jamaoncol.2017.4298

G. De'ath, K. E. Fabricius, Classification and regression trees: a powerful yet simple technique
for ecological data analysis, Ecology, 81 (2000), 3178-3192. https://doi.org/10.2307/177409

J. Liu, K. Wang, S. Ma, J. Huang, Accounting for linkage disequilibrium in genome-wide
association studies: A penalized regression method, Stat. Interface, 6 (2013), 99-115.
https://doi.org/10.4310/S11.2013.v6.n1.a10

R. Tibshirani, Regression shrinkage and selection via the lasso: a retrospective, J. R. Stat. Soc.:
Ser. B, 73 (2011), 267-288. https://doi.org/10.1111/j.1467-9868.2011.00771.x

H. Zou, T. Hastie, Regularization and variable selection via the elastic net, J. R. Stat. Soc.: Ser. B,
67 (2005), 301-320. https://doi.org/10.1111/j.1467-9868.2005.00503.x

A.J. Smola, B. Schélkopf, A tutorial on support vector regression, Stat. Comput., 14 (2004), 199—
222. https://doi.org/10.1023/B:STC0O.0000035301.49549.88

B. J. Vilhjalmsson, J. Yang, H. K. Finucane, A. Gusev, S. Lindstrom, S. Ripke, et al., Modeling
linkage disequilibrium increases accuracy of polygenic risk scores, Am. J. Hum. Genet., 97 (2015),
576-592. https://doi.org/ 10.1016/j.ajhg.2015.09.001

T. S. Mak, R. M. Porsch, S. W. Choi, X. Zhou, P. C. Sham, Polygenic scores via penalized
regression on summary statistics, Genet.  Epidemiol., 41 (2017), 469-480.
https://doi.org/10.1002/gep1.22050

A. Alves, Stacking machine learning classifiers to identify Higgs bosons at the LHC, J. Instrum.,
12 (2017), TO5005. https://doi.org/10.1088/1748-0221/12/05/T05005

B. Pavlyshenko, Using stacking approaches for machine learning models, in 2018 IEEE Second
International Conference on Data Stream Mining & Processing, (2018), 255-258,
https://doi.org/10.1109/DSMP.2018.8478522

J. J. Barendregt, S. A. Doi, Y. Y. Lee, R. E. Norman, T. Vos, Meta-analysis of prevalence, J.
Epidemiol. Commun. Health, 67 (2013), 974-978. https://doi.org/10.1136/jech-2013-203104

S. Wang, Q. Zhang, C. Yu, Y. Cao, Y. Zuo, L. Yang, Immune cell infiltration-based signature for
prognosis and immunogenomic analysis in breast cancer, Briefings Bioinf., 22 (2021), 2020-2031.
https://doi.org/10.1093/bib/bbaa026

L. Yang, S. Wang, Q. Zhang, Y. Pan, Y. Lv, X. Chen, et al., Clinical significance of the immune
microenvironment in ovarian cancer patients, Mol Omics, 14 (2018), 341-35I.
https://doi.org/10.1039/c8mo00128f

Mathematical Biosciences and Engineering Volume 19, Issue 12, 12353-12370.



12370

43.

44,

45.

46.

47.

48.

C. Zhang, Y. Ma, Ensemble machine learning || ensemble learning, Chapter, 1 (2012), 1-34.
https://doi.org/10.1007/978-1-4419-9326-7.

Y. Pan, G. Liu, F. Zhou, B. Su, Y. Li, DNA methylation profiles in cancer diagnosis and
therapeutics, Clin. Exp. Med., 18 (2018), 1-14. https://doi.org/10.1007/s10238-017-0467-0

T. Hou, H. Chang, H. Jiang, P. Wang, N. Li, Y. Song, et al., Smartphone based microfluidic lab-
on-chip device for real-time detection, counting and sizing of living algae, Measurement, 187
(2022), 0263—-2241. https://doi.org/10.1016/;.measurement.2021.110304

Y. Cheng, C. He, M. Wang, X. Ma, F. Mo, S. Yang, et al., Targeting epigenetic regulators for
cancer therapy: mechanisms and advances in clinical trials, Signal Transduction Targeted Ther., 4
(2019), 62. https://doi.org/10.1038/s41392-019-0095-0

J. Fan, K. Slowikowski, F. Zhang, Single-cell transcriptomics in cancer: computational challenges
and opportunities, Exp. Mol. Med., 52 (2020), 1452—1465. https://doi.org/10.1038/s12276-020-
0422-0

J, Rodon, J. C. Soria, R. Berger, W. H. Miller, E. Rubin, A. Kugel, et al., Genomic and
transcriptomic profiling expands precision cancer medicine: the WINTHER trial, Nat. Med., 25
(2019), 751-758. https://doi.org/10.1038/s41591-019-0424-4

©2022 the Author(s), licensee AIMS Press. This is an open access

%wﬁ% AIMS PI’GSS article distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 19, Issue 12, 12353-12370.



