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Abstract: This paper studies the issue of adaptive fuzzy output-feedback event-triggered control
(ETC) for a fractional-order nonlinear system (FONS). The considered fractional-order system is
subject to unmeasurable states. Fuzzy-logic systems (FLSs) are used to approximate unknown
nonlinear functions, and a fuzzy state observer is founded to estimate the unmeasurable states. By
constructing appropriate Lyapunov functions and utilizing the backstepping dynamic surface control
(DSC) design technique, an adaptive fuzzy output-feedback ETC scheme is developed to reduce the
usage of communication resources. It is proved that the controlled fractional-order system is stable, the
tracking and observer errors are able to converge to a neighborhood of zero, and the Zeno phenomenon
is excluded. A simulation example is given to verify the availability of the proposed ETC algorithm.
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1. Introduction

Fractional-order nonlinear systems (FONSs) are a class of complex systems modeled by fractional
calculus. In recent years, the application of fractional calculus has attracted wide-ranging attention. In
practice, examples such as the blood ethanol concentration system by Qureshi et al. [1], the dynamics
of the TB virus by Ullah et al. [2], the fractional Brusselator reaction-diffusion system by Jena et
al. [3], etc. can be modeled as fractional order systems. This kind of system can well describe the
genetic effect and long memory effect of a real physical system. Nevertheless, it is noteworthy that
conventional control scheme is no longer applicable to fractional-order systems due to some general
rules for integer-order calculation, such as Chain rules and Leibniz rules, not being well built with
regard to fractional derivatives. Hence, how to solve the stability analysis or controller of fractional
order systems has attracted extensive attention of scholars. For example, in [4], a fractional order
controller designed by Liu et al. to ensure that the synchronization errors of the fractional order chaotic
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system reached the specified performance whether there is external interference or not. Wei et al. [5]
designed an adaptive tracking controller and extended the result to the case of 1 < α < 2 by the
semigroup property of the fractional derivative and fractional tracking differentiator. Afterwards, Li et
al. [6] studied the adaptive control issue for a type of commensurate FONS with parametric uncertainty
and external interference, and unlike the discontinuous function, the auxiliary function is used to get
smooth control input and achieve perfect property tracking in case of bounded interferences. However,
the above literature demands that nonlinear functions in the plant are known. So, these techniques are
not appropriate for resolving the control issue of FONSs with unknown nonlinear functions.

In practice, there are always completely unknown nonlinear functions in the modeled control
systems, which cannot be ignored. Therefore, [7–11] used FLSs or neural networks (NNs) with
approximation capability to solve this problem. The authors in [7–9] put forward adaptive intelligent
(fuzzy and NN) control schemes for FONSs, in which Wang and Liang [8] and Li et al. [9] are robust
to input saturation and fault, respectively. Because the above intelligent adaptive control methods
adopt a conventional backstepping control technology, there is a problem of computational
complexity. In order to avoid this problem, Ma and Ma [10] and Sui et al. [11] proposed several
adaptive intelligent state feedback control methods by introducing fractional-order filters. However,
the existing methods in [7–11] are merely applicable to those FONSs whose states are only measured.
Therefore, the above scheme is not suitable for the control design of FONSs with unmeasurable state
variables. Then, [12–14] presented some adaptive intelligent output-feedback DSC methods for
FONSs with unmeasurable states. It should be noted that in [12], the authors established a new
fractional-order reduced-order observer, which not only obtained the information of unmeasurable
states, but also reduced errors caused by the full-order state observer in the estimation of some
measurable states. As far as we know, there are few results on output-feedback and DSC control
simultaneously for fractional-order nonlinear systems, which prompted us to study this problem.

Notably, that the above results adopt conventional periodic control methods, and the control signal
needs to be transferred to the actuator in actual time, which will lead to unnecessary sampling and
communication. Recently, the ETC theorem has been exploited rapidly, which can reduce the
communication load of the controlled system [15–17]. An event-triggered pulse control method for
impulsive systems is proposed in [15], which successfully solves the stabilization matter of nonlinear
impulsive systems and eliminates Zeno behavior. Later, in [16,17], Sui et al. and Wang et al. designed
intelligent adaptive ETC schemes for stochastic systems and multi-agent systems to achieve system
stability while reducing the waste of communication resources. Note that the systems considered by
above intelligent controllers are only applicable to integer-order nonlinear systems, not FONSs.
Meanwhile, it is not easy to extend the direct Lyapunov algorithm and its related control schemes
from integer order to FONSs. Although [18–20] proposed several intelligent adaptive control
algorithms for the FONSs, they are designed for situation in which the state is completely measurable
and there is a problem of computational complexity. To our knowledge, there is a short age of studies
on the observer-based ETC control methods for FONSs, which inspires us to study this problem.

According to the above-mentioned discussions, we study the adaptive output-feedback
event-triggered control for FONS with unmeasurable state variables. The proposed ETC scheme can
significantly decrease the consumption of communication resources. The main innovations of this
paper are as follows.

1) This article first designs an output-feedback event-triggered controller of the FONS. The
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proposed control algorithm erases the restrictive condition in [18–20], with which the state of the
system must be completely measured.

2) Due to the DSC technique being used to control design, the put forward control method settles
the computational complexity issue in current works [18–20].

3) In this paper, the adaptive control law and the event-triggered mechanism are designed together.
The stability of the controlled system can be guaranteed by using the fractional-order Lyapunov
criterion. Unlike [9–12], the control signal needs to be sampled and updated regularly. The system
drive will be generated only when the preset conditions are met in this paper, which greatly reduces
the consumption of network resources.

2. Preliminaries

2.1. System statements

Consider the following FONS:
C
0 Dα

t xi =xi+1 + fi(x̄i)
C
0 Dα

t xn = u + fn(x̄n)
y = x1

(2.1)

where x̄n = [x1, x2, ..., xn]T ∈ Rn are the system state vectors, and y ∈ R and u ∈ R denote the output
variable and control input of the system. fi(·) ∈ R, i = 1, . . . , n, denotes an unknown smooth nonlinear
function. This paper assumes that only the output variable y is measurable.

Assumption 1 [9–14]: The given reference signals yd,
C
0 Dα

t yd and C
0 Dα

t (C
0 Dα

t yd) are smooth and
bounded. Furthermore, assumed that there exists known constant Z0 > 0 satisfying that
y2

d + (C
0 Dα

t yd)2 + (C
0 Dα

t (C
0 Dα

t yd))2 ≤ Z0.
Control Objectives: In this article, a fuzzy adaptive event-triggered controller is designed for System

(1) such that all signals in the considered system are bounded, and the tracking error converges to the
compact set of the origin.

2.2. Preliminaries

Some useful definitions and lemmas are given first.
Definition 1 [21]: The αth Caputo derivative is defined as:

C
0 Dα

t F(t) =
1

Γ(ω − α)

∫ t

0

F(ω)(τ)
(t − τ)α+1−ωdτ (2.2)

where ω − 1 < α ≤ ω, ω is a positive integer. Γ(·) =
∫ +∞

0
τ−1e−τdτ denotes Euler’s gamma function

with Γ(1) = 1.
Definition 2 [21]: The Mittag-Leffler function is formulated as

Eα,ϕ(γ) =
∞∑
j=0

γ j

Γ( jα + ϕ)
(2.3)

where α > 0, ϕ > 0, and γ is a complex number.
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Lemma 1 [21]: Let α ∈ (0, 2), η ∈ R and ϕ ∈ (πα/2,min{π, πα}), and then one has

Eα,η(ζ) ≤
r

1 + |ζ |
(2.4)

In (2.4), r > 0, |ζ | ≥ 0, and ϕ ≤ | arg(ζ)| ≤ π.
Lemma 2: Suppose that f (x) is a continuous function on a compact set Ω. There exists an FLS such

as
sup
x∈Ω

∣∣∣ f (x) − ξ∗Tψ(x)
∣∣∣ ≤ ε (2.5)

where ε > 0 is any positive constant.

3. Fuzzy state observer

Write the FONS (2.1) as follows:

C
0 Dα

t x = Ax + Ky +
n∑

i=1
Bi fi(x̄i) + Bu

y = Cx
(3.1)

where A =


−k1 1 · · · 0
−k2 0 · · · 0
...

...
...

...

−kn 0 · · · 0


n×n

,K =


k1

k2
...

kn


n×1

, B =


0
0
...

1


n×1

, Bi =

0 · · · 1︸      ︷︷      ︸
i

· · · 0


1×n

,C =

[
1 0 · · · 0

]T
,K is chosen such that (A + CK) is a Hurwitz matrix. Q = QT > 0 is a positive

definite matrix, and exist a positive definite matrix P = PT > 0 such that

AT P + PA = −2Q, (3.2)

It is worth noting that fi(x̄i) in (3.1) is an unknown continuous function, so it is necessary to
approximate fi(x̄i) with the help of an FLS f̂i(x̄i|ξi) = ξT

i ϕi(x̄i),. In the bounded sets Ω, the definition of
ideal parameter vectors ξ∗i are described as:

ξ∗i = arg min
ξ∈Ω

[
sup
x̄i∈U

∣∣∣ f̂i( x̄i| ξi) − fi(x̄i)
∣∣∣] (3.3)

The definition of the optimal approximation errorεi is described as

εi = fi(x̄i) − f̂i( x̄i| ξ
∗
i ) (3.4)

with εi(x̄i) is bounded by constant ε∗i > 0.
Design the fuzzy state observer for (3.1) as

C
0 Dα

t x̂ = Ax̂ + Ky +
n∑

i=1
Bi f̂i( ˆ̄xi|ξi) + Bu

ŷ = Cx̂
(3.5)
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where x̂ = [x̂1, x̂2, . . . , x̂n]T are the estimations of x.
Define the observer error as e = x − x̂.
From (3.1), (3.4) and (3.5), one has

C
0 Dα

t e =
n∑

i=1

Biξ
∗T
i (ϕi(x̄i) − ϕi( ˆ̄xi)) + Ae +

n∑
i=1

Biξ̃
T
i ϕi( ˆ̄xi) + ε (3.6)

where ε = [ε1, ε2, . . . , εn]T , ξi are the estimations of ideal parameters ξ∗i , and ξ̃ = ξ∗ − ξ.
Construct the Lyapunov function candidate as V0 =

1
2eT Pe, and then the following Theorem can be

obtained.
Theorem 1: For controlled System (2.1), the fuzzy state observer (3.3) has the following property:

C
0 Dα

t V0 ≤ −λ0||e||2 +
1
2
||P||2

n∑
i=1

||ξ̃i||
2 + δ0 (3.7)

where λ0 = (λmin(Q) − 2) > 0, and δ0 = ||P||2
∑n

i=1 ||ξ
∗
i ||

2 + 1
2 ||P||

2∑n
i=1 ε

∗2
i .

Proof: We choose the Lyapunov function candidate as V0 =
1
2eT Pe. From (3.5) and (3.6), by the

inequality C
0 Dα

t (xT (t)x(t))
/
2 ≤ xT (t)C

0 Dα
t x(t), C

0 Dα
t V0 can be calculated as

C
0 Dα

t V0 ≤
1
2eT (PA + AT P)e + eT P(

n∑
i=1

Biξ
∗T
i (ψi(x̄i)

−ψi ( ˆ̄xi)) +
n∑

i=1
Biξ̃

T
i ψi( ˆ̄xi) + ε),

(3.8)

By employing Young’s inequality and ψT
i (x̂i)ψi(x̂i) ≤ 1, we can gain

eT P(
n∑

i=1
Biξ
∗T
i (ψi(x̄i) − ψi( ˆ̄xi)) ≤ ∥e∥2 + ∥P∥2

∑n
i=1

∥∥∥ξ∗i ∥∥∥2
eT P

n∑
i=1

Biξ̃
T
i ψi( ˆ̄xi) ≤ 1

2∥e∥
2 + 1

2∥P∥
2∑n

i=1 ξ̃
T
i ξ̃i

eT Pε ≤ 1
2∥e∥

2 + 1
2∥P∥

2∑n
i=1 ε

∗2
i

(3.9)

Substituting (3.9) into (3.8), one can have (3.7). This completes the proof of Theorem 1.
Remark 1: Theorem 1 shows that if ξ̃T

i ξ̃i is bounded, smaller observation errors ei can be obtained
by selecting a large enough λ0. It is further concluded that the constructed fuzzy state observer (3.5)
can better estimate the unknown states.

4. ETC controller design and stability analysis

This part will use the adaptive fuzzy backstepping control algorithm to provide the observer-based
adaptive ETC control design program and give its stability analysis.

4.1. Design procedure

Make the coordinate transforms as

S 1 = x1 − yd

S i = x̂i − υi−1 i = 2, . . . , n
ηi−1 = υi−1 − τi−1

(4.1)

Mathematical Biosciences and Engineering Volume 19, Issue 12, 12334–12352.



12339

where S 1 is tracking error, S i are dynamic surface errors, υi are filter variables, and ηi are filter output
errors, and τi−1 are the virtual control functions.

Step1: Via (3.3), (4.1), and x2 = e2 + x̂2, one has

C
0 Dα

t S 1 = x2 + f1(x1) − C
0 Dα

t yd

= e2 + S 2 + η1 + τ1 + ξ
∗T
1 (ϕ1(x1) − ϕ1(x̂1))

+ξT
1 ϕ1(x̂1) + ξ̃T

1 ϕ1(x̂1)− C
0 Dα

t yd + ε1

(4.2)

Choose the Lyapunov function as

V1 = V0 +
1
2

S 2
1 +

1
2γ1

ξ̃T
1 ξ̃1 (4.3)

where γ1 > 0 is a known constant.
The virtual controller τ1 and the adaptive law C

0 Dα
t ξ1 are designed as

τ1 = −c1S 1 −
5
2

S 1 − ξ
T
1 ϕ1(x̂1) + C

0 Dα
t yd (4.4)

C
0 Dα

t ξ1 = γ1S 1ϕ1(x̂1) − κ1ξ1 (4.5)

where c1 > 0 and κ1 > 0 are known constants.
Introduce dynamic surface filter in [15] as

σ1
C
0 Dα

t υ1 + υ1 = τ1, υ1(0) = τ1(0) (4.6)

where σ1 is a constant.
By using (4.2) and (4.6), one has

C
0 Dα

t η1 =
C
0 Dα

t υ1 −
C
0 Dα

t τ1 = −
η1

σ1
+W1(·) (4.7)

where W1(·) is a continuous function.
Remark 2: In the backstepping ETC design of FONSs, it is difficult to obtain the mathematical

analytical expression of the fractional derivative of the virtual controllers. To solve this problem, some
authors used the packaged approximation technology in [18–20] to repeatedly approximate the virtual
controllers. Because this method takes all the signals of the closed-loop system as the input variables
of the NN or FLS, it will increase the dimensions of the adjusted parameter vector, resulting in the
problem of computational complexity. Therefore, this paper adopts the DSC technology to effectively
avoid this problem.

Step i: From (3.5) and (4.1), one has

C
0 Dα

t S i =
C
0 Dα

t x̂i −
C
0 Dα

t υi−1

= S i+1 + ηi + τi + ξ
T
i ϕi( ˆ̄xi) + ξ̃T

i ϕi( ˆ̄xi)

−ξ̃T
i ϕi( ˆ̄xi) − C

0 Dα
t υi−1 + kie1

(4.8)
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The Lyapunov function candidate is chosen as

Vi = Vi−1 +
1
2

S 2
i +

1
2γi

ξ̃T
i ξ̃i +

1
2
η2

i−1 (4.9)

where γi > 0 is a known constant.
The virtual controller τi and the adaptive law C

0 Dα
t ξi are designed as

τi = −ciS i − S i − S i−1 − ξ
T
i ϕi( ˆ̄xi) + C

0 Dα
t υi−1 − kie1 (4.10)

C
0 Dα

t ξi = γiS iϕi( ˆ̄xi) − κiξi (4.11)

where ci > 0 and κi > 0 are known constants.
Introduce dynamic surface filter as

σi
C
0 Dα

t υi + υi = τi, υi(0) = τi(0) (4.12)

where σi is a constant.
By using (4.8) and (4.12), one can obtain

C
0 Dα

t ηi =
C
0 Dα

t υi −
C
0 Dα

t τi = −
ηi

σi
+Wi(·) (4.13)

where Wi(·) is a continuous function.
Step n: We first devise an event-triggered controller as

τn = −cnS n − kne1 − ξ
T
n ϕn( ˆ̄xn) − S n−1 +

C
0 Dα

t υn −
1
2

S n (4.14)

ω(t) = −(1 + δ̄)(τn tanh(
S nτn

ψ
) + m̄ tanh(

S nm̄
ψ

)) (4.15)

u(t) = ω(tk),∀t ∈ [tk, tk+1) (4.16)

where cn > 0 is a known constant, and tk(k ∈ z+) defines input updating time.
Thus, in order to get a lower communication rate, the event-triggered condition can be designed as

tk+1 = inf{t ∈ R| |ν(t)| ≥ δ̄ |u(t)| + m} (4.17)

where δ̄ ∈ (0, 1),m > 0 and m̄ > [m
/
(1 − δ̄)] are given as the known parameters, and ν(t) = ω(t) − u(t)

is called as the measurement error. When (4.17) is triggered, the time will be marked as tk+1, and the
controller u(tk+1) will be utilized to the system. At the time t ∈ [tk, tk+1) the control signal is always
unchanging.

In order to discuss the event-triggered rule, we consider that the actuator normally operates, i.e.,
|ω(t) − u(t)| ≤ δ̄ |u(t)| + m.

If v(tk) > 0, the measured error can be rewritten as

−δ̄u(tk) − m ≤ ω(t) − u(t) ≤ δ̄u(tk) + m

u(t) − ω(t) = λ1(δ̄u(tk) + m)
(4.18)
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where λ1(t) ∈ [−1, 1].
If v(tk) < 0, we can transform the event-triggered condition (4.17) as

δ̄u(tk) − m ≤ ω(t) − u(t) ≤ −δ̄u(tk) + m

u(t) − ω(t) = λ2(δ̄u(tk) − m)
(4.19)

where λ2(t) ∈ [−1, 1].
From (4.18) and (4.19), one obtains

ω(t) = u(t) + δ̄λ1(t)u(t) + λ2(t)m (4.20)

where |λi| ≤ 1, i = 1, 2 are time-varying variables. Then, one has

u(t) =
ω(t)

1 + λ1(t)δ̄
−

λ2(t)m
1 + λ1(t)δ̄

(4.21)

Remark 3: The event-triggered parameters δ̄ and m in (4.17) are determined according to the
required communication rate. Therefore, in practical applications, while ensuring satisfactory
tracking performance, we should try to reduce the communication burden.

According to (3.5), (4.1) and (4.21), one has

C
0 Dα

t S n =
C
0 Dα

t x̂n −
C
0 Dα

t υn−1

= kne1 + ξ
T
n ϕn( ˆ̄xn) + ω(t)

1+λ1(t)δ̄ −
λ2(t)m

1+λ1(t)δ̄

+ξ̃T
n ϕn( ˆ̄xn) − C

0 Dα
t υn−1 − ξ̃

T
n ϕn( ˆ̄xn),

(4.22)

Choose the Lyapunov function as

V = Vn−1 +
1
2

S 2
n +

1
2
η2

n−1 +
1

2γn
ξ̃T

n ξ̃n, (4.23)

where γn > 0 is a known constant.
Assumption 2 [10, 12]: For any initial conditions, there exists a constant q > 0, such that V(0) ≤ q.
The adaptive law C

0 Dα
t ξn is designed as:

C
0 Dα

t ξn = γnS nϕn( ˆ̄xn) − κnξn (4.24)

where κn > 0 is a known constant.
Remark 4: A backstepping control algorithm is indicated for FONSs in [17]. It applies the stability

analysis of integer-order Lyapunov methods to known fractional-order systems. However, in this
article, the system model may be completely unknown. In addition, the stability of the control
algorithm is analyzed by the fractional order adaptive stability criterion.

4.2. Closed-loop systems stability analysis

Theorem 2: Consider System (2.1), under Assumptions 1–2, and then the put forward adaptive
fuzzy output feedback event-triggered controller (4.21) with the event-triggered mechanism (4.17) can
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keep that controlled fractional-order system is stable, and the tracking error is able to regulate to a
small residual set of the origin. Meanwhile, Zeno behavior is removed effectively.

Proof: Construct the whole Lyapunov function as

V = V0 +

n∑
i=1

Vi = V0 +

n∑
i=1

(
1
2

S 2
i +

1
2γi

ξ̃T
i ξ̃i) +

n−1∑
i=1

1
2
η2

i (4.25)

By utilizing the inequality C
0 Dα

t (xT (t)x(t))
/
2 ≤ xT (t)C

0 Dα
t x(t), one can obtain

C
0 Dα

t V ≤ C
0 Dα

t V0 +

n∑
i=1

(S i
C
0 Dα

t S i +
1
γi
ξ̃T

i
C
0 Dα

t ξ̃i) +
n−1∑
i=1

ηi
C
0 Dα

t ηi (4.26)

According to (4.4), (4.10), (4.14), (4.22), (4.23), (4.26) and adding and subtracting S nτn, |S nm̄| in the
right of (4.26), the following equality can be obtained:

S 1
C
0 Dα

t S 1 = S 1(e2 + S 2 + η1 + τ1 + ξ
∗T
1 (ϕ1(x1) − ϕ1(x̂1))

+ξT
1 ϕ1(x̂1) + ξ̃T

1 ϕ1(x̂1) − C
0 Dα

t yd + ε1),
(4.27)

S i
C
0 Dα

t S i = S i(S i+1 + ηi + τi + ξ
T
i ϕi( ˆ̄xi) + ξ̃T

i ϕi( ˆ̄xi)

−ξ̃T
i ϕi( ˆ̄xi) − C

0 Dα
t υi−1 + kie1),

(4.28)

S n
C
0 Dα

t S n = S n(kne1 + ξ
T
n ϕn( ˆ̄xn) + ω(t)

1+λ1(t)δ̄ −
C
0 Dα

t υn−1

−
λ2(t)m

1+λ1(t)δ̄ + ξ̃
T
n ϕn( ˆ̄xn) − ξ̃T

n ϕn( ˆ̄xn) + τn − τn)

+|S nm̄| − |S nm̄|.

(4.29)

In view of |λi(t)| ≤ 1 and S nω(t) ≤ 0, we can obtain

S nω(t)
1 + λ1(t)δ̄

≤
S nω(t)
1 + δ̄

(4.30)

λ2m
1 + λ1(t)δ̄

≤

∣∣∣∣∣ m
1 − δ̄

∣∣∣∣∣ (4.31)

According to (4.26),(4.30) and (4.31), (4.29) can be rewritten as

S n
C
0 Dα

t S n ≤ S n(kne1 + ξ
T
n ϕn( ˆ̄xn) − C

0 Dα
t υn−1 − τn

+ξ̃T
n ϕn( ˆ̄xn) − ξ̃T

n ϕn( ˆ̄xn)) + |S nτn| + |S nm̄|

−S nτn tanh( S nτn
ψ

) − S nm̄ tanh( S nm̄
ψ

).

(4.32)

Then, utilizing the inequality |τ| − τ tanh(τ/ψ ≤ χψ), χ = 0.2785, one can get

S n
C
0 Dα

t S n ≤ S n(kne1 + ξ
T
n ϕn( ˆ̄xn) − C

0 Dα
t υn−1 − τn

+ξ̃T
n ϕn( ˆ̄xn) − ξ̃T

n ϕn( ˆ̄xn)) + 0.557ε∗.
(4.33)
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For (4.14)–(4.17), (4.33) applying Young’s inequality, one gets

S 1(e2 + ε1 + ξ
∗T
1 (ϕ1(x1) − ϕ1(x̂1))) ≤ 2S 2

1 +
||e||2

2
+
ε∗21

2
+ ||ξ∗1||

2 (4.34)

S iηi ≤
S 2

i

2
+
η2

i

2
(4.35)

− S iξ̃
T
i ϕi( ˆ̄xi)) ≤

S 2
i

2
+
ξ̃T

i ξ̃i

2
(4.36)

Substituting (4.9)–(4.11), (4.14)–(4.17), (4.10)–(4.31), (4.34)–(4.36) into (4.33) yields

C
0 Dα

t V ≤ −λ̄||e||2 + 1
2 ||P||

2
n∑

i=1
ξ̃T

i ξ̃i +
n∑

h=1
(−chS 2

h +
κh
γh
ξ̃T

h ξh)

+
n−1∑
h=1

(ηh(− ηh
σh
+

ηh
2 +Wh)) +

n∑
h=2

ξ̃T
i ξ̃i

2 + δ1 + 0.557ε∗
(4.37)

Note that Ξ0 = {y2
d + (C

0 Dα
t yd)2 + (C

0 Dα
t (C

0 Dα
t yd))2 ≤ Z0} and Ξ = {V(t) ≤ q} are compact sets, and

thus Ξ0 × Ξ is still a compact set. Since Wi(·) are continuous functions on Ξ0 × Ξ, there exist positive
constants Ki such that |Wi(·)| ≤ Ki.

Applying Young’s inequality again, yields:

ξ̃T
h ξh ≤ −

1
2
ξ̃T

h ξ̃h +
1
2
||ξ∗h||

2 (4.38)

ηhWh ≤
η2

h

2
+

K2
h

2
(4.39)

Substituting (4.38) and (4.39) into (4.37), one has

C
0 Dα

t V ≤ −λ̄||e||2 + 1
2 ||P||

2
n∑

i=1
ξ̃T

i ξ̃i +
n−1∑
h=1

((1− 1
σh

)η2
h +

K2
h

2 ) + δ1

+
n∑

h=1
(− κh

2γh
ξ̃T

i ξ̃i − chS 2
h +

κh
2γh
||ξ∗h||

2 +
ξ̃T

i ξ̃i

2 ) + 0.557ε∗
(4.40)

Then, we have
C
0 Dα

t V ≤ −µV + D (4.41)

where µ = min{2(λ̄
/
λmax(P)), 2ch, κh − γh(||P||2 + 1), 2/σh − 2}, and

D= δ1 +
n−1∑
h=1

(K2
h

/
2) +

n∑
h=1

(κh/2γh)||ξ∗h||
2 + 0.557ε∗.

Now, from (4.41) and according to Liu et al. [7] and Gong and Lan [22], one obtains

C
0 Dα

t V + β(t) = −µV + D (4.42)

where β(t) > 0.
Applying the Lyapunov transform on (4.42) yields

V(s) = sα−1V(0)
sα+µ +

D
s(sα+µ) −

β(s)
sα+µ

=
sα−1V(0)

sα+µ +
sα−(α+1)D

sα+µ −
β(s)
sα+µ

(4.43)
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Using the inverse Laplace transform on (4.43), yields

V(t) = Eα,1(−µtα)V(0) + tαEα,α+1(−µtα)D

−β(t) ∗ tα−1Eα,α(−µtα)
(4.44)

where ∗ denotes the convolution operator.
Notably, β(t) ≥ 0 and tα−1Eα,α(−µtα) ≥ 0 in (4.44), so β(t) ∗ tα−1Eα,α(−µtα) ≥ 0. Thus, one has from

(4.44)
V(t) ≤ Eα,1(−µtα)V(0) + tαEα,α+1(−µtα)D (4.45)

From Lemma 1, it follows that ∣∣∣tαEα,α+1(−µtα)D
∣∣∣ ≤ Dtαd

1 + |µtα|
≤

Dd
µ

(4.46)

Therefore, for t ≥ 0, it follows that

V(t) ≤ V(0)Eα,1(−µtα) +
Dd
µ

(4.47)

Due to Lemma 1, one obtains ∣∣∣Eα,1(−µtα)
∣∣∣ ≤ λ

1 + µtα
(4.48)

Then, one writes (4.48) as follows:

V(t) ≤ V(0)
λ

1 + µtα
+

Dd
µ

(4.49)

From (4.49), it follows:
1
2

S 2
1 ≤ V(t) ≤ V(0)

λ

1 + µtα
+

Dd
µ

(4.50)

1
2

eT Pe ≤ V(t) ≤ V(0)
λ

1 + µtα
+

Dd
µ

(4.51)

Therefore, one has

|S 1| ≤

√
2λV(0)
1 + µtα

+
2Dd
µ

(4.52)

∥e∥ ≤

√
2λV(0)

1 + µtα(λmin(P))
+

2Dd
µ(λmin(P))

(4.53)

Based on (4.49), (4.52) and (4.53), we proved that the controlled system can be stable, and
limt→∞ |S 1| =

√
2Dd/µ and limt→∞ ∥e∥ =

√
2Dd/(µ(λmin(P))), which means that S i(i = 1, ..., n), e and ξ̃

are bounded. Furthermore, as ξ∗i is bounded, ξi as also bounded. Finally, by choosing design
parameters, the tracking error and observer error are reduced.

Remark 5: From (4.46), it can be concluded that smaller tracking error can be obtained by
increasing µ or decreasing D. Consequently, for smaller D, we can appropriately decrease κh or
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increase γh according on the definition of D = δ1 +
n−1∑
h=1

(K2
h

/
2) +

n∑
h=1

(κh/2γh)||ξ∗h||
2 + 0.557ε∗. So as to

get larger µ, we can appropriately increase ch and κh or decrease γh and σh by the definition of
µ = min{2(λ̄

/
λmax(P)), 2ch, κh − γh(||P||2 + 1), 2/σh − 2}.

Ultimately, Zeno behavior is removed through the following proof. By recalling the measurement
error ν(t) = ω(t) − u(t), we have

C
0 Dα

t |ν| =
C
0 Dα

t

√
ν · ν = sign(ν)C

0 Dα
t ν ≤

∣∣∣C0 Dα
t ω
∣∣∣ (4.54)

From (4.20) that ω(t) is a differentiable signal of order α, and C
0 Dα

t ω is a bounded function.
Thus, the existence of ρ > 0 makes

∣∣∣C0 Dα
t ω
∣∣∣ ≤ ρ hold. According to ν(tk) = 0 and limt→tk+1v(t) = m,

one can have tk+1 − tk ≥ m/ρ. So, Zeno behavior does not occur.
Remark 6: It is worth noting that the control schemes designed by the authors in [7–14] are based

on time triggered control. Because the control signal is sampled and updated periodically, it leads to
a waste of communication resources. In order to solve this issue, an event-triggered mechanism is
introduced in the backstepping technology. This mechanism enables the control signal to be sampled
and updated only when the given conditions cannot be met, thus decreasing the communication load.

Remark 7: The repeated differentiation of virtual control function will lead to complexity explosion,
so filter is introduced to solve this problem. By using event-triggered mechanism and dynamic surface
filter at the same time, this paper greatly saves the waste of computing resources.

Remark 8: In [15, 16], it is important to study the adaptive ETC for integer-order nonlinear systems.
However, we have designed an event-triggered rule for FONSs with unmeasurable states. Within the
framework of event-triggered DSC scheme, we solved the computing explosion caused by duplicate
derivation of virtual controllers. Unlike event-triggered rule in Wang et al. [17], threshold is a function
of system state or tracking error. This paper determines the improved event-triggered mechanism based
on the size of the control signal itself.

5. Simulation example

This part gives a simulation example to verify the availability of theoretical results.
Example: The fractional-order strict-feedback system is described as follows:

C
0 Dα

t x1 = x2 + (x1 − x3
1)

C
0 Dα

t x2 = u + 20x1 − x2

y = x1

(5.1)

when f1(x1) = x1 − x3
1, f2(x1, x2) = 20x1 − x2.

The membership functions can be chosen as

µAl
1
(x1) = e−

(x1−2+l)2

16 , µAl
2
(x2) = e−

(x2−2+l)2

16 , l = 1, ..., 5 (5.2)

The given reference signal is yd = cos(2t). The observer gain is selected as K1 = [k1, k2]T =

[10, 220]T . Then, the observer (3.3) can be written as

C
0 Dα

t x̂i = Ax̂i + Ly +
n∑

i=1
Bi f̂i( ˆ̄xi|ξi) + Bu

ŷ = Cx̂1

(5.3)
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Further, given Q = 3I, a positive definite matrix P =
[

0.3014 0.0136
0.0136 66.4364

]
can be obtained by

solving the Lyapunov Eq (3.2).

The control law can be given as

τ1 = −c1S 1 −
5
2S 1 − ξ

T
1 ϕ1(x̂1) + C

0 Dα
t yd

τ2 = −c2S 2 − k2e1 − ξ
T
2 ϕ2( ˆ̄xi) − S 1 +

C
0 Dα

t υ1 −
1
2S 2

(5.4)

The event-triggered controller is devised as

ω(t) = −(1 + δ̄)(τ2 tanh(
S 2τ2

ψ
) + m̄ tanh(

S 2m̄
ψ

)). (5.5)

u(t) = ω(tk),∀t ∈ [tk, tk+1) (5.6)

The event-triggered condition can be designed as

tk+1 = inf{ t ∈ R| |v(t)| ≥ δ̄ |u(t)| + m}. (5.7)

where δ̄ ∈ (0, 1), m > 0 and m̄ > [m
/
(1 − δ̄)]. With the following adaptive laws:

C
0 Dα

t ξ1 = γ1S 1ϕ1(x̂1) − κ1ξ1
C
0 Dα

t ξ2 = γ2S 2ϕ2( ˆ̄xi) − κ2ξ2
(5.8)

In the simulation, choose the parameters as follows: α = 0.98, c1 = 5, c2 = 15, κ1 = 0.01,
κ2 = 0.02, δ̄ = 0.45, m̄ = 0.15 and ψ = 0.4. The system states initial conditions are chosen as
x1(0) = 0.4, x2(0) = 0.5, x̂1(0) = 0.5, x̂2(0) = 0.5, ξ1(0) = [−0.1,−0.3,−0.5,−0.7,−0.9]T and ξ2(0) =
[−0.1,−0.3,−0.5,−0.7,−0.9]T .

The simulation results are shown in Figures 1–6. Figure 1 shows the curves of reference signal yd

and the system output y. Figure 2 shows the curves of reference signal yd and the system output y
without ETC. From Figures 1 and 2, we can see that ETC can ensure satisfactory system performance.
The trajectories of the tracking error are shown in Figure 3. Figures 4 and 5 response of xi and x̂i,
i = 1, 2. Figure 6 responses of u. Figure 7 shows the trigger time intervals with the event-triggered
control. However, by calculating, we know that the controller executes 2000 times without event-
triggered control; under the event-triggered control method, the number of samples is only 1007, which
greatly reduces the waste of communication resources. From Figures 1–7, it is concluded that the
proposed event-triggered controller can achieve the stability of the controlled system and effectively
decrease the communication load.
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Figure 1. Curves of y(t) and yd(t) .

Figure 2. Curves of y(t) and yd(t) (without event-triggered control).
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Figure 3. Curve of S 1.

Figure 4. Curves of x1(t) and x̂1(t).
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Figure 5. Curves of x2(t) and x̂2(t).

Figure 6. Control input.
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Figure 7. Nonzero interevent times.

6. Conclusions

The observer-based adaptive ETC algorithm for FONS was investigated in this study. By
employing FLS to model the unknown dynamics, a fuzzy state observer is constructed for the
unmeasurable state vectors. Using an adaptive backstepping control algorithm, an observer-based
adaptive fuzzy DSC method is proposed. The put forward control algorithm has avoided
computational complexity problem resulted in the repeated iteration of virtual controllers in the
inherent backstepping method. Additionally, it has reduced the burden of communication and
removed the Zeno behavior. The simulation results testify the validity of the controller. The further
research will focus on the intelligent adaptive ETC problem of fractional-order nonlinear impulsive
systems based on this study and literature [23,24].
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