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1. Introduction

Middle East respiratory syndrome (MERS) is a viral respiratory disease caused by Middle East
respiratory syndrome coronavirus (MERS-CoV). The intermediate host of MERS-CoV is probably
the dromedary camel, a zoonotic virus [1]. Most MERS cases are acquired by human-to-human
transmission. There is no vaccine or specific treatment available, and approximately 35% of patients
with MERS-CoV infection have died [2]. There has been extensive works on infectious disease
models and viral infection models associated with MERS that can help in disease control and provide
strategies for potential drug treatments [3–8].

Dipeptidyl peptidase-4 (DPP4) plays an important role in viral infection [2]. Based on classic
viral infection models developed in [9–11], a four-dimensional ordinary differential equation model is
proposed and studied in [8]. The model in [8] describes the interaction mechanisms among uninfected
cells, infected cells, DPP4 and MERS-CoV.

Recently, taking into account periodic factors such as diurnal temperature differences and periodic
drug treatment, the model in [8] has been further extended a periodic case in [12], and then the existence
of positive periodic solutions is studied by using the theorem in [13].

It is well-known that CTL immune responses play a very critical role in controlling viral load and
the concentration of infected cells. Thus, many scholars have considered CTL immune responses in
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various viral infection models and have achieved many excellent research results [14–18]. CTL cells
can kill virus-infected cells and are important for the control and clearance of MERS-CoV
infections [19]. Inspired by the above research works, we consider the following periodic MERS-CoV
infection model with CTL immune response:

Ṫ (t) = λ(t) − β(t)D(t)v(t)T (t) − d(t)T (t),
İ(t) = β(t)D(t)v(t)T (t) − d1(t)I(t) − p(t)I(t)Z(t),
v̇(t) = d1(t)M(t)I(t) − c(t)v(t),
Ḋ(t) = λ1(t) − β1(t)β(t)D(t)v(t)T (t) − γ(t)D(t),
Ż(t) = q(t)I(t)Z(t) − b(t)Z(t).

(1.1)

In model (1.1), T (t), I(t), v(t), D(t) and Z(t) represent the concentrations of uninfected cells, infected
cells, free virus, DPP4 on the surface of uninfected cells and CTL cells at time t, respectively. CTL
cells increase at a rate bilinear rate q(t)I(t)Z(t) by the viral antigen of the infected cells and decay at
rate b(t)Z(t); infected cells are killed by the CTL immune response at rate p(t)I(t)Z(t). Except for p(t),
q(t) and b(t), all the remaining parameters of model (1.1) have the same biological meanings as in [12].

Throughout the paper, it is assumed that the functions λ(t), β(t), d(t), d1(t), p(t), M(t), c(t), λ1(t),
γ(t), q(t) and b(t) are positive, continuous and ω periodic (ω > 0); the function β1(t) is non-negative,
continuous and ω periodic.

From point of view in both biology and mathematics, it is one of the most significant topics to study
the existence of periodic oscillations of a system (see, for example, [12, 20–26] and the references
therein).

In the next section, some sufficient criteria are given for the existence of positive periodic
oscillations of model (1.1). It should be mentioned here that, in the proofs of the main results in the
following section, a new technique is developed to obtain a lower bound of the state variable Z(t)
characterizing CTL immune response in model (1.1).

2. Main results

For some function f (t) which is continuous and ω-periodic on R, let us define the following
notations:

f U = max
t∈[0,ω]

f (t), f l = min
t∈[0,ω]

f (t), f̂ =
1
ω

∫ ω

0
f (t)dt.

Moreover, for convenience, let us give the following parameters:

R∗ =
λ̂βl exp{L3 + L4}

d̂1 exp{M2}(βl exp{L3 + L4} + dU)
> 1, ω∗ =

b̂

2̂λq̂
, δ∗ =

d̂1

2p̂
(R∗ − 1),

M1 = ln(
λU

dl ), M2 = ln(
b̂
q̂
+ 2̂λω), M3 = ln(

̂(d1M)
ĉ

) + M2 + 2̂cω,

M4 = ln(
λU

1

γl ), M5 = ln(
β̂ exp{M1 + M3 + M4}

p̂ exp{L2}
) + 2̂bω,

L1 = ln(
λl

βU exp{M3 + M4} + dU ), L2 = ln(
b̂
q̂
− 2̂λω), L3 = ln(

(d̂1M)
ĉ

) + L2 − 2̂cω,
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L4 = ln(
λl

1

(β1β)U exp{M1 + M3} + γU ), L5 = ln(δ∗) − 2̂bω.

The following theorem is the main result of this paper.

Theorem 2.1. If R∗ > 1 and ω < ω∗, then model (1.1) has at least one positive ω-periodic solution.

Proof. Making the change of variables T (t) = exp{u1(t)}, I(t) = exp{u2(t)}, v(t) = exp{u3(t)}, D(t) =
exp{u4(t)}, Z(t) = exp{u5(t)}, then model (1.1) can be rewritten as

u̇1(t) =
λ(t)

exp{u1(t)}
− β(t) exp{u3(t) + u4(t)} − d(t),

u̇2(t) =β(t)
exp{u1(t) + u3(t) + u4(t)}

exp{u2(t)}
− d1(t) − p(t) exp{u5(t)},

u̇3(t) =d1(t)M(t)
exp{u2(t)}
exp{u3(t)}

− c(t),

u̇4(t) =
λ1(t)

exp{u4(t)}
− β1(t)β(t) exp{u1(t) + u3(t)} − γ(t),

u̇5(t) =q(t) exp{u2(t)} − b(t).

(2.1)

Thus, we only need to consider model (2.1).
Let us set

X = Y =
{
u = (u1(t), u2(t), u3(t), u4(t), u5(t))T ∈ C(R,R5) | u(t) = u(t + ω)

}
with the norm

||u|| = max
t∈[0,ω]

|u1(t)| + max
t∈[0,ω]

|u2(t)| + max
t∈[0,ω]

|u3(t)| + max
t∈[0,ω]

|u4(t)| + max
t∈[0,ω]

|u5(t)|.

It can be shown that X and Y are Banach spaces. Define

Nu =



λ(t)
exp{u1(t)} − β(t) exp{u3(t) + u4(t)} − d(t)

β(t) exp{u1(t)+u3(t)+u4(t)}
exp{u2(t)} − d1(t) − p(t) exp{u5(t)}

d1(t)M(t) exp{u2(t)}
exp{u3(t)} − c(t)

λ1(t)
exp{u4(t)} − β1(t)β(t) exp{u1(t) + u3(t)} − γ(t)

q(t) exp{u2(t)} − b(t)


:=


N1(t)
N2(t)
N3(t)
N4(t)
N5(t)


(u ∈ X),

Lu = u̇ (u ∈ Dom L), Pu =
1
ω

∫ ω

0
u(t)dt (u ∈ X), Qu =

1
ω

∫ ω

0
u(t)dt (u ∈ Y),

here Dom L = {u ∈ X, u̇ ∈ X}. It easily has that Ker L = {u ∈ X | u ∈ R5} and Im L = {u ∈
Y |

∫ ω
0

u(t)dt = 0}. Further, it is clear that Im L is closed in Y and dim Ker L = codim Im L = 5.
Hence, L is a Fredholm mapping with index zero.
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For µ ∈ (0, 1), let us consider the equation Lu = µNu, i.e.,

u̇1(t) =µ
[
λ(t)

exp{u1(t)}
− β(t) exp{u3(t) + u4(t)} − d(t)

]
,

u̇2(t) =µ
[
β(t)

exp{u1(t) + u3(t) + u4(t)}
exp{u2(t)}

− d1(t) − p(t) exp{u5(t)}
]
,

u̇3(t) =µ
[
d1(t)M(t)

exp{u2(t)}
exp{u3(t)}

− c(t)
]
,

u̇4(t) =µ
[
λ1(t)

exp{u4(t)}
− β1(t)β(t) exp{u1(t) + u3(t)} − γ(t)

]
,

u̇5(t) =µ
[
q(t) exp{u2(t)} − b(t)

]
.

(2.2)

For any solution u = (u1(t), u2(t), u3(t), u4(t), u5(t))T ∈ X of (2.2), it has

∫ ω

0

[
λ(t)

exp{u1(t)}
− β(t) exp{u3(t) + u4(t)} − d(t)

]
dt = 0,∫ ω

0

[
β(t)

exp{u1(t) + u3(t) + u4(t)}
exp{u2(t)}

− d1(t) − p(t) exp{u5(t)}
]

dt = 0,∫ ω

0

[
d1(t)M(t)

exp{u2(t)}
exp{u3(t)}

− c(t)
]

dt = 0,∫ ω

0

[
λ1(t)

exp{u4(t)}
− β1(t)β(t) exp{u1(t) + u3(t)} − γ(t)

]
dt = 0,∫ ω

0

[
q(t) exp{u2(t)} − b(t)

]
dt = 0.

(2.3)

From the first two equations in (2.2), it has

u̇1(t) exp{u1(t)} = µ
[
λ(t) − β(t) exp{u1(t) + u3(t) + u4(t)} − d(t) exp{u1(t)}

]
,

and

u̇2(t) exp{u2(t)} = µ
[
β(t) exp{u1(t) + u3(t) + u4(t)} − d1(t) exp{u2(t)} − p(t) exp{u2(t) + u5(t)}

]
.

Hence, by integrating the above two equations on [0, ω], it has∫ ω

0

[
λ(t) − β(t) exp{u1(t) + u3(t) + u4(t)} − d(t) exp{u1(t)}

]
dt = 0 (2.4)

and ∫ ω

0

[
β(t) exp{u1(t) + u3(t) + u4(t)} − d1(t) exp{u2(t)} − p(t) exp{u2(t) + u5(t)}

]
dt = 0. (2.5)

Note that I(t) := exp{u2(t)} satisfies

İ(t) = u̇2(t) exp{u2(t)} = µ
[
β(t) exp{u1(t) + u3(t) + u4(t)} − d1(t) − p(t) exp{u2(t) + u5(t)}

]
.
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Then, from (2.4) and (2.5), it has∫ ω

0
|İ(t)|dt ≤µ

∫ ω

0
[β(t) exp{u1(t) + u3(t) + u4(t)} + d1(t) + p(t) exp{u2(t) + u5(t)}]dt

≤2
∫ ω

0
β(t) exp{u1(t) + u3(t) + u4(t)}dt

≤2̂λω.

(2.6)

From the third and the fifth equations of (2.2), it has∫ ω

0
|u̇3(t)|dt ≤ µ

[∫ ω

0
d1(t)M(t)

exp{u2(t)}
exp{u3(t)}

dt +
∫ ω

0
c(t)dt

]
< 2̂cω,∫ ω

0
|u̇5(t)|dt ≤ µ

[∫ ω

0
q(t) exp{u2(t)}dt +

∫ ω

0
b(t)dt

]
< 2̂bω.

(2.7)

Note that u ∈ X, there exist ξi, ηi ∈ [0, ω] (i = 1, 2, 3, 4, 5), such that

ui(ξi) = min
t∈[0,ω]

ui(t), ui(ηi) = max
t∈[0,ω]

ui(t) (i = 1, 2, 3, 4, 5).

From (2.2), u̇1(η1) = 0 and u̇4(η4) = 0, it has

λ(η1)
exp{u1(η1)}

− β(η1) exp{u3(η1) + u4(η1)} − d(η1) = 0,

λ1(η4)
exp{u4(η4)}

− β1(η4)β(η4) exp{u1(η4) + u3(η4)} − γ(η4) = 0,

which imply that

u1(t) ≤ u1(η1) ≤ ln
(
λ(η1)
d(η1)

)
≤ ln

(
λU

dl

)
= M1,

u4(t) ≤ u4(η4) ≤ ln
(
λ1(η4)
γ(η4)

)
≤ ln

(
λU

1

γl

)
= M4.

(2.8)

From the last equation of (2.3), it has∫ ω

0
q(t) exp{u2(ξ2)}dt ≤ b̂ω ≤

∫ ω

0
q(t) exp{u2(η2)}dt,

which implies that

I(ξ2) = exp{u2(ξ2)} ≤
b̂
q̂
≤ exp{u2(η2)} = I(η2).

Then, from (2.6) and ω < ω∗, it has

I(t) ≤ I(ξ2) +
∫ ω

0
|İ(t)|dt ≤

b̂
q̂
+ 2̂λω,

I(t) ≥ I(η2) −
∫ ω

0
|İ(t)|dt ≥

b̂
q̂
− 2̂λω = 2̂λ (ω∗ − ω) > 0.
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Thus, it has

u2(t) ≤ ln
 b̂
q̂
+ 2̂λω

 = M2, u2(t) ≥ ln
 b̂
q̂
− 2̂λω

 = L2. (2.9)

From the third equation of (2.3), it has∫ ω

0
d1(t)M(t)

exp{M2}

exp{u3(ξ3)}
dt ≥ ĉω ≥

∫ ω

0
d1(t)M(t)

exp{L2}

exp{u3(η3)}
dt,

which implies that

u3(ξ3) ≤ ln
 ̂(d1M)

ĉ

 + M2, u3(η3) ≥ ln
 ̂(d1M)

ĉ

 + L2.

Then, from (2.7), it has

u3(t) ≤ u3(ξ3) +
∫ ω

0
|u̇3(t)|dt ≤ ln

 ̂(d1M)
ĉ

 + M2 + 2̂cω = M3,

u3(t) ≥ u3(η3) −
∫ ω

0
|u̇3(t)|dt ≥ ln

 ̂(d1M)
ĉ

 + L2 − 2̂cω = L3.

(2.10)

From the second equation of (2.3), it has

p̂ exp{u5(ξ5)}ω ≤
∫ ω

0

[
β(t)

exp{M1 + M3 + M4}

exp{L2}
− d1(t)

]
dt ≤

exp{M1 + M3 + M4}

exp{L2}
β̂ω,

which implies that

u5(ξ5) ≤ ln
 β̂ exp{M1 + M3 + M4}

p̂ exp{L2}

 := l5.

Then, from (2.7), it has

u5(t) ≤ u5(ξ5) +
∫ ω

0
|u̇5(t)|dt ≤ l5 + 2̂bω = M5.

From u̇1(ξ1) = 0, u̇4(ξ4) = 0, (2.8) and (2.10), it has

exp{u1(ξ1)} =
λ(ξ1)

β(ξ1) exp{u3(ξ1) + u4(ξ1)} + d(ξ1)
≥

λl

βU exp{M3 + M4} + dU ,

exp{u4(ξ4)} =
λ1(ξ4)

β1(ξ4)β(ξ4) exp{u1(ξ4) + u3(ξ4)} + γ(ξ4)
≥

λl
1

(β1β)U exp{M1 + M3} + γU .

Thus, it has

u1(t) ≥ u1 (ξ1) ≥ ln
(

λl

βU exp {M3 + M4} + dU

)
= L1,

u4(t) ≥ u4(ξ4) = ln
(

λl
1

(β1β)U exp{M1 + M3} + γU

)
= L4.

(2.11)

Let us give an estimate of the lower bound of the state variable u5(t) related to CTL immune
response. It should be mentioned here that a completely different method from that in [12] has been
used.
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Claim A If R∗ > 1 and ω < ω∗, then

exp{u5(η5)} ≥ δ∗.

If Claim A is not true, then it has that, for any t, exp{u5(t)} ≤ exp{u5(η5)} < δ∗. Hence, it has from
(2.3), (2.9)–(2.11) that

0 =
∫ ω

0

[
β(t)

exp{u1(t) + u3(t) + u4(t)}
exp{u2(t)}

− d1(t) − p(t) exp{u5(t)}
]

dt

≥

∫ ω

0

[
β(t)

exp{u1(t) + L3 + L4}

exp{M2}
− d1(t) − p(t) exp{u5(η5)}

]
dt

≥
βl exp{L3 + L4}

exp{M2}

∫ ω

0
exp{u1(t)}dt − (d̂1 + p̂δ∗)ω,

which implies that∫ ω

0
d(t) exp{u1(t)}dt ≤ dU

∫ ω

0
exp{u1(t)}dt ≤

dU(d̂1 + p̂δ∗) exp{M2}

βl exp{L3 + L4}
ω := Ψω. (2.12)

Adding (2.4) and (2.5) together, it has∫ ω

0
[λ(t) − d(t) exp{u1(t)}]dt =

∫ ω

0
[d1(t) exp{u2(t)} + p(t) exp{u2(t) + u5(t)}]dt

≤

∫ ω

0
exp{M2}[d1(t) + p(t) exp{u5(η5)}]dt

≤ exp{M2}(d̂1 + p̂δ∗)ω,

which implies that∫ ω

0
d(t) exp{u1(t)}dt ≥

[̂
λ − exp{M2}(d̂1 + p̂δ∗)

]
ω

=Ψω +
[̂
λ − Ψ − exp{M2}(d̂1 + p̂δ∗)

]
ω

=Ψω +

[̂
λ − exp{M2}

(
1 +

dU

βl exp{L3 + L4}

)
(d̂1 + p̂δ∗)

]
ω

=Ψω + d̂1 exp{M2}

(
1 +

dU

βl exp{L3 + L4}

) (
R∗ − 1 −

p̂

d̂1

δ∗
)
ω

=Ψω +
d̂1

2
exp{M2}

(
1 +

dU

βl exp{L3 + L4}

)
(R∗ − 1)ω

>Ψω,

which is a contradiction to (2.12). Thus, the claim holds.
From Claim A and (2.7), it has

u5(t) ≥ u5(η5) −
∫ ω

0
|u̇5(t)|dt ≥ ln(δ∗) − 2̂bω = L5. (2.13)
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Now, for convenience, let us define

R∗ =
̂λ − d̂1̂b

q̂

 β̂̂(d1M)

d̂d̂1̂c

λ̂1

(̂β1β)
λ̂̂(d1 M)̂b

d̂̂ĉq
+ γ̂
, Zmax =

q̂

p̂̂b

̂λ − d̂1̂b
q̂

 .
Note that if R∗ > 1, then it has

R̃∗ :=
(̂
λ − d̂1 exp{M2}

) βl exp{L3 + L4}

dU d̂1 exp{M2}
> 1,

which implies that

Zmax >
q̂

p̂̂b

̂λ − d̂1

 b̂
q̂
+ 2̂λω

 = q̂

p̂̂b

(̂
λ − d̂1 exp{M2}

)
> 0,

R∗ ≥
̂λ − d̂1̂b

q̂

 β̂̂(d1M)

d̂d̂1̂c

λl
1

(β1β)U exp{M3 + M1} + γU ≥ R̃∗ > 1.

Let (u1, u2, u3, u4, u5)T ∈ R5 be the solution of the following equations:

λ̂

exp{u1}
− β̂ exp{u3 + u4} − d̂ = 0,

β̂ exp{u1 + u3 + u4}

exp{u2}
− d̂1 − p̂ exp{u5} = 0,

̂(d1M)
exp{u2}

exp{u3}
− ĉ = 0,

λ̂1

exp{u4}
− (̂β1β) exp{u1 + u3} − γ̂ = 0,

q̂ exp{u2} − b̂ = 0.

. (2.14)

Define Γ : [0,Zmax]→ R, via

Γ(x) =
β̂̂(d1M)

ĉ
λ̂1Γ1(x)

(̂β1β)Γ1(x)
̂(d1 M)̂b

q̂̂c + γ̂
− d̂1 − p̂x,

where

Γ1(x) =
λ̂

d̂
−

d̂1̂b

d̂q̂
−

p̂̂b

d̂q̂
x =

p̂̂b

d̂q̂
(Zmax − x).

Equation (2.14) can be rewritten as

exp{u2} =
b̂
q̂
, exp{u3} =

̂(d1M)
ĉ

exp{u2} =
̂(d1M)̂b

q̂̂c
,

exp{u1} =
λ̂

d̂
−

d̂1 exp{u2}

d̂
−

p̂ exp{u2}

d̂
exp{u5} = Γ1(exp{u5}),
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exp{u4} =
λ̂1

(̂β1β) exp{u1 + u3} + γ̂
=

λ̂1

(̂β1β)Γ1(exp{u5})
̂(d1 M)̂b

q̂̂c + γ̂
,

β̂̂(d1M)
ĉ

exp{u1 + u4} − d̂1 − p̂ exp{u5} = Γ(exp{u5}) = 0.

It is obvious that if there is a solution (u1, u2, u3, u4, u5)T ∈ R5 for (2.14), it must have 0 < exp{u5} <

Zmax. In addition, note that Γ(x) is monotonically decreasing with respect to x on [0,Zmax]. It has from
Γ (Zmax) = −d̂1 − p̂Zmax < 0 and

Γ(0) =
β̂̂(d1M)

ĉ
λ̂1Γ1(0)

(̂β1β)Γ1(0)
̂(d1 M)̂b

q̂̂c + γ̂
− d̂1 >

β̂̂(d1M)
ĉ

λ̂1( λ̂
d̂
−

d̂1b̂
d̂q̂

)

(̂β1β) λ̂d̂
̂(d1 M)̂b

q̂̂c + γ̂
− d̂1 = d̂1(R∗ − 1) > 0

that there exists a unique positive constant x = Z∗ ∈ (0,Zmax) such that Γ(Z∗) = 0.
The above discussions show that, if R∗ > 1, (2.14) has a unique solution (u∗1, u

∗
2, u
∗
3, u
∗
4, u
∗
5)T , here

u∗i = ln(ei) (i = 1, 2, 3, 4, 5),

e1 = Γ1(Z∗) > 0, e2 =
b̂
q̂
> 0, e3 =

̂(d1M)̂b
q̂̂c

> 0, e4 =
λ̂1

(̂β1β)Γ1(Z∗)
̂(d1 M)̂b

q̂̂c + γ̂
> 0, e5 = Z∗ > 0.

Let us define the following set

Ω = {u ∈ X | ||u|| < U1 = 1 +
5∑

i=1

(max{|Mi|, |Li|} + |u∗i |)} ⊂ X.

Moreover, by similar arguments as in [12], it has that N is L-compact on Ω.
Now, let us compute the Leray-Schauder degree deg

{
QN, ∂Ω ∩ Ker L, (0, 0, 0, 0, 0)T

}
:= ∆ as

follows,

∆ =sign

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− λ̂e1
0 −β̂e3e4 −β̂e3e4 0

β̂ e1e3e4
e2

−β̂ e1e3e4
e2

β̂ e1e3e4
e2

β̂ e1e3e4
e2

−p̂e5

0 ̂(d1M) e2
e3
−̂(d1M) e2

e3
0 0

−(̂β1β)e1e3 0 −(̂β1β)e1e3 −
λ̂1
e4

0
0 q̂e2 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=sign

−̂(d1M) p̂q̂
e2

2e5

e3

 λ̂λ̂1

e1e4
− β̂(̂β1β)e1e2

3e4


=sign

{
−̂(d1M)p̂q̂

e2
2e5

e3e1e4

[
d̂e1

(
(̂β1β)e1e3e4 + γ̂e4

)
+ β̂̂γe1e3e2

4

]}
= − 1 , 0,

where λ̂ = β̂e1e3e4 + d̂e1 and λ̂1 = (̂β1β)e1e3e4 + γ̂e4 are used.
Finally, it has those all the conditions of the continuation theorem in [13] (also see, for example,

Lemma 2.1 in [12]) are satisfied. This proves that, if ω < ω∗ and R∗ > 1, model (2.1) has at least one
ω-periodic solution. □
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Let us consider the following classical viral infection dynamic model [9] with CTL immune
response: 

Ṫ (t) = λ(t) − β(t)v(t)T (t) − d(t)T (t),
İ(t) = β(t)v(t)T (t) − d1(t)I(t) − p(t)I(t)Z(t),
v̇(t) = d1(t)M(t)I(t) − c(t)v(t),
Ż(t) = q(t)I(t)Z(t) − b(t)Z(t),

(A)

where, all the coefficients are the same with that in model (1.1).
Define R1 : [0, ω∗]→ R, via

R1(x) =
λ̂βl

[
̂(d1 M)

ĉ exp{−2̂cx}
(

b̂
q̂ − 2̂λx

)]
d̂1

(
b̂
q̂ + 2̂λx

) {
dU + βl

[
̂(d1 M)

ĉ exp{−2̂cx}
(

b̂
q̂ − 2̂λx

)]} .
Obviously, R1(x) is monotonically decreasing on [0, ω∗] and

R1(0) =
λ̂βl ̂(d1M)̂q

d̂1(dU ĉ̂q + βl ̂(d1M)̂b)
, R1(ω∗) = 0.

Therefore, if R1(0) > 1, then there exists a unique constant ω∗∗ ∈ (0, ω∗) such that R1(ω∗∗) = 1,
R1(x) > 1 for 0 ≤ x < ω∗∗ and R1(x) < 1 for ω∗∗ < x ≤ ω∗.

For model (A), it is not difficult to derive the following result.

Theorem 2.2. If R1(ω) > 1 and ω < ω∗ (i.e. R1(0) > 1 and ω < ω∗∗ < ω∗), then model (A) has at least
one positive ω-periodic solution.

Remark 2.1. If all the coefficients in model (A) take constants values, i.e., λ(t) ≡ λ > 0, β(t) ≡ β > 0,
d(t) ≡ d > 0, d1(t) ≡ d1 > 0, p(t) ≡ p > 0, M(t) ≡ M > 0, c(t) ≡ c > 0, q(t) ≡ q > 0 and
b(t) ≡ b > 0, then model (A) becomes the classical model which is first proposed by Nowak and
Bangham in [9]. the condition ω < ω∗∗ in Theorem 2.2 is naturally satisfied. Furthermore, it has
R1(0) = (λβMq)/(dcq + βd1Mb) := R1. From [9], it has that the condition R1 > 1 implies the existence
of a unique positive equilibrium. This shows that the conditions and conclusion in Theorem 2.2 are
reasonable.

3. Conclusions and simulations

In summary, Theorem 2.1 in the paper successfully extends the main result in [12]) to a MERS-CoV
viral infection model with CTL immune response. In the proof of Theorem 2.1, we use a very different
method from that in [9] to obtain the lower bound (ln(δ∗)−2̂bω) of the state variable u5(t). Furthermore,
as a special case, Theorem 2.2 gives sufficient conditions for the existence of positive periodic solution
of model (A). Model (A) is a natural extension of the classical model in [9]. As the end of the paper,
let us give a example to summarize the applications of Theorem 2.1. Let us choose the coefficients in
model (1.1) as follows (for the values of some parameters, please refer to [7, 27] for the case of some
autonomous models), λ(t) = 45(1 + 0.1 sin(4πt)), β(t) = 1.4 × 10−8(1 + 0.1 cos(4πt)), d(t) = 0.001(1 +
0.5 cos(4πt)), d1(t) = 0.056(1 + 0.5 cos(4πt)), p(t) = 0.00092(1 + 0.5 cos(4πt)), M(t) = 100000,
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Figure 1. With the increasing of the time t, the evolution form of the solution of model (1.1).

c(t) = 2.1(1 + 0.3 cos(4πt)), λ1(t) = 10(1 + 0.1 sin(4πt)), β1(t) = 0.001, γ(t) = 0.01(1 + 0.1 cos(4πt)),
q(t) = 0.005(1+ 0.5 sin(4πt)), b(t) = 0.5(1+ 0.4 cos(4πt)). Then, with the help of Maple mathematical
software, it has ω = 0.5 < ω∗ ≈ 1.111111, M1 ≈ 11.502875, M2 ≈ 4.976734, M3 ≈ 14.965318,
M4 ≈ 7.108426, M5 ≈ 18.976215, L1 ≈ −0.383569, L2 = 4.007333, L3 ≈ 9.795917, L4 ≈ 0.623402,
L5 ≈ 1.387881, R∗ ≈ 1.2170332 > 1. From Theorem 2.1, it follows that model (1.1) has at least one
positive ω (ω = 0.5)-periodic solution. Figure 1 gives the corresponding numerical simulation, and the
initial value is chosen as (T (0), I(0), v(0),D(0),Z(0))T = (12.5, 100, 265000, 995.4, 423)T .
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