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Abstract: Infectious diseases generally spread along with the asymmetry of social network prop-
agation because the asymmetry of urban development and the prevention strategies often affect the
direction of the movement. But the spreading mechanism of the epidemic remains to explore in the
directed network. In this paper, the main effect of the directed network and delay on the dynamic
behaviors of the epidemic is investigated. The algebraic expressions of Turing instability are given to
show the role of the directed network in the spread of the epidemic, which overcomes the drawback
that undirected networks cannot lead to the outbreaks of infectious diseases. Then, Hopf bifurcation
is analyzed to illustrate the dynamic mechanism of the periodic outbreak, which is consistent with
the transmission of COVID-19. Also, the discrepancy ratio between the imported and the exported
is proposed to explain the importance of quarantine policies and the spread mechanism. Finally, the
theoretical results are verified by numerical simulation.
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1. Introduction

Pattern formation is a kind of spatial dynamical behavior that shows species distribution and is
widely used to explain some biological mechanisms [1–6]. With the development of complex networks,
more and more attention is paid to pattern formation from the perspective of complex networks [7].
Turing instability was investigated to show the effect of the network on the pattern formation [8], which
is different from the reaction-diffusion system. Then, the theory of pattern formation was proposed
through the distribution of the real and imaginary parts of the eigenvalues on directed networks [9].
The instability mechanism on network was explored by comparing the instability region in the reaction-
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diffusion and network-organized system [10,11]. Meanwhile, the concept of negative wavenumber was
introduced to explain the interactions between network nodes [12], which was also used to illustrate
the dynamic behaviors of the epidemic [13]. Although some work about Turing instability and pattern
formation has been done on directed networks [14], the function of delay in the epidemic model with
the directed network remains to be explored.

The mathematical model is a vital tool to describe the spreading of infectious diseases [15–18] and
is used to explain the dynamic behaviors of COVID-19 [19–24]. The SIRS model is a classic model
to describe the spreading of infectious diseases and has been extended to many infectious disease
models [25, 26]. The bifurcation of an SIRS model with a nonlinear incidence rate was analyzed to
make strategies for controlling the epidemic [27]. And then the corresponding SDE version of the
SIRS model was developed to show the effect of the basic reproduction number on the dynamical
behavior and the prevalence of the epidemic [28]. The SIRS model with both noise and delay [29, 30]
was analyzed to help the government control the spreading of infectious diseases further. Recently,
the study of infectious diseases with social networks was presented to capture the periodic outbreak
behaviors of infectious diseases [31, 32]. But because infectious diseases generally spread along with
the directed network (social network) propagation, the SIRS model with the directed network should
be considered.

Although infectious diseases generally spread along with social networks, the isolation policy also
leads to the direction of propagation(the asymmetry of network propagation). Meanwhile, there is
also a time delay in the propagation process of the epidemic. To understand the spread mechanism
and spatiotemporal dynamic behavior of the epidemic in the directed network, pattern formation in the
epidemic model with the directed network is investigated to show the effect of the directed network
and delay on the outbreak of the epidemic. Firstly, we analyze a general system with the directed
network and obtain the conditions of Turing instability. Then, we illustrate the effect of the directed
network and delay on the Hopf bifurcation. Also, the dynamical mechanism of the epidemic model
with network and delay is explained. According to our theories, some epidemic prevention strategies
are given. Finally, numerical simulation verifies our results.

2. Model description

The goal of this paper is to study the following network-organized system

dS i
dt = f (S i, Ii, S i(t − τ), Ii(t − τ)) + d1

n∑
k=1

A(1)
ik h1(S k, S i),

dIi
dt = g(S i, Ii, S i(t − τ), Ii(t − τ)) + d2

n∑
k=1

A(2)
ik h2(Ik, Ii),

(2.1)

where f (S , I, S (t−τ), I(t−τ)), g(S , I, S (t−τ), I(t−τ)) are the interactions between species, A(1), A(2) are
the adjacent matrix of the directed networks, h1(S k, S i), h2(Ik, Ii) are the interaction functions through
network, and the specific example can be found in Results and discussion. Also, we assume system
(2.1) is stable when d1 = d2 = 0.
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The linear network-organized system without delay can be expressed as

dS i
dt = a11S i + a12Ii + d1

n∑
k=1

L(1)
ik S k,

dIi
dt = a21S i + a22Ii + d2

n∑
k=1

L(2)
ik Ik,

(2.2)

where a11, a12, a21, a22 are the linear parts of f (S i, Ii, S i(t − τ), Ii(t − τ)), g(S i, Ii, S i(t − τ), Ii(t − τ)) at
equilibrium point when τ = 0, L(1)

ik S k, L
(2)
ik Ik are the linear parts of A(1)

ik h1(S k, S i), A
(2)
ik h2h(S k, S i). In

general, L(1), L(2) are the Laplacian matrices and generally have the same eigenvectors.
The eigenvalues and the eigenvectors of matrices L(1), L(2) can be defined [9]

n∑
k=1

L(1)
ik vm

k = (θm + Θm j)vm
i ,

n∑
k=1

L(2)
ik vm

k = (ϕm + Φm j)vm
i ,

where same eigenvector space is true for L(1), L(2).
The general solution of the linear network-organized system can be expanded as

S i =
n∑

k=1
ckeλktvk

i , Ii =
n∑

k=1
bkeλktvk

i , (2.3)

where λ represents λk for convenience in the following.
Substituting system (2.3) into system (2.2), one has the Jacobian matrix

J0 =

(
λ − a11 − d1(θi + Θi j) −a12

−a21 λ − a22 − d2(ϕi + Φi j)

)
,

where θi, ϕi and Θi,Φi are the real parts and the imaginary parts of Λ1
i ,Λ

2
i , separately. j( j2 = −1) is the

imaginary part unit.
According to the Jacobian matrix, we have the characteristic equation

λ2 + (c1 + c2 j)λ + c3 + c4 j = 0, (2.4)

where
c1 = −a11 − d1θi − a22 − d2ϕi,

c2 = −d2Φi − d1Θi,

c3 = −d1Θid2Φi − a12a21 + a11a22 + a11d2ϕi + d1θia22 + d1θid2ϕi,

c4 = a11d2Φi + d1Θid2ϕi + d1Θia22 + d1θid2Φi.

The roots of system (2.4) are

λ1,2 =
−c1− jc2±

√
(c1+ jc2)2−4 c3−4 jc4

2 .

Before we consider the sign of the λ1,2, a complex number z = a + b j can be defined as

√
z = ±(

√
a+|z|

2 + sgn(b)
√
−a+|z|

2 j),
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where sgn(.) is the standard sign function, a = c1
2 − c2

2 − 4 c3, b = 2 c1c2 − 4 c4, and

λ1,2 =
−c1− jc2±(

√
a+|z|

2 +sgn(b)
√
−a+|z|

2 j)
2 .

To investigate the stability of system (2.1), the sign of the maximum real part of λ1,2 is

s1 = −c1 +

√
a+|z|

2 = −c1 +

√
a+
√

a2+b2

2 > 0. (2.5)

Namely, system (2.1) is unstable when H1 holds (s1 > 0), where

H1 : c1 = −a11 − d1θi − a22 − d2ϕi ≤ 0.

If H1 is not true,
c1 = −a11 − d1θi − a22 − d2ϕi > 0,

and system (2.5) can be rewritten as √
a+
√

a2+b2

2 > c1.

Then, one has the following inequality

s2 = −c1
2 − c2

2 − 4 c3

+
√

c1
4 + 2 c1

2c2
2 − 8 c1

2c3 + c2
4 + 8 c2

2c3 + 16 c3
2 − 16 c1c2c4 + 16 c4

2

> 0,
(2.6)

It is found that system (2.1) is unstable (s2 > 0) when H2 holds, where

H2 : −c1
2 − c2

2 − 4 c3 > 0.

If H2 is not true,
−c1

2 − c2
2 − 4 c3 < 0,

system (2.6) can be expressed as√
c1

4 + 2 c1
2c2

2 − 8 c1
2c3 + c2

4 + 8 c2
2c3 + 16 c3

2 − 16 c1c2c4 + 16 c4
2

> c1
2 + c2

2 + 4 c3

and it is equivalent to
H3 : s3 = −c1

2c3 − c1c2c4 + c4
2 > 0.

If H3 holds, Turing instability and Hopf bifurcation may occur. Assume λ = jω, system (2.4) can
be written as

−ω2 + (c1 j − c2)ω + c3 + c4 j = 0. (2.7)

If a positive real root ω0 of system (2.7) and the transversality condition Re( dλ
dµ )ω=ω0,µ=µc , 0(µ is a

parameter and its critical value µc) hold [33], Hopf bifurcation occurs.
Assume system (2.1)is stable when d1 = d2 = 0. Then, the network-organized system with delay is

considered, and the linear parts of system (2.1) can be expressed as

dS i
dt = b11S i + b12Ii + b13S i(t − τ) + b14Ii(t − τ) + d1

n∑
k=1

LikS k,

dIi
dt = b21S i + b22Ii + b23S i(t − τ) + b24Ii(t − τ) + d2

n∑
k=1

LikIk,
(2.8)
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where b11, b12, b13, b14, b21, b22, b23, b24 are the linear parts of f (S i, Ii, S i(t − τ), Ii(t − τ)), g(S i, Ii, S i(t −
τ), Ii(t − τ)) at equilibrium point.

Substituting system (2.3) into system (2.8), one has the Jacobian matrix

J =
(
λ − b11 − b13e−λτ − d1(θi + Θi j) −b12 − b14e−λτ

−b21 − b23e−λτ λ − b22 − b24e−λτ − d2(ϕi + Φi j)

)
and the characteristic equation is

λ2 + (c11e−λτ + c12 + c13 j)λ + (c14 + c15 j)e−λτ + c16 + c17 j = 0, (2.9)

where
c11 = −b13 − b24,

c12 = −d2 ϕi − θi d1 − b11 − b22,

c13 = −d2Φi − Θi d1,

c14 = b13 d2 ϕi + b24 θi d1 − b23 b12 + b11 b24 + b13 b22 − b14 b21,

c15 = b13 d2Φi + b24Θi d1,

c16 = −d2ΦiΘi d1 + d2 ϕi θi d1 + b11 d2 ϕi + b22 θi d1 − b21 b12 + b11 b22,

c17 = d2Φi θi d1 + d2Θi ϕi d1 + b11 d2Φi + b22Θi d1.

To investigate the Hopf bifurcation of system (2.9), we substitute λ = jω into system (2.9), and have

−ω2 + ω c11 sin (ωτ) − ω c13 + cos (ωτ) c14 + sin (ωτ) c15 + c16

+ j (ω c11 cos (ωτ) + ω c12 − sin (ωτ) c14 + cos (ωτ) c15 + c17) = 0.
(2.10)

Separating the real and imaginary parts of system (2.10), one has

−ω2 + ω c11 sin (ωτ) − ω c13 + cos (ωτ) c14 + sin (ωτ) c15 + c16 = 0,
ω c11 cos (ωτ) + ω c12 − sin (ωτ) c14 + cos (ωτ) c15 + c17 = 0.

(2.11)

and the solutions are

cos (ωτ) = −ω
2c11c12−ω

2c14+ω c11c17+ω c12c15−ω c13c14+c14c16+c15c17
ω2c112+2ω c11c15+c142+c152 ,

sin (ωτ) = ω
3c11+ω

2c11c13+ω
2c15−ω c11c16+ω c12c14+ω c13c15+c14c17−c15c16
ω2c112+2ω c11c15+c142+c152 .

(2.12)

According to cos2 (ωτ) + sin2 (ωτ) = 1, we have

p0ω
6 + p1ω

5 + p2ω
4 + p3ω

3 + p4ω
2 + p5ω + p6 = 0, (2.13)

where

p0 = c11
2,

p1 = 2 c11
2c13 + 2 c11c15,

p2 = −c11
4 + c11

2c12
2 + c11

2c13
2 − 2 c11

2c16 + 4 c11c13c15 + c14
2 + c15

2,

p3 = −4 c11
3c15 + 2 c11

2c12c17 − 2 c11
2c13c16 + 2 c11c12

2c15 + 2 c11c13
2c15

−4 c11c15c16 + 2 c13c14
2 + 2 c13c15

2,

p4 = −2 c11
2c14

2 − 6 c11
2c15

2 + c11
2c16

2 + c11
2c17

2 + 4 c12c15c17c11

−4 c11c13c15c16 + c12
2c14

2 + c12
2c15

2 + c13
2c14

2 + c13
2c15

2 − 2 c14
2c16 − 2 c15

2c16,

p5 = −4 c11c14
2c15 − 4 c11c15

3 + 2 c11c15c16
2 + 2 c11c15c17

2 + 2 c12c14
2c17

+2 c12c15
2c17 − 2 c13c14

2c16 − 2 c13c15
2c16,

p6 = −c14
4 − 2 c14

2c15
2 + c14

2c16
2 + c14

2c17
2 − c15

4 + c15
2c16

2 + c15
2c17

2.
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Based on Hurwitz criterion [33], if H4 holds, system (2.2) is always stable, otherwise Turing insta-
bility induced by network occurs .

H4 :
pi > 0(i = 0, ..., 6),
Dn > 0(n = 1, ..., 6),

where

Dn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p1 p0 0 0 0 0
p3 p2 p1 0 0 0
p5 p4 p3 p2 p1 p0

0 p6 p5 p4 p3 p2

0 0 0 p6 p5 p4

0 0 0 0 0 p6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
If s(1 ≤ s ≤ 6) positive real roots ωi(1 ≤ i ≤ s) exist in system (2.13), Hopf bifurcation occurs. And
the critical value τc can be obtained from system (2.14),

τc = min1≤i≤s{
1
ωi

arccos(−Q1
Q2

)}, (2.14)

where Q1 = ωi
2c11c12−ωi

2c14+ωic11c17+ωic12c15−ωic13c14+c14c16+c15c17, Q2 = ωi
2c11

2+2ωic11c15+

c14
2 + c15

2, and τ0 is the critical value of τc without network, τ1 is the critical value of τc with network.
Also, the transversality condition Re( dλ

dτ ) , 0 [34, 35].
Theorem 1 In the network-organized system, If one of H1,H2,H3 and the transversality condition

Re(dλ
dτ ) > 0 hold, Turing instability induced by network occurs; if H4 does not hold, Turing instability

induced by network may occur when τ0 > τ1 and τ0 > τ > τ1.
Proof: It is well known that system (2.1) without network is stable when τ < τ0. And the network

could induce the decrease of τc to τ1. Namely, system (2.1) is unstable when τ > τ1. As a result,
τ0 > τ > τ1 means Turing instability occurs.

3. Results and discussion

(a) (b)

Figure 1. The stability of the system (2.4) when α = 0.2, β = 1/14, γ = 0.01, δ = 0.1, d =
1/60, d1 = 0.1, d2 = 0.1, p = 0.05, τ = 0. (a) The equilibrium point E1 is stable when q = 1.
(b) Turing instability occurs when q = 0.99.
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Figure 2. The bifurcation of the system (2.4) when α = 0.2, β = 1/14, γ = 0.01, δ = 0.1, d =
1/60, d1 = 0.1, d2 = 0.1, p = 0.05, τ = 0. (a) Turing instability region about θi. (b) The
distribution of the infected in different nodes about q.
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Figure 3. The maximum θmax of θi about q when α = 0.2, β = 1/14, γ = 0.01, δ = 0.1, d =
1/60, d1 = 0.1, d2 = 0.1, p = 0.05, τ = 0.

In this section, we take an SIRS model as an example to illustrate our theoretical results through
numerical simulation. A general SIRS model can be written as

dS
dt = α − βS (t − τ)I(t − τ) − dS + δR,
dI
dt = βS (t − τ)I(t − τ) − γI − dI,
dR
dt = γI − δR − dR.

Assume dR
dt = 0, one has the following system,

dS
dt = α − βS (t − τ)I(t − τ) − dS + δγ

d+δ I,
dI
dt = βS (t − τ)I(t − τ) − dI − γI,

where the equilibrium point (S ∗, I∗) is E1 = (αd , 0), E2 = ( d+γ
β
,−−α dβ−α δ β+d3+d2δ+d2γ+dδ γ

β d(γ+d+δ) ).
In this paper, we consider the network-organized system

dS i
dt = α − βS i(t − τ)Ii(t − τ) − dS i +

δγ

d+δ Ii + d1

n∑
k=1

Aik f (S k, S i),

dIi
dt = βS i(t − τ)Ii(t − τ) − dIi − γIi + d2

n∑
k=1

Aikg(Ik, Li),
(3.1)
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Figure 4. The stability of the system (2.4) when α = 0.2, β = 1/14, γ = 0.01, δ = 0.1, d =
1/60, d1 = 0, d2 = 0. (a) The equilibrium point E1 is stable when τ = 2.17 < τ0 = 2.175. (b)
The periodic oscillation state occurs when τ = 2.18 > τ0 = 2.175.

2 2.2 2.4 2.6
6

8

10

12

14

I

(a)

-3 -2 -1 0 1

i

-3

-2

-1

0

1

i
0

2

3

4

5

(b)

Figure 5. The stability of the system (2.4) when α = 0.2, β = 1/14, γ = 0.01, δ = 0.1, d =
1/60, d1 = 0.1, d2 = 0.1. (a) The bifurcation about τ of the system(2.4) without network. (b)
The distribution of τ0 about θi,Θi.

Suppose f (S k, S i) = S j − qS i, g(Ik, Li) = I j − qIi, we obtain

dS i
dt = α − βS i(t − τ)Ii(t − τ) − dS i +

δγ

d+δ Ii + d1

n∑
k=1

Aik(S j − qS i),

dIi
dt = βS i(t − τ)Ii(t − τ) − dIi − γIi + d2

n∑
k=1

Aik(I j − qIi),

where α = 0.2, β = 1/14, γ = 0.01, δ = 0.1, d = 1/60; q is the discrepancy ratio between the imported
and the exported, q = 1 means the imported equal to the exported, q > 1 means the imported is smaller
than the exported, q < 1 means the imported is larger than the exported.

We firstly consider the system (2.1) without delay. Based on Theorem 1, Turing instability never
occur when q = 1 (the imported equals to the exported) (Figure 1(a)). Namely, the diffusion (network)
of the infected(the susceptible) does not work in the outbreak, which does not match the reality [13,
31]. And H1,H2,H3 hold if q = 0.99, the directed network leads to Turing instability (Figure 1(b)).
Therefore, the discrepancy ratio is vital for the spread of the epidemic (Figure 2). That’s why the
importation of cases is strictly controlled in some countries. From Figure 2, one of H1,H2,H3 may
hold if a θi exists (Figure 2(a)). Meanwhile, the outbreak intensity and maximum θmax(θmax is the

Mathematical Biosciences and Engineering Volume 19, Issue 12, 11854–11867.
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(a) (b)

(c) (d)

Figure 6. The stability of the system (2.4) when α = 0.2, β = 1/14, γ = 0.01, δ = 0.1, d =
1/60. (a) Turing instability occurs when τ = 2.17, p = 0.1, d1 = 0.1, d2 = 0. (b) Turing
stability occurs when τ = 2.17, p = 0.1, d1 = 0, d2 = 0.1. (c) Turing instability occurs when
τ = 2.17, p = 0.1, d1 = 0.1, d2 = 0.1. (d) Turing instability occurs when τ = 2.2, p =
0.1, d1 = 0.1, d2 = 0.1.

maximum real part of θi) decreases with the increase of q (Figure 2(b), Figure 3). Namely, q is a key
factor in instability (Figures 2 and 3). Namely, controlling the imported cases is a good way to reduce
the outbreaks of infectious diseases. Also, the directed network is more suitable than the undirected
network to explain the transmission mechanism of infectious diseases because the undirected network
doesn’t work in some models [13, 31].

Then, we consider the system (2.1). Supposing the incubation period is a time delay, the delay
could affect the stability of system (2.1) and make the periodic oscillation state occur when τ = 2.18 >
τ0 = 2.175 (Figure 4). Also, the outbreak intensity is in direct proportion to τ (Figure 5(a)) and τ0 is
inversely proportional to θi,Θi[Figure 5(b)]. From Figure 5(b),Θi and θi could lead to the decrease of τc

and Turing instability in the directed network-organized system. From Figure 4, system (2.1) without
network is stable when τ = 2.17, but Turing instability occurs in system (2.1) when τ = 2.17 because
the critical τc decreases to τ1 and τ0 > τ > τ1(Figure 6). Furthermore, the diffusion(on network) of the
susceptible (Figure 6(a))(or the infected[Figure 6(b)]) alone leads to instability. Of course, the diffusion
of the infected bring about the larger outbreak (Figure 6(a),(b)). It is found that the diffusion of the
susceptible and infected could make outbreaks of the epidemic more synchronous (Figure 6(c)). So is
Figure 6(c) when τ is larger than τ0. Finally, we investigate the effect of the discrepancy ratio q on the
pattern formation of system (2.1) (Figures 7 and 8). If p = 0.01 is small, system (2.1) is stable (Figure

Mathematical Biosciences and Engineering Volume 19, Issue 12, 11854–11867.
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(a) (b)

Figure 7. The stability of the system (2.4) when α = 0.2, β = 1/14, γ = 0.01, δ = 0.1, d =
1/60, d1 = 0.1, d2 = 0.1, p = 0.01. (a) The stability of the system(2.4) is stable when
q = 1, p = 0.01. (b) Turing instability occurs when q = 0.99, p = 0.01.
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Figure 8. The maximum/minimum of Ii about q when α = 0.2, β = 1/14, γ = 0.01, δ =
0.1, d = 1/60, d1 = 0.1, d2 = 0.1, p = 0.01, τ = 2.17.

7(a)), and Turing instability occurs when q = 0.99, p = 0.01 (Figure 7(a)). Also, the discrepancy ratio
q could make the regional differences even greater (Figure 7). Although the maximum Imax is reduced,
the minimum Imin is increasing, it ultimately becomes more uniform (Figure 7). Finally, the numerical
results qualitatively agree with the periodic outbreaks and distribution of COVID-19 (Figure 9).

Through the above analysis, it is found that the discrepancy ratio q and time delay τ play a vital
role in the outbreak of the epidemic. And controlling the imported cases is a good way to reduce the
outbreaks of infectious diseases, which could increase the discrepancy ratio. Because the incubation
period τ0 is the inherent nature of infectious diseases, it is impossible to change. But we can control
the region of τ1 through the directed network, which also provides a novel to prevent the epidemic.

4. Conclusions

In this paper, the effect of the directed network and delay on the spread of the epidemic is inves-
tigated, which overcome the shortage of the undirected network (The undirected network can’t lead
to the outbreak of infectious diseases in some model [13, 31]). The conditions of Turing instability
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Figure 9. The new confirmed cases of COVID-19 from Jan, 2020 to May, 2022 in Africa
(https://covid19.who.int/data). (a) The new confirmed cases (log10(I)) of 50 countries in
Africa. (b) The new confirmed cases(log10(I)) in Africa.

are given in a general system with the directed network, which is an important indicator to determine
whether an outbreak occurs. Then, Hopf bifurcation is analyzed to illustrate the role of the delay and
directed network in Turing instability, which can be controlled through the directed network. Also,
the proposed discrepancy ratio could make the regional differences even more significant[Figure.9(a)],
which is an essential indicator in assessing quarantine policies. Finally, although the combination of
the directed network and delay may be a novel way to investigate the pattern dynamics, the general
interaction function through the network is difficult to express in the stability of a network-organized
system, which will be further studied.
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