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Abstract: Swarm intelligence algorithms are relatively simple and highly applicable algorithms, 
especially for solving optimization problems with high reentrancy, high stochasticity, large scale, 
multi-objective and multi-constraint characteristics. The sparrow search algorithm (SSA) is a kind of 
swarm intelligence algorithm with strong search capability, but SSA has the drawback of easily falling 
into local optimum in the iterative process. Therefore, a sine cosine and firefly perturbed sparrow 
search algorithm (SFSSA) is proposed for addressing this deficiency. Firstly, the Tent chaos mapping 
is invoked in the initialization population stage to improve the population diversity; secondly, the 
positive cosine algorithm incorporating random inertia weights is introduced in the discoverer position 
update, so as to improve the probability of the algorithm jumping out of the local optimum and speed 
up the convergence; finally, the firefly perturbation is used to firefly perturb the sparrows, and all 
sparrows are updated with the optimal sparrows using the firefly perturbation method to improve their 
search-ability. Thirteen benchmark test functions were chosen to evaluate SFSSA, and the results were 
compared to those computed by existing swarm intelligence algorithms, as well as the proposed 
method was submitted to the Wilcoxon rank sum test. Furthermore, the aforesaid methods were 
evaluated in the CEC 2017 test functions to further validate the optimization efficiency of the algorithm 
when the optimal solution is not zero. The findings show that SFSSA is more favorable in terms of 
algorithm performance, and the method's searchability is boosted. Finally, the suggested algorithm is 
used to the locating problem of emergency material distribution centers to further validate the 
feasibility and efficacy of SFSSA.  
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perturbation strategy; contingency site selection  

 

1. Introduction  

Swarm intelligence optimization algorithms have been developing rapidly in the last decades, and 
have been innovated in solving optimization problems. Meanwhile, the algorithm technology is being 
updated and iterated with the development [1]. Most of the swarm intelligence optimization algorithms 
are applied to the algorithms by simulating the characteristics of some animals in nature, through their 
survival ability and some laws of living habits [2]. For example, the most classical Particle Swarm 
Optimization (PSO) algorithm was proposed by Eberhart and Kennedy in 1995, and the source of the 
algorithm was based on the process of simulating the flight of a flock of birds in search of food [3,4]. 
Ant Colony Optimization (ACO) was proposed by Dorigo (Italy) in 1992 in his Ph.D. thesis and was 
based on the study of the biological characteristics of ants by leaving pheromones in the process of 
searching for food [5,6]. PSO and ACO are the most classical intelligent optimization algorithms, there 
are also Artificial Fish Swarms Algorithm (AFSA) [7], Grey Wolf Optimization Algorithm (GWO) [8], 
Whale Optimization Algorithm (WOA) [9], Bat Algorithm (BA) [10], Firefly Algorithm (FA) [11], 
Chimp Optimization Algorithm(ChOA) [12], Sparrow Search Algorithm (SSA) [13], and so on. 

SSA is a new swarm intelligence optimization algorithm proposed by Xu et al. [13] in 2020, 
which is inspired by the foraging and anti-predatory behavior of sparrows, and the authors conducted 
some comparative experiments to test the effectiveness and performance of the algorithm they 
proposed, and the simulation results prove that SSA outperforms other existing algorithms in terms of 
search accuracy, convergence speed, and stability. However, when searching for the global optimal 
solution, SSA, like other optimization algorithms, suffers from the problem of reduced population 
diversity and easily falls into the local optimum. 

The defect of easily falling into local optimum when searching for the global optimal solution of 
swarm intelligence optimization algorithms reflects its limitation in searching for optimal solutions. 
As a result, scholars both domestic and abroad put forward corresponding improvement methods. 
Duan et al. [14] improved the convergence speed and accuracy by considering the introduction of an 
extended memory factor into the PSO algorithm and then applied this extended memory-based PSO 
algorithm to AFSA. Han et al. [15] studied the multi-constrained unmanned helicopter high-quality 
flight path problem and proposed a method based on integrating group intelligence and brain-like 
cognitive learning artificial bee swarm algorithm (ABCA) path planning method to improve the 
traditional ABCA evolutionary method. Dereli et al. [16] improved the WOA algorithm convergence 
speed and overcame the problem of frequently falling into optimum by improving the equations of 
WOA adding two phases of search and wrap-around to make the population value better than the 
individual value. Chaudhary et al. [17] proposed a swarm bat algorithm (BA) for improving the 
searchability based on the two problems that BA tended to fall into local optimum and the speed of 
convergence decreased with iteration to the end. Wu et al. [18] provided an adaptive logarithmic spiral-
Levy FA (AD-IFA) to solve the problem that LF-FA was underdeveloped locally and did not converge 
quickly, their work proved that AD-IFA outperformed both standard FA and LF-FA in terms of 
computational speed and derived optimal values. Xin Lu et al. [19] improved some shortcomings of 
SSA by introducing the Tent chaos model and Gaussian variation method. Ma et al. [20] applied a large 
number of variants combined with SSA to verify the performance of SSA variants compared with other 
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intelligent algorithms and proved the effectiveness and stability of their algorithm. Ma et al. [21] 
studied and proposed an enhanced multi-strategy sparrow search algorithm (EMSSA) with algorithm 
improvements to incorporate adaptive tent chaos theory and weighted positive cosine algorithm, 
which in turn improved the population diversity and local optimum problems. Wu et al. [22] solved 
the travel quotient problem through the improvement of SSA using positive cosine and greedy 
algorithms and compared it with other intelligent algorithms, which proved that the improved 
algorithm was feasible. Zhang et al. [23] proposed an improved SSA by three strategies and applied 
it to mobile robot bionic path planning, results showed that the improved algorithm was more 
feasible compared with other studies. 

SSA is continuously being improved since its introduction, and it is still in the exploration stage. 
To improve the search ability and convergence accuracy of SSA, this paper continues to explore new 
improvement strategies based on previous work and proposes an improved SSA that incorporates the 
positive cosine algorithm with random inertia weights and the firefly perturbation strategy. 

The innovation points on the original sparrow search algorithm in this paper can be summarized 
as follows: 

1) Tent chaos mapping is invoked in the initial population to make the population distribution 
more uniform and improve the population diversity. 

2) A positive cosine approach with random inertia weights is proposed to update the discoverer's 
position. The strategy successfully reduces the likelihood that the algorithm would enter a local 
optimum solution and improves convergence accuracy thanks to the improved discoverer position. 

3) Add firefly perturbation to update the position of all sparrows, update the optimal position, 
improve the search performance of the algorithm, compare the sparrows after perturbation with those 
before perturbation, and select the better position if it is better to update the sparrow position. 

The remaining of this paper is structured as follows. In the second part, the mathematical model 
of the original sparrow search algorithm is described. In the third part, the improvement points of this 
paper are analyzed and the improved SFSSA algorithm is proposed. In the fourth part, the improved 
algorithm is compared with the other four algorithms, and thirteen benchmark test functions are chosen 
to prove the advantage of SFSSA in terms of algorithm performance.  In the fifth part, to further 
illustrate the algorithm’s capacity to identify the ideal value when the optimal value is not zero, the 
CEC2017 test function is used to compare the method. In the sixth part, the SFSSA algorithm is applied 
to the emergency material location problem, and the running results further prove the feasibility and 
effectiveness of the SFSSA algorithm. In the seventh part, the work of this paper is briefly summarized 
and some directions are made for future research work. 

2. Sparrow search algorithm 

2.1. Predatory and anti-predatory behavior of sparrows 

In nature, most animals are predators, but they are also been predated. Under the conditions of 
natural selection, animals will form a set of defensive measures to prevent anti-predatory behavior 
during foraging, and sparrows have such typical characteristics in the foraging process. Sparrows are 
flock animals, in each foraging process, each sparrow will have a clear division of labor, and sparrows 
in the foraging process has a keen perception and scouting ability, sparrows responsible for finding 
food can provide search lines and directions to their companions to help quickly find food, sparrows 
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responsible for scouting, after the discovery of natural enemies, will promptly send a signal to their 
companions to quickly leave to avoid being predated. 

2.2. Description of the sparrow search algorithm 

Sparrows are born with high alertness and keen perception of surroundings, sparrows are divided 
into discoverer, joiner, and scouter, the sparrow search algorithm is introduced based on the predatory 
characteristics of sparrows. 

Suppose there is a population of N sparrows in a D-dimensional space, and the initial location of 
this population is as follows: 

 𝑋 ൌ ൦

𝑋ଵ,ଵ 𝑋ଵ,ଶ ⋯ 𝑋ଵ,ௗ

𝑋ଶ,ଵ 𝑋ଶ,ଶ ⋯ 𝑋ଶ,ௗ

⋮ ⋮ ⋱ ⋮
𝑋௡,ଵ 𝑋௡,ଶ ⋯ 𝑋௡,ௗ

൪                              (1) 

where d represents the dimension of the problem variable, and n is the total number of sparrows. 
Sparrow adaptation values are as follows: 

𝐹௑ ൌ

⎣
⎢
⎢
⎡
𝑓ሺ𝑋ଵ,ଵ 𝑋ଵ,ଶ ⋯ 𝑋ଵ,ௗሻ
𝑓ሺ𝑋ଶ,ଵ 𝑋ଶ,ଶ ⋯ 𝑋ଶ,ௗሻ

⋮ ⋮ ⋱ ⋮
𝑓ሺ𝑋௡,ଵ 𝑋௡,ଶ ⋯ 𝑋௡,ௗሻ⎦

⎥
⎥
⎤
                                 (2) 

where f represents the adaptation value. 
In the process of each iteration, some sparrows with high fitness are selected as discoverers in the 

population, with the percentage of generally 10 to 20%, and the location of discoverers is updated with 
the following equation: 

 𝑋௜,௝
௧ାଵ ൌ ൝

𝑋௜,௝
௧ ⋅ exp ቀെ ௜

ఈ⋅I
ቁ , 𝑅ଶ ൏ 𝑆𝑇

𝑋௜,௝
௧ ൅ 𝑄 ⋅ 𝐿 , 𝑅ଶ ൒ 𝑆𝑇

                        (3) 

where 𝑡 represents the number of current iterations, 𝑗 ൌ 1,2,3 ⋯ 𝑑. 𝐼 denotes the maximum number 

of iterations. 𝑋௜,௝
௧ାଵ indicates the position of the 𝑖௧௛ sparrow in the 𝑗௧௛ dimension. 𝛼 ∈ ሺ0,1ሻ is a 

random number. 𝑅ଶ  is the alarm value, 𝑅ଶ ∈ ሾ0,1ሿ . 𝑆𝑇  is the safety value, 𝑆𝑇 ∈ ሾ0.5,1ሿ . 𝑄  is a 
random number that obeys the standard normal distribution. 𝐿 is a 1 ൈ 𝑑 matrix and the elements in 
the matrix are all 1. When 𝑅ଶ ൏ 𝑆𝑇, means that the surrounding environment is safe without natural 
enemies, and the discoverer will conduct an extensive search. When 𝑅ଶ ൒ 𝑆𝑇, it means that natural 
enemies appear, and the scouter needs to send an early warning signal to the population, at this point 
all sparrows need to fly to other safe places to search for food. 

The position of the joiners is updated with the following equation: 

 𝑋௜,௝
௧ାଵ ൌ ቐ

𝑄 ⋅ exp ൬
௑ೢ

೟ ି௑೔,ೕ
೟

௜మ ൰ , 𝑖 ൐ ௡

ଶ

𝑋௣
௧ାଵ ൅ ห𝑋௜,௝

௧ െ 𝑋௉
௧ାଵห ⋅ 𝐵ା ⋅ 𝐿 , otherwise

                     (4) 
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where 𝑋௪
௧   denotes the global worst position for the 𝑡௧௛  iteration. 𝑋௣

௧ାଵ  indicates the optimal 
position of the discoverer in the ሺ𝑡 ൅ 1ሻ௧௛ iteration. 𝐵 represents a 1 ൈ 𝑑 matrix, elements in this 
matrix are randomly assigned 1 or -1, and 𝐵ା ൌ 𝐵்ሺ𝐵𝐵்ሻିଵ. When 𝑖 ൐ 𝑛/2, the 𝑖௧௛ joiner is in a 
poor position and therefore in a very hungry state, then the joiner needs to fly to other places to search 
for food. 

The proportion of scouts is 10 to 20% of the sparrow population, and the location of scouts is 
updated with the following equation: 

𝑋௜,௝
௧ାଵ ൌ ൞

𝑋௕
௧ ൅ 𝛽 ⋅ ห𝑋௜,௝

௧ െ 𝑋b 
௧ ห , 𝑓௜ ൐ 𝑓௚

𝑋௜,௝
௧ ൅ 𝐾 ⋅ ቆ

ቚ௑೔,ೕ
೟ ି௑ೢ

೟ ቚ

ሺ௙೔ି௙ೢ ሻାఌ
ቇ , 𝑓௜ ൌ 𝑓௚

                       (5) 

where 𝑋௪
௧  is the current global optimal position. 𝛽 is the step control parameter, it is a random 

number that obeys 𝑁ሺ0,1ሻ . 𝐾  is a random number and 𝐾 ∈ ሾ1, െ1ሿ . 𝑓௜  indicates the current 
individual fitness value, 𝑓௚ is the current global optimal fitness value, 𝑓௪ is the current global worst 

fitness value. 𝜀 is the minimum constant to avoid a denominator of 0. When 𝑓௜ ൐ 𝑓௚, it means that 

the sparrow is at the edge of population danger and is extremely vulnerable to being attacked by natural 
enemies. When 𝑓௜ ൌ 𝑓௚, it means that the scout is aware of the danger and needs to move closer to other 
joiners to avoid being predated by natural enemies, where 𝐾 is the direction in which the scout moves. 

3. Improved sparrow search algorithm 

3.1. Initializing population-based on tent chaotic mapping 

Chaos is a sequence of randomness generated by a simple deterministic system. Chaotic mapping 
plays a more prominent role in stochastic optimization algorithms, where their properties allow swarm 
intelligence algorithms to avoid falling into local optima due to the ergodic and semi-random nature 
of chaos. Chaotic sequences can influence the optimization results of the whole population during 
population initialization, selection, crossover, and mutation [24]. The common chaotic sequences are 
Logistic mapping, Tent mapping, Sine mapping, Circle mapping, Singer mapping, and Chebyshev 
mapping et al. [25]. In the process of initializing the population for the swarm intelligence algorithm, 
Tent chaotic sequences and logistic mapping are frequently used. By utilizing the properties of chaotic 
sequences to improve population diversity and make the population distribution more uniform, Tent 
chaotic sequences also maximize the avoidance of reducing the population later on when searching for 
the local optimum problem probability [26].The Tent mapping has merits of uniformity in population 
distribution and better searchability than the Logistic mapping [27]. 

Tent mapping is a segmented linear mapping function [28]. It is called a “Tent” because the shape 
of the mapping morphology is similar to a tent, as shown in Figure 1 [29]. 
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Figure 1. Tent chaotic mapping bifurcation diagram. 

 

Figure 2. Distribution of Tent chaotic mapping. 

The structure of Tent mapping is simple, and the distribution density of the results is relatively 
uniform with good ergodicity [30], the equation is displayed below. 

𝑥௡ାଵ ൌ ൜
2𝑥௡      , 0 ൑ 𝑥௡ ൏ 0.5
2ሺ1 െ 𝑥௡ሻ , 0.5 ൑ 𝑥௡ ൑ 1

                       (6) 

Equation (6) is the expression when parameter a is set to be 0.5. The original mathematical 
expression of the Tent mapping is as follows [31]. 

𝑥௡ାଵ ൌ ൝

௫೙

௔
      , ሺ0 ൏ 𝑥௡ ൏ 𝑎ሻ

ଵି௫೙

ଵି௔
    , ሺ0 ൑ 𝑥௡ ൑ 1ሻ

                        (7) 

where the system is in a chaotic state when 𝑎 ∈  ሺ0,1ሻ and 𝑥௡ ∈  ሺ0,1ሻ. It can be seen from its 
expression that the Tent algorithm involves fewer parameters and is relatively simple to operate. Here, 
the coefficient 𝑎 ൌ 0.7 and the initial value 𝑥 ൌ 0.6, the Tent mapping is iterated 1000 times, and 
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the distribution of the values is in the interval [0,1], as shown in Figure 2 [32]. Figure 2, clearly 
demonstrates that the Tent mapping is distributed more uniformly, and the values are taken in the 
interval (0,1). 

3.2. Sine cosine algorithm 

Sine Cosine Algorithm (SCA) is a swarm intelligence optimization algorithm proposed by 
Seyedali Mirjalili, an Australian scholar, in 2016 [33]. It uses the oscillatory variation property feature 
of the sine cosine function to make the solution converge to the global optimal position. Sparrows' 
positions are constantly updated during the process of seeking food, and when the discoverer finds the 
optimal position, it attracts a large number of follower sparrows to concentrate together, increasing the 
probability that the population falls into a local solution. Therefore, based on the sine cosine algorithm, 
random inertia weights [34] are introduced as shown in Eq (8) to update the discoverer position, and 
then the new discoverer position update formula is obtained as shown in Eq (9). The introduction of 
the random inertia weights can balance the global convergence ability and facilitate the algorithm to 
find the global optimal solution, and the random variables can be used to adjust the random weights to 
induce the algorithm to avoid local optima and improve the stability of the searching results. 

           
𝜔 ൌ 𝜔௠௜௡ ൅ ሺ𝜔௠௔௫ െ 𝜔௠௜௡ሻ sin ቀ ௧గ

௜௧௘௥೘ೌೣ
ቁ                      (8) 

where, 𝜔௠௔௫ is the maximum value of the random inertia weight. 𝜔௠௜௡ is the minimum value of the 
random inertia weight. 

𝑋௜,௝
௧ାଵ ൌ ቊ

ሺ1 െ 𝜔ሻ ⋅ 𝑋௜,௝
௧ ൅ ω ⋅ sin 𝑟଴ ⋅ ห𝑟ଵ ⋅ 𝑋best െ 𝑋௜,௝

௧ ห,  𝑅ଶ ൏ 𝑆𝑇

ሺ1 െ 𝜔ሻ ⋅ 𝑋௜,௝
௧ ൅ ω ⋅ cos 𝑟଴ ⋅ ห𝑟ଵ ⋅ 𝑋best െ 𝑋௜,௝

௧ ห,  𝑅ଶ ⩾ ST
           (9) 

where 𝑟଴ ∈ ሺ0,2𝜋ሻ for random numbers. 𝑟ଵ ∈ ሺ0,2𝜋ሻ for random numbers. 

3.3. Firefly perturbation strategy 

The Firefly Algorithm (FA) was proposed by Professor Xin-She Yang at the University of 
Cambridge [35]. The origin of the FA algorithm comes from the luminous properties of fireflies to 
attract the opposite sex, and the luminous biological properties can warn potential predators [36]. Such 
swarm-living animals as bees and ants, for example, can communicate among their group members, 
which is the main reason why group intelligence is characterized by organization and decentralized 
decision-making. Fireflies attract each other through their luminescence system, and the strength of 
luminescence becomes a signal to attract other fireflies so that their luminescence weakness will move 
towards the side with strong luminescence [37]. Therefore, based on the change in light intensity of 
fireflies and the attraction design formula, the assumptions are listed below.  

1) Fireflies not only attract the opposite sex but also move toward the side of the stronger 
luminous fireflies.  

2) The attraction of fireflies is proportional to their brightness, for any two fireflies, one will move 
towards the other brighter than it, however, the brightness is decreasing with the increase of distance.  
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3) If no one brighter than the given firefly is found, it will move randomly. 
The equation for the degree of luminescence of fireflies is as follows: 

 𝐼 ൌ 𝐼଴. 𝑒ିఊ௥೔,ೕ
మ

                                  (10) 

where 𝐼଴ is the intensity of the maximum light source of fireflies, and related to the target value of 
the function, the better the target value of the function, the greater the intensity of firefly light. 𝛾 is 
the light absorption coefficient, firefly light degree will change with the distance and propagation 
medium. 𝑟௜,௝

ଶ  is the spatial distance between firefly 𝑖 and firefly 𝑗. 

The equation for the attraction of fireflies is as follows: 

 𝛽 ൌ 𝛽଴. 𝑒ିఊ௥೔,ೕ
మ

                                      (11) 

where 𝛽଴ is the maximum attraction strength. 
The equation for updating the position of firefly 𝑖 attracted to firefly 𝑗 is shown in Eq (12): 

𝑓௜ ൌ 𝑓௜ ൅ 𝛽. ൫𝑓௝ െ 𝑓௜൯ ൅ 𝛼. ሺrand െ 0.5ሻ                       (12) 

where 𝑓௜ , f௝  are the spatial locations of fireflies 𝑖  and 𝑗  respectively, 𝛼 ∈ ሾ0,1ሿ  is the step size 
factor, a rand is a random number on ሾ0,1ሿ that obeys uniform distribution.  

3.4. Flow Chart of SFSSA 

Through the above analysis, it is found that the sparrow search algorithm has strong local search 
ability compared with other swarm intelligence algorithms, but there are still similar shortcomings as 
other intelligent algorithms, such as fast convergence speed and ease to fall into local optimum. 
Therefore, this paper proposes corresponding improvement measures: 1) the Tent chaotic map is used 
to improve the population diversity, 2) the improved sine and cosine algorithm is used to improve the 
searchability of the discoverer sparrow, 3) the sparrow position is updated by using the firefly 
disturbance, which can make the sparrow population jump out of the local optimum. The flow chart 
of SFSSA is shown in Figure 3, and the pseudo code of SFSSA is shown in Algorithm 1 below, and 
the specific improved process is as follows. 

Step 1. Initialize parameters. Set population size N, the maximum number of iterations, discoverer 
PD, scout SD, warning value 𝑅ଶ, safety value ST, etc.  

Step 2. Initialize population. The population is initialized using the Tent chaos mapping in Eq (6).  
Step 3. Calculate the fitness value 𝑓௜ of each sparrow and rank. 
Step 4. According to the PD ratio, some sparrows with superior fitness values are selected as 

discoverers, and the discoverer positions are updated according to Eq (3). 
Step 5. A positive cosine algorithm incorporating random inertia weights is introduced at the 

discoverer location to select the one with the best fitness value as the discoverer, and the discoverer 
location is updated according to Eq (9). 

Step 6. The remaining populations are the joiners and the joiner positions are updated according 
to Eq (4).  

Step 7. Some individuals in the population are randomly selected as scouts according to the 
proportion, the scout sparrow position is updated according to Eq (5), the new fitness value is 
calculated, and the update operation is performed if it is better than the current optimal value.  
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Step 8. The optimal position of the population is updated by adding firefly perturbation, and the 
intensity magnitude of the light source 𝐼଴  is used as the superiority of the fitness value, and the 
direction of movement of the population is determined according to the degree of firefly luminescence 
and attractiveness in Eqs (10) and (11). 

Step 9. A perturbation strategy is applied to the population according to Eq (12) to update the 
location. 

Step 10. Calculate the fitness value and determine the optimal position of the population. 
Step 11. Observe whether the stop condition is satisfied, exit if it is satisfied, and output the result, 

otherwise, repeat from Step 3. 

Algorithm 1. The framework of the SFSSA. 
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Start

Parameters initiation

Initializing populations with Tent chaos mapping

Calculate the fitness value for each sparrow and 
rank them

Select the sparrow with better fitness as the 
discoverers by Eq. (3)

Update the discoverers location using an improved 
sine-cosine algorithm by Eq.(9)

Update accessions by Eq. (4)

Update scouts by Eq. (5)

Using firefly luminescence and attraction strength 
to determine the direction of population movement 

by Eq.(10) and Eq.(11)

Update of population location by means of firefly 
disturbance by Eq.(12)

Calculate the fitness value and determine the 
optimal position

Whether meet the termination condition ?

Output results

End

YES

NO

 

Figure 3. SFSSA flow chart. 

4. Simulation experiments and results analysis 

4.1. Experimental environment 

The simulation experiment environment is 11thGen Intel(R) Core(TM) i5-11400H@2.70GHz, 16 
GB memory, Windows 11 operating system MATLAB R2020b simulation experiment operating platform. 

4.2. Test object and parameter setting 

For the verification of the effectiveness of SFSSA, WOA, PSO, ChOA, SSA, LSSA and RWSSA 
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are selected and compared with it in this paper. To ensure the fairness of the validation, the population 
size N of the algorithm is set to be 30 and the maximum number of iterations is set to be 500. Each 
experimental parameter is shown in Table 1. 

Table 1. Experimental parameters of the test algorithm. 

Algorithm name Parameters setting 
WOA 𝑏 ൌ 1, 𝑎௠௔௫ ൌ 2, 𝑎௠௜௡ ൌ 0 
PSO 𝑤 ൌ 0.8, 𝑐ଵ ൌ 1.49445, 𝑐ଶ ൌ 1.49445 
ChOA 𝑚 ൌ 𝑐ℎ𝑎𝑜𝑠 ሺ3, 1, 1ሻ 
SSA 𝑃𝐷 ൌ 0.2, 𝑆𝐷 ൌ 0.1, 𝑆𝑇 ൌ 0.8 
LSSA PD = 0.2, SD = 0.1, ST = 0.8 
RWSSA PD = 0.2, SD = 0.1, ST = 0.8 
SFSSA 𝑃𝐷 ൌ 0.2, 𝑆𝐷 ൌ 0.1, 𝑆𝑇 ൌ 0.8 

Table 2. Unimodal test functions (dim = 30). 

Function Dimension Variable range 

𝐹ଵሺ𝑥ሻ ൌ ෍  

௡

௜ୀଵ

 𝑥௜
ଶ 30 ［-100, 100］ 

𝐹ଶሺxሻ ൌ ෍  

௡

௜ୀଵ

 |𝑥௜| ൅ ෑ  

௡

௜ୀଵ

 |𝑥௜| 30 ［-10, 10］ 

𝐹ଷሺ𝑥ሻ ൌ ෍  

௡

௜ୀଵ

 ቌ෍  

௜

௝ୀଵ

 𝑥௝ቍ

ଶ

 30 ［-100, 100］ 

𝐹ସ ൌ max
௜

 ሼ|𝑥௜|, 1 ൑ 𝑖 ൑ 𝑛ሽ 30 ［-100, 100］ 

𝐹ହሺ𝑥ሻ ൌ ෍  

௡ିଵ

௜ୀଵ

 ቂ100൫𝑥௜ାଵ െ 𝑥௜
ଶ൯

ଶ
൅ ሺ𝑥௜ െ 1ሻଶቃ 30 ［-30, 30］ 

𝐹଺ሺ𝑥ሻ ൌ ෍  

௡

௜ୀଵ

 ሺሾ𝑥௜ ൅ 0.5ሿሻଶ 30 ［-100, 100］ 

𝐹଻ሺ𝑥ሻ ൌ ෍  

௡

௜ୀଵ

 𝑖𝑥௜
ସ ൅ randomሾ0,1ሻ 30 ［-1.28, 1.28］ 

4.3. Thirteen benchmark test functions 

This paper selects 13 standard representative benchmark functions for testing [38], including 7 
unimodal test functions. Unimodal test functions usually only have one global optimal solution, thus 
the comparison is conducted in terms of the search ability and convergence speed, as shown in Table 2. 
There are 4 multimodal test functions with local optimal solutions in the function definition domain, 
which are easily falling into local optimum. Multimodal function testing can compare the algorithms 
in terms of the global search ability and local optimum ability without falling into local optimum, as 
shown in Table 3. There are 2 low-dimensional dimensional multimodal test functions. Swarm 
intelligence algorithms need to be constantly explored and developed, and low-dimensional 
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dimensional multimodal test functions are used to compare the ability of each algorithm in global 
exploration and local development, as shown in Table 4. 

Table 3. Multimodal test functions (dim = 30). 

Function Dimension Variable range 

𝑓 ሺ𝑥ሻ ൌ ∑ ሾ𝑥௜
ଶ െ 10cos ሺ2𝜋𝑥௜ሻ ൅ 10ሿ௡

௜ୀଵ    30 ［-5.12, 5.12］

𝑓ଽሺ𝑥ሻ ൌ െ20𝑒𝑥𝑝 ቆെ0.2ටଵ

௡
∑௜ୀଵ

௡  𝑥௜
ଶቇ െ 𝑒𝑥𝑝 ൬

ଵ

௡
∑௜ୀଵ

௡ 𝑐𝑜𝑠ሺ2𝜋𝑥௜ሻ൰ ൅ 20 ൅ 𝑒  30 ［-32, 32］ 

𝑓ଵ଴ሺ𝑥ሻ ൌ
గ

௡
ሼ10sin ሺ𝜋𝑦ଵሻ ൅ ∑௜ୀଵ

௡ିଵ ሺy௜ െ 1ሻଶሾ1 ൅ 10sinଶሺ𝜋𝑦௜ାଵሻሿ ൅

ሺy௡ െ 1ሻଶሽ ൅  ∑௜ୀଵ
௡  𝑢ሺ𝑥௜, 10,100,4ሻ, 𝑦௜ ൌ 1 ൅

௫೔ାଵ

ସ
, 𝑢ሺ𝑥௜, 𝑎, 𝑘, 𝑚ሻ ൌ

ቐ
𝑘ሺ𝑥௜ െ 𝑎ሻ௠,  𝑥௜ ൐ 𝑎
0,  െ 𝑎 ൏ 𝑥௜ ൏ 𝑎
𝑘ሺെ𝑥௜ െ 𝑎ሻ௠, 𝑥௜ ൏ െ𝑎

 

30 ［-50, 50］ 

𝑓ଵଵሺ𝑋ሻ ൌ 0.1ሼsinଶ ሺ3𝜋𝑥ଵሻ ൅ ∑  ௡
௜ୀଵ  ሺ𝑥௜ െ 1ሻଶሾ1 ൅ sinଶሺ3𝜋𝑥௜ ൅ 1ሻሿ ൅ ሺ𝑥௡ െ

1ሻଶሾ1 ൅ sinଶ ሺ2𝜋𝑥௡ሻሿሽ ൅ ∑  ௡
௜ୀଵ 𝑢ሺ𝑥௜, 5,100,4ሻ   

30 ［-50, 50］ 

Table 4. Low-dimensional multimodal test functions (dim = 4). 

Function Dimension Variable range 

𝐹ଵଶሺ𝑋ሻ ൌ െ ∑  ହ
௜ୀଵ  ሾሺ𝑋 െ 𝑎௜ሻሺ𝑋 െ 𝑎௜ሻ் ൅ 𝑐௜ሿିଵ  4 ［0, 10］ 

𝐹ଵଷሺ𝑋ሻ ൌ െ ∑  ଻
௜ୀଵ  ሾሺ𝑋 െ 𝑎௜ሻሺ𝑋 െ 𝑎௜ሻ் ൅ 𝑐௜ሿିଵ  4 ［0, 10］ 

4.4. Comparative analysis of algorithm results 

WOA, PSO, ChOA, SSA, LSSA and RWSSA are selected to compare the effectiveness with 
SFSSA, run each algorithm 30 times respectively on 13 benchmark test functions, and the results are 
shown in Tables 5–7. From Tables 5–7, the following conclusions can be drawn. 1) For the high-
dimensional unimodal test functions F1–F7, the SFSSA algorithm proposed in this paper significantly 
outperforms WOA, PSO, ChOA, SSA, LSSA and RWSSA among functions F1–F4, the SFSSA effect 
for searching optimal solutions reach 100%, while in test functions F5–F7, SFSSA does not obtain an 
optimal solution, but the test results are also better than other algorithms. 2) For the high-dimensional 
multimodal test functions F8–F11, SFSSA also outperforms the other algorithms. There is no 
discernible difference between SFSSA and other algorithms in function F8, with the exception of PSO 
and ChOA, all other algorithms achieving 100% of the optimal solution search rate. The good ability 
of SFSSA to search for optimal solutions is also demonstrated in functions F10 and F11. 3) For the 
low-dimensional fixed-dimensional multimodal test F12 and F13, SFSSA also outperforms the other 
algorithms in terms of the optimal value and standard deviation in F12 and F13. Combining the above 
results, it can be concluded that SFSSA is significantly better than the other algorithms in terms of 
optimality and stability as well as robustness. 
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Table 5. Results of unimodal test functions. 

Function Algorithm Best Worst Avg Std 
 WOA 1.7749E-87 5.4505E-71 2.8436E-72 1.1136E-71 
 PSO 2.7128E+02 1.8840E+03 1.0465E+03 4.6428E+02 
F1 ChOA 2.0480E-09 8.5882E-05 6.4504E-06 1.5884E-05 
 SSA 7.6758E-121 4.5686E-30 1.7278E-31 8.3764E-31 
 LSSA 2.3267E-234 1.1261E-33 4.2660E-35 2.0531E-34 
 RWSSA 0 1.1697E-30 4.0817E-32 2.1344E-31 
 SFSSA 0 0 0 0 
 WOA 2.6978E-59 6.3675E-51 4.1251E-52 1.2152E-51 
 PSO 8.1241E+00 9.2827E+01 2.4546E+01 1.5211E+01 
F2 ChOA 9.8120E-08 1.2895E-05 3.2730E-05 4.0441E-05 
 SSA 2.0318E-63 1.1192E-28 5.2543E-30 2.1742E-29 
 LSSA 1.2111E-186 1.6368E-29 5.5224E-31 2.9873E-30 
 RWSSA 1.2478E-69 1.0912E-31 5.3244E-33 2.0656E-32 
 SFSSA 0 0 0 0 
 WOA 3.6622E+04 6.1040E+04 3.7680E+04 7.6248E+03 
 PSO 9.5324E+02 1.0325E+04 3.3717E+03 2.1707E+03 
F3 ChOA 4.5825E-01 2.0687E+03 1.7769E+02 4.2436E+02 
 SSA 9.6040E-87 4.916E-13 3.4494E-14 1.2218E-13 
 LSSA 1.0007E-313 2.4867E-10 8.2998E-12 4.5399E-11 
 RWSSA 1.6146E-317 9.0559E-15 3.0439E-16 1.6529E-15 
 SFSSA 0 0 0 0 
 WOA 1.9574E+00 6.9312E+01 4.0668E+01 2.1106E+01 
 PSO 1.2821E+01 2.5360E+01 1.8390E+01 3.8558E+00 
F4 ChOA 2.8057E-02 1.6593E+00 2.7966E-01 3.5611E-01 
 SSA 1.8578E-98 1.5608E-06 5.7496E-08 2.8502E-07 
 LSSA 1.8901E-89 2.7429E-08 1.6842E-09 5.7065E-09 
 RWSSA 1.5218E-61 7.5268E-07 2.5687E-08 1.3732E-07 
 SFSSA 0 0 0 0 
 WOA 2.6921E+01 2.8772E+01 2.8044E+01 5.3089E-01 
 PSO 5.5753E+03 1.8946E+05 6.9931E+04 4.9913E+04 
F5 ChOA 2.8085E+01 2.8980E+01 2.8846E+01 2.0503E-01 
 SSA 7.1503E-08 3.3728E-03 9.0752E-04 1.0188E-03 
 LSSA 1.0111E-07 1.1453E-02 1.1441E-03 2.5165E-03 
 RWSSA 2.5429E-08 1.0926E-02 1.2258E-03 2.6036E-03 
 SFSSA 1.2671E-09 1.4275E-05 2.5416E-06 3.642E-06 
 WOA 9.2325E-02 9.4311E-01 3.0824E-01 1.8077E-01 
 PSO 2.5333E+02 2.2256E+03 1.1057E+03 5.2198E+02 
F6 ChOA 2.2836E+00 4.4825E+00 3.5936E+00 4.2266E-01 
 SSA 3.7036E-08 5.7814E-05 6.1101E-06 1.1347E-05 
 LSSA 1.3873E-10 2.4378E-04 1.6613E-05 4.6093E-05 
 RWSSA 2.1385E-10 4.302E-05 6.0216E-06 1.0220E-05 
 SFSSA 3.2503E-11 1.4584E-08 9.4398E-10 2.6456E-09 
 WOA 6.1961E-05 2.2059E-02 4.2440E-03 5.0519E-03 
 PSO 2.1333E-01 1.1259E+01 1.6896E+00 2.4348E+00 
F7 ChOA 1.1742E-04 9.3132E-03 2.0413E-03 1.8312E-03 
 SSA 2.283E-05 1.0886E-03 4.1807E-04 2.6245E-04 
 LSSA 3.2584E-05 1.8505E-03 4.5828E-04 4.3209E-04 
 RWSSA 2.2467E-05 4.5372E-03 5.9288E-04 8.3595E-04 
 SFSSA 5.0165E-06 9.2023E-04 2.3859E-04 2.3131E-04 



11435 

Mathematical Biosciences and Engineering  Volume 19, Issue 11, 11422-11452. 

Table 6. The caption of the table. 

Function Algorithm Best Worst Avg Std 
 WOA 0 0 0 0 
 PSO 8.2984E+01 1.7219E+02 1.2930E+02 2.4192E+01 
F8 ChOA 4.6670E-02 3.6937E+01 1.2391E+01 1.1471E+01 
 SSA 0 0 0 0 
 LSSA 0 0 0 0 
 RWSSA 0 0 0 0 
 SFSSA 0 0 0 0 
 WOA 8.8818E-16 7.9936E-15 4.204E-15 2.4567E-15 
 PSO 4.9078E+00 1.2835E+01 9.3752E+00 1.6889E+00 
F9 ChOA 1.9959E+01 1.9964E+01 1.9962E+01 1.2380E-03 
 SSA 8.8818E-16 7.9936E-15 1.9540E-15 2.1173E-15 
 LSSA 8.8818E-16 7.9936E-15 2.1908E-15 1.9755E-15 
 RWSSA 8.8818E-16 7.9936E-15 1.5987E-15 1.7203E-15 
 SFSSA 8.8818E-16 8.8818E-16 8.8818E-16 0 
 WOA 4.3889E-03 7.1205E-02 2.3959E-02 1.5600E-02 
 PSO 4.9164E+00 2.6997E+01 1.3402E+01 5.5304E+00 
F10 ChOA 2.6292E-01 9.7268E-01 5.1688E-01 2.0685E-01 
 SSA 1.0417E-11 1.4721E-05 1.0489E-06 2.7427E-06 
 LSSA 8.5662E-12 3.1387E-05 1.5144E-06 5.7386E-06 
 RWSSA 1.6231E-11 7.9965E-06 5.7095E-07 1.4951E-06 
 SFSSA 7.7712E-12 4.607E-08 5.9028E-09 1.1061E-08 
 WOA 2.1753E-01 1.2340E+00 6.2339E-01 2.6953E-01 
 PSO 2.9173E+01 1.3342E+04 1.1008E+03 2.7063E+03 
F11 ChOA 2.3524E+00 2.9948E+00 2.7364E+00 1.3110E-01 
 SSA 1.8261E-08 4.5469E-05 6.5337E-06 1.0626E-05 
 LSSA 4.6774E-11 1.0495E-04 1.1207E-05 2.5139E-05 
 RWSSA 2.7357E-09 5.3919E-05 5.7949E-06 1.2426E-05 
 SFSSA 6.7648E-11 5.7616E-07 7.7631E-08 1.3335E-07 

Table 7. The caption of the table. 

Function Algorithm Best Worst Avg Std 
 WOA -1.0151E+01 -5.0538E+00 -7.1782E+00 2.4924E+00 
 PSO -1.0153E+01 -2.6305E+00 -7.1423E+00 3.3781E+00 
F12 ChOA -5.0191E+00 -4.9820E-01 -2.0675E+00 2.0898E+00 
 SSA -1.0153E+01 -5.0552E+00 -6.9433E+00 2.4862E+00 
 LSSA -1.0153E+01 -5.0552E+00 -7.0944E+00 2.5402E+00 
 RWSSA -1.0153E+01 -5.0552E+00 -6.7545E+00 2.4443E+00 
 SFSSA -1.0153E+01 -6.3614E+00 -9.8484E+00 8.8653E-01 
 WOA -1.0402E+01 -2.7659E+00 -9.5333E+00 2.2781E+00 
 PSO -1.0402E+01 -5.1288E+00 -1.0227E+01 9.6291E-01 
F13 ChOA -1.0402E+01 -1.0402E+01 -1.0402E+01 1.1544E-04 
 SSA -1.0402E+01 -5.0877E+00 -9.5171E+00 2.0147E+00 
 LSSA -1.0402E+01 -1.0402E+01 -1.0402E+01 3.9712E-09 
 RWSSA -1.0402E+01 -5.0877E+00 -1.0225E+01 9.7043E-01 
 SFSSA -1.0402E+01 -1.0402E+01 -1.0402E+01 4.3584E-11 
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4.5. Algorithm convergence curve analysis 

To show more intuitively the convergence accuracy and optimization search capability of the 
algorithm, the convergence curves of these 13 functions based on the number of iterations and 
adaptation values are presented in Figures 4–6. As shown in Figures 4–6, the convergence curves show 
that SFSSA outperforms other algorithms in unimodal, multimodal, and fixed-dimensional multimodal 
conditions. For example, in the unimodal test functions F1–F4, SFSSA has a great improvement in the 
early convergence speed compared with the other six algorithms, with the fastest convergence speed 
and the best convergence accuracy. In the unimodal test functions F5–F7, the convergence speed of 
SFSSA is not as fast as the F1–F4 test functions, but the convergence effect is better than the other six 
algorithms. In the multimodal test function F8, the convergence accuracy of the other four algorithms, 
except PSO and ChOA, is also good, but the convergence speed of SFSSA is faster and better in 
comparison. In comparison to other algorithms, the test results of SFSSA have reasonably stable search 
ability in multimodal test function F9, proving that this approach is superior to others, as shown in 
Figure 5. In the multimodal test functions F10 and F11, the SFSSA algorithm significantly outperforms 
the other algorithms in terms of optimal value, mean value, and standard deviation. In the fixed-
dimensional multimodal test functions F12 and F13, it can be seen from the convergence plots that 
SFSSA converges faster compared to the other algorithms, indicating that SFSSA outperforms the 
other algorithms in terms of local exploitation and global search ability. 

In summary, the aforementioned results aim to demonstrate that SFSSA has better global search 
ability and does not easily fall into local optimum, and that under the same conditions, the global 
search and local exploitation ability of SFSSA has relative advantages compared with the other six 
algorithms described in the paper. 

.      

Figure 4. Convergence curves of the seven unimodal test functions. 

Continued on next page 
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Figure 4. Convergence curves of the seven unimodal test functions. 
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Figure 5. Convergence curves of the four multimodal test functions. 

    

Figure 6. Convergence curves of the two low-dimensional multimodal test functions. 
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4.6. Wilcoxon rank sum test 

To verify whether SFSSA outperforms the other four algorithms, this paper uses the Wilcoxon 
rank-sum test [39] to verify the significant difference between SFSSA and the other four algorithms. 
The significance level was set at p = 5%. When p < 5%, the original hypothesis is rejected, proving 
that there is a significant difference between the two algorithms; when p > 5%, the original hypothesis 
is accepted, proving that there is no significant difference between the two algorithms, i.e., the two 
algorithms are similar in terms of searching optimum. The results of the Wilcoxon rank-sum test are 
presented in Table 8. As shown in Table 8, the p-values of SFSSA are overwhelmingly less than 5%, 
which indicates that SFSSA outperforms the other six algorithms in the aspect of searching for 
optimal solutions. 

Table 8. Results of Wilcoxon’s rank-sum test. 

Function SFSSA/WOA SFSSA/PSO 
SFSSA/ 

ChOA 
SFSSA/SSA SFSSA/LSSA SFSSA/RWSSA

 P S P S P S P S P S P S 

F1 1.2118E-12 + 1.2118E-12 + 1.2118E-12 + 1.2118E-12 + 1.2118E-12 + 1.2118E-12 +

F2 1.2118E-12 + 1.2118E-12 + 1.2118E-12 + 1.2118E-12 + 1.2118E-12 + 1.2118E-12 +

F3 1.2118E-12 + 1.2118E-12 + 1.2118E-12 + 1.2118E-12 + 1.2118E-12 + 1.2118E-12 +

F4 1.2118E-12 + 1.2118E-12 + 1.2118E-12 + 1.2118E-12 + 1.2118E-12 + 1.2118E-12 +

F5 3.0199E-11 + 3.0199E-11 + 3.0199E-11 + 1.5465E-09 + 6.5183E-09 + 8.8411E-07 +

F6 3.0199E-11 + 3.0199E-11 + 3.0199E-11 + 3.0199E-11 + 3.1589E-10 + 9.7555E-10 +

F7 9.0632E-08 + 3.0199E-11 + 1.3111E-08 + 2.7548E-03 + 1.9883E-02 + 5.3221E-03 +

F8 N/A = 1.2118e-12 + 1.2118e-12 = N/A = N/A = N/A =

F9 1.0873E-08 + 1.2118E-12 + 1.2118E-12 + 5.5398E-03 + 6.2958E-04 + 2.1498E-02 +

F10 3.0199E-11 + 3.0199E-11 + 3.0199E-11 + 2.0023E-06 = 5.8587E-06 + 1.2493E-05 +

F11 3.0199E-11 + 3.0199E-11 + 3.0199E-11 + 1.1023E-08 + 1.4733E-07 + 3.3242E-06 +

F12 5.9673E-09 + 6.6065E-01 - 3.0199E-11 + 6.9724E-03 + 2.8129E-02 + 2.6077E-02 +

F13 2.3715E-10 + 6.6018E-01 - 3.0199E-11 + 5.5329E-08 + 1.698E-08 + 9.7917E-05 +

5. CEC 2017 function test 

In this paper, we chose to evaluate 29 test functions on CEC 2017 to show more clearly the 
applicability and validity of the SFSSA method and to prevent ISSA from being meaningful only when 
the optimal value is 0. The number of test group participants was set to 30, the number of iterations 
was set to 500, the CEC 2017 dimension was set to 30, the SD was set to 0.6, and all other parameters 
were kept constant to ensure the fairness of the experiment. The best (Best), worst (Worst), mean (Ave), 
and standard deviation of each method were determined by running each of the above algorithms 30 
times independently (Std). Conventionally, the CEC02 function was not employed because of high-
dimension instability. 

According to the data in Table 9, SFSSA performs better than the other algorithms in terms of the 
average solution accuracy across all 29 functions. In terms of average solution accuracy on 17 of the 29 
functions in CEC2017, SFSSA outperforms the other six comparison methods. SFSSA optimizes 
effectively and can get close to each function's theoretically ideal value. Each SFSSA measure in F1, 
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F4, F9, F11, F12, and F25 is the best among the methods. While WOA and PSO perform well in this 
algorithm test when the optimal solution is not 0, SFSSA performs better when trying to discover the 
ideal value. 

Table 9. CEC2017 test function results. 

Function Algorithm Best Worst Avg Std 
 WOA 2.7521E+09 1.2049E+10 5.3048E+09 2.0839E+09 
 PSO 3.9511E+09 2.0882E+10 1.0629E+10 4.3592E+09 
 ChOA 2.1379E+10 3.9268E+10 3.1125E+10 4.9822E+09 
CEC01 SSA 1..5465E+10 3.9468E+10 2.5673E+10 6.4852E+09 
 LSSA 1.3364E+10 3.4693E+10 2.6073E+10 4.9347E+09 
 RWSSA 4.0229E+08 5.7645E+09 2.3873E+09 1.2613E+09 
 SFSSA 3.6436E+07  1.6832E+09 5.4266E+08 3.6960E+08 
 WOA 2.7108E+05 4.3703E+05 3.1316E+05 2.6333E+04 
 PSO 2.0200E+04 1.9418E+05 7.9172E+04 3.8450E+03 
 ChOA 8.7161E+04 1.9555E+05 1.3019E+05 2.6467E+03 
CEC03 SSA 6.8990E+04 9.4072E+04 8.7805E+04 7.6863E+03 
 LSSA 6.5817E+04 9.1420E+04 9.0454E+04 631659E+03 
 RWSSA 5.5648E+04 9.3244E+04 8.3484E+04 9.0184E+03 
 SFSSA 3.9320E+04 5.7844E+04 4.8655E+04 4.0593E+03 
 WOA 7.6982E+02 1.9655E+03 1.3050E+03 2.8043E+02 
 PSO 7.5968E+02 5.6531E+03 1.6659E+03 1.0134E+03 
 ChOA 1.5527E+03 1.1421E+04 5.0594E+03 2.4137E+03 
CEC04 SSA 2.8172E+03 1.0068E+04 6.2562E+03 1.7489E+03 
 LSSA 2.5105E+03 1.2273E+04 6.6431E+03 2.3381E+02 
 RWSSA 6.6658E+02 2.0496E+03 1.2087E+03 3.3348E+02 
 SFSSA 5.7392E+02 1.3180E+03 7.5047E+02 1.6351E+02 
 WOA 7.9113E+02 1.0112E+03 9.0714E+02 5.1951E+01 
 PSO 7.0261E+02 8.9346E+02 7.8923E+02 5.0844E+02 
 ChOA 7.6703E+02 8.8904E+02 8.3412E+02 2.9488E+01 
CEC05 SSA 7.8028E+02 9.4760E+02 8.8796E+02 3.6099E+01 
 LSSA 8.2192E+02 9.6674E+02 8.9608E+02 3.4698E+01 
 RWSSA 7.7582E+02 9.0038E+02 8.2404E+02 2.1849E+01 
 SFSSA 7.0501E+02 8.7836E+02 7.8430E+02 4.0051E+01 
 WOA 6.5332E+02 6.8809E+02 6.7452E+02 8.2049E+00 
 PSO 6.4466E+02 6.8553E+03 6.6481E+02 1.0671E+01 
 ChOA 6.5959E+02 6.8790E+02 6.7538E+02 6.5153E+00 
CEC06 SSA 6.7132E+02 7.1485E+02 6.8986E+02 1.0402E+01 
 LSSA 6.7231E+02 7.0701E+02 6.9037E+02 9.4107E+00 
 RWSSA 6.6035E+02 7.0122E+02 6.7772E+02 8.7272E+00 
 SFSSA 6.5116E+02 6.7730E+02 6.6455E+02 7.3931E+00 
 WOA 1.1495E+03 1.4800E+03 1.3355E+03 7.5504E+01 
 PSO 1.0120E+03 1.4355E+03 1.2220E+03 1.0970E+02 
 ChOA 1.1113E+03 1.3620E+03 1.2758E+03 4.5293E+01 
CEC07 SSA 1.3921E+03 1.4634E+03 1.4303E+03 1.9950E+01 
 LSSA 1.3979E+03 1.4844E+03 1.4283E+03 2.2257E+01 
 RWSSA 1.2926E+03 1.3993E+03 1.3589E+03 2.5107E+01 
 SFSSA 1.2405E+03 1.3649E+03 1.3210E+03 3.3245E+01 
    Continued on next page
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Function Algorithm Best Worst Avg Std 
 WOA 7.5696E+03 2.5407E+04 1.3260E+04 4.8184E+03 
 PSO 4.2952E+03 9.8206E+03 6.7382E+03 1.2470E+03 
 ChOA 5.6548E+03 1.2613E+04 9.1128E+03 1.6160E+03 
CEC08 SSA 6.8511E+03 1.1510E+04 8.9890E+03 1.0278E+03 
 LSSA 6.9385E+03 1.2024E+04 9.4181E+03 1.2029E+03 
 RWSSA 5.6685E+03 8.0635E+03 6.9202E+03 6.2775E+02 
 SFSSA 4.6829E+03 5.9822E+03 5.5650E+03 2.2838E+02 
 WOA 7.4389E+03 1.8568E+04 1.2792E+04 3.2702E+03 
 PSO 3.4986E+03 1.1308E+04 6.4921E+03 2.0013E+03 
 ChOA 4.8964E+03 1.3170E+04 9.1332E+03 1.9134E+03 
CEC09 SSA 7.1123E+03 1.2437E+04 9.1943E+03 1.1771E+03 
 LSSA 7.4288E+03 1.1393E+04 9.0447E+03 1.1664E+03 
 RWSSA 5.7353E+03 7.9246E+03 6.8449E+03 5.3322E+02 
 SFSSA 4.5091E+03 7.7324E+03 5.6211E+03 5.3093E+02 
 WOA 5.7680E+03 8.4292E+03 7.3146E+03 7.2165E+02 
 PSO 5.3291E+03 8.0497E+03 6.5228E+03 6.2632E+02 
 GWO 8.3581E+03 9.1007E+03 8.7795E+03 1.9823E+02 
CEC10 SSA 7.4905E+03 9.1504E+03 8.1998E+03 4.9933E+02 
 LSSA 5.9377E+03 9.8859E+03 8.1302E+03 9.1346E+02 
 RWSSA 5.1390E+03 8.3466E+03 6.6828E+03 8.5331E+02 
 SFSSA 4.6344E+03 7.6951E+03 5.9251E+03 8.3308E+02 
 WOA 3.7837E+03 1.1634E+04 6.4783E+03 1.8295E+03 
 PSO 1.4876E+03 1.8909E+04 2.6820E+03 3.1057E+03 
 GWO 2.4231E+03 7.3086E+03 5.0805E+03 1.2590E+03 
CEC11 SSA 5.7628E+03 1.8814E+04 1.2286E+04 3.1245E+03 
 LSSA 3.8262E+03 2.3897E+04 1.1872E+04 4.5958E+03 
 RWSSA 2.5603E+03 9.0534E+03 5.7003E+03 1.8128E+03 
 SFSSA 1.3531E+03 2.8267E+03 1.7323E+03 3.6872E+02 
 WOA 1.0559E+08 9.0534E+08 3.9380E+08 2.0240E+08 
 PSO 1.5360E+07 4.2519E+09 6.7337E+08 1.1052E+09 
 GWO 1.9339E+09 1.2270E+10 6.8625E+09 2.5827E+09 
CEC12 SSA 1.1498E+09 9.4254E+09 3.7250E+09 1.8872E+09 
 LSSA 1.1466E+09 7.2733E+09 3.5069E+09 1.6856E+09 
 RWSSA 3.7261E+07 8.1869E+08 2.7703E+08 1.9502E+08 
 SFSSA 6.6131E+06 2.1018E+08 9.0355E+07 5.6503E+07 
 WOA 1.2359E+06 2.5000E+07 8.9504E+06 6.8906E+06 
 PSO 5.3765E+04 7.4736E+09 4.1462E+08 1.4797E+09 
 GWO 8.6734E+07 1.6213E+10 4.9580E+09 4.6402E+09 
CEC13 SSA 1.1694E+07 1.0677E+09 2.1979E+08 2.9453E+08 
 LSSA 7.3845E+06 2.8034E+08 1.6581E+09 4.3841E+08 
 RWSSA 4.2060E+04 1.4838E+05 4.0402E+05 9.1262E+04 
 SFSSA 2.5187E+04 6.7486E+05 1.4249E+05 1.3530E+05 
 WOA 5.0662E+04 3.7829E+05 1.8059E+05 8.3126E+04 
 PSO 1.5925E+03 9.5824E+06 5.4620E+05 1.8268E+06 
 GWO 7.8369E+04 8.4803E+06 1.5140E+06 2.0845E+06 
CEC14 SSA 3.5322E+04 8.2217E+06 3.0115E+06 2.5046E+06 
 LSSA 5.7902E+04 2.2248E+07 3.8198E+06 4.9857E+06 
 RWSSA 1.1365E+04 7.3562E+06 1.4566E+06 1.5586E+06 
 SFSSA 2.3121E+04 2.8287E+06 6.7370E+05 9.1138E+05 
    Continued on next page
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 WOA 1.3757E+05 6.7477E+06 2.4380E+06 1.8938E+06 
 PSO 3.2831E+03 2.2326E+05 4.0684E+04 5.1644E+04 
 GWO 2.2134E+06 9.2189E+07 3.6206E+07 2.9940E+07 
CEC15 SSA 1.0356E+06 1.4523E+08 3.1418E+07 3.3443E+07 
 LSSA 2.2843E+06 1.7469E+08 3.2834E+07 3.9751E+07 
 RWSSA 8.9759E+03 2.0924E+05 4.0391E+04 4.6417E+04 
 SFSSA 7.9633E+03 1.0928E+05 3.4139E+04 2.3208E+04 
 WOA 3.1264E+03 5.0435E+03 4.0121E+03 4.5025E+02 
 PSO 2.7716E+03 4.4881E+03 3.6100E+03 4.3774E+02 
 GWO 3.4807E+03 5.1046E+03 4.2415E+03 4.0586E+02 
CEC16 SSA 4.0091E+02 8.0371E+03 6.0267E+03 1.2376E+03 
 LSSA 3.6845E+03 7.6680E+03 5.2503E+03 1.1298E+03 
 RWSSA 3.3695E+03 6.7598E+03 4.7389E+03 8.0155E+02 
 SFSSA 2.6371E+03 5.6123E+03 4.1412E+03 6.1095E+02 
 WOA 2.2639E+03 3.7306E+03 2.9500E+03 4.0249E+02 
 PSO 1.9820E+03 3.7713E+03 2.6767E+03 3.5289E+02 
 GWO 2.4026E+03 3.4461E+03 2.8943E+03 2.2266E+02 
CEC17 SSA 2.7532E+03 7.3902E+03 3.8777E+03 1.1258E+03 
 LSSA 2.4803E+03 7.6671E+03 3.8078E+03 1.0714E+03 
 RWSSA 2.5019E+03 3.7998E+03 3.0277E+03 3.3862E+02 
 SFSSA 2.0810E+03 3.8917E+03 2.9427E+03 3.5424E+02 
 WOA 7.0970E+06 3.7106E+07 1.8883E+07 6.2165E+06 
 PSO 2.0422E+04 1.2149E+08 8.5440E+06 2.3813E+07 
 GWO 1.9150E+06 2.1404E+07 6.3796E+06 4.8690E+06 
CEC18 SSA 7.8234E+05 9.4066E+07 2.2694E+07 2.2292E+07 
 LSSA 8.3272E+04 8.5018E+07 3.2863E+07 2.5715E+07 
 RWSSA 4.4480E+05 4.1271E+07 7.4085E+06 9.5895E+06 
 SFSSA 6.6567E+04 1.9085E+07 1.3256E+06 3.5213E+06 
 WOA 2.8857E+06 6.4733E+07 1.6375E+07 1.6482E+07 
 PSO 2.5814E+03 3.9357E+07 1.5107E+06 7.1607E+06 
 GWO 1.8073E+07 9.1196E+08 3.2895E+08 2.7275E+08 
CEC19 SSA 2.1711E+06 2.0490E+08 6.4781E+07 6.0504E+07 
 LSSA 2.7389E+06 3.3330E+08 7.6435E+07 7.8595E+07 
 RWSSA 5.5444E+05 2.5059E+07 7.3089E+06 6.3931E+06 
 SFSSA 3.5845E+05 3.4345E+06 1.3812E+06 6.7722E+05 
 WOA 2.4662E+03 3.2179E+03 2.9234E+03 2.5149E+02 
 PSO 2.3785E+03 3.2240E+03 2.8122E+03 2.6080E+02 
 GWO 2.9581E+03 3.5206E+03 3.2262E+03 1.5488E+02 
CEC20 SSA 2.5138E+03 3.7448E+03 3.0875E+03 2.9184E+02 
 LSSA 2.4958E+03 3.5353E+03 3.1315E+03 2.7335E+02 
 RWSSA 2.6617E+03 3.4742E+03 3.0084E+03 2.3022E+02 
 SFSSA 2.3365E+03 3.4670E+03 2.8643E+03 2.3474E+02 
 WOA 2.5482E+03 2.7706E+03 2.6689E+03 5.8748E+01 
 PSO 2.4558E+03 2.6587E+03 2.5703E+03 5.5015E+01 
 GWO 2.5558E+03 2.7106E+03 2.6219E+03 3.9311E+01 
CEC21 SSA 2.6194E+03 2.8718E+03 2.7307E+03 6.4110E+01 
 LSSA 2.5721E+03 2.9118E+03 2.7242E+03 7.6103E+01 
 RWSSA 2.5326E+03 2.8997E+03 2.6544E+03 7.5969E+01 
 SFSSA 2.4379E+03 2.8096E+03 2.6090E+03 8.1962E+01 
    Continued on next page



11443 

Mathematical Biosciences and Engineering  Volume 19, Issue 11, 11422-11452. 

Function Algorithm Best Worst Avg Std 
 WOA 3.0037E+03 1.0764E+04 9.0500E+03 1.3383E+03 
 PSO 3.3426E+03 9.4255E+03 7.3984E+03 1.6419E+03 
 GWO 9.1774E+03 1.0459E+04 9.9565E+03 3.1975E+02 
CEC22 SSA 6.5866E+03 1.1366E+04 9.5136E+03 9.2080E+02 
 LSSA 7.4379E+03 1.0950E+04 9.4340E+03 7.9417E+02 
 RWSSA 6.6923E+03 9.6738E+03 8.1096E+03 7.4020E+02 
 SFSSA 3.9904E+03 8.4394E+03 7.3827E+03 8.4227E+02 
 WOA 2.9939E+03 3.3839E+03 3.1794E+03 1.0291E+02 
 PSO 3.0358E+03 3.8355E+03 3.3797E+03 1.7538E+02 
 GWO 3.0399E+03 3.2762E+03 3.1471E+03 6.3925E+01 
CEC23 SSA 3.2044E+03 3.7693E+03 3.4968E+03 1.3681E+02 
 LSSA 3.1946E+03 3.8172E+03 3.4933E+03 1.6578E+02 
 RWSSA 3.0303E+03 3.5910E+03 3.2611E+03 1.2676E+02 
 SFSSA 3.0625E+03 3.6956E+03 3.3363E+03 1.5722E+02 
 WOA 3.0561E+03 3.5102E+03 3.2468E+03 1.0762E+02 
 PSO 3.2471E+03 4.0426E+03 3.6049E+03 2.1511E+02 
 GWO 3.2508E+03 3.3864E+03 3.3208E+03 3.6121E+01 
CEC24 SSA 3.2254E+03 3.8271E+03 3.5845E+03 1.4337E+02 
 LSSA 3.3988E+03 3.8229E+03 3.6026E+03 1.2300E+02 
 RWSSA 3.1119E+03 3.8120E+03 3.3956E+03 1.8922E+02 
 SFSSA 3.1794E+03 3.8721E+03 3.4689E+03 1.5825E+02 
 WOA 3.0859E+03 3.4702E+03 3.2783E+03 8.4256E+01 
 PSO 3.1733E+03 3.6108E+03 3.3353E+03 1.3725E+02 
 GWO 3.4469E+03 5.2923E+03 4.6194E+03 4.1625E+02 
CEC25 SSA 3.5785E+03 4.6485E+03 3.8684E+03 2.0939E+02 
 LSSA 3.3542E+03 4.4255E+03 3.8720E+03 2.8369E+02 
 RWSSA 3.0112E+03 3.2405E+03 3.1236E+03 5.7441E+01 
 SFSSA 2.9810E+03 3.0912E+03 3.0276E+03 2.7508E+01 
 WOA 7.1084E+03 1.0489E+04 8.2705E+03 8.3083E+02 
 PSO 4.5568E+03 1.1258E+04 7.9573E+03 1.3161E+03 
 GWO 6.6851E+03 8.6786E+03 7.3898E+03 4.5071E+02 
CEC26 SSA 8.6313E+03 1.3566E+04 1.1127E+04 1.1011E+03 
 LSSA 8.2141E+03 1.4402E+04 1.1398E+04 1.5443E+03 
 RWSSA 4.0501E+03 1.1356E+04 9.1046E+03 1.5077E+03 
 SFSSA 7.0392E+03 1.1301E+04 9.1244E+03 1.0243E+03 
 WOA 3.3013E+03 3.6408E+03 3.4241E+03 9.6885E+01 
 PSO 3.3092E+03 4.1896E+03 3.6326E+03 2.4144E+02 
 GWO 3.5890E+03 4.2465E+03 3.8196E+03 1.5833E+02 
CEC27 SSA 3.4560E+03 5.7074E+03 4.2390E+03 4.9111E+02 
 LSSA 3.3879E+03 5.4298E+03 4.2099E+03 4.9514E+02 
 RWSSA 3.4139E+03 4.2164E+03 3.7464E+03 1.9621E+02 
 SFSSA 3.3365E+03 4.6083E+03 3.7666E+03 3.2408E+02 
 WOA 3.5712E+03 4.3275E+03 3.8268E+03 1.8867E+02 
 PSO 3.5717E+03 4.6722E+03 3.9758E+03 3.0743E+02 
 GWO 3.9231E+03 6.3763E+03 5.1959E+03 5.9414E+02 
CEC28 SSA 4.6268E+03 6.2573E+03 5.1811E+03 3.7857E+02 
 LSSA 4.3060E+03 7.2419E+03 5.4124E+03 6.1770E+02 
 RWSSA 3.4884E+03 4.3626E+03 3.7544E+03 1.7331E+02 
 SFSSA 3.3171E+03 5.0410E+03 3.7163E+03 4.9261E+02 
    Continued on next page
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 WOA 4.1174E+03 5.5934E+03 4.8218E+03 3.1612E+02 
 PSO 4.2572E+03 7.5296E+03 5.3141E+03 6.8721E+02 
 GWO 4.5146E+03 5.7236E+03 5.0086E+03 2.7854E+02 
CEC29 SSA 5.1787E+03 1.0407E+04 7.1945E+03 1.3815E+03 
 LSSA 5.4806E+03 1.2326E+04 7.6982E+03 1.7367E+03 
 RWSSA 4.8077E+03 8.4112E+03 6.1623E+03 8.8124E+02 
 SFSSA 4.6946E+03 7.4922E+03 5.7552E+03 6.3070E+02 

      

     

      

Figure 7. CEC2017 Function average convergence curve. 



11445 

Mathematical Biosciences and Engineering  Volume 19, Issue 11, 11422-11452. 

The convergence curves for SFSSA and the aforementioned comparative method are presented 
in order to show the convergence and stability of the revised approach. The Figure 7 shows that SFSSA 
has strong search ability, converges quickly in the early stage, and maintains the advantage of 
continuous search in the later stage, demonstrating that Tent chaos improves population diversity and 
expands the search space. SFSSA uses the improved positive cosine algorithm to make the algorithm 
compensate for the problem that the original algorithm falls into local optimum and improves the 
convergence accuracy of the algorithm; firefly is used to prove that Tent chaos improves population 
diversity and increases the search space. In a nutshell, SFSSA outperforms other algorithms in terms 
of optimization performance, has strong generality and efficiency, and can handle some complex 
optimization tasks. 

6. Application of SFSSA in emergency location problems 

6.1. Background analysis and parameter setting 

When facing sudden natural disasters, how to protect people's living materials becomes a critical 
issue, and the government needs to make emergency plans immediately. Generally, temporary relief 
materials reserve centers to place relief materials from all over the country are open to solving the 
problem of transporting relief materials to each demand point in a reasonable way. 

City A in a disaster situation is taken as a case study. There are 8 alternative locations of eligible 
emergency material storage centers in city A, suitable ones should be selected from these 8 alternative 
centers as emergency material distribution centers, serving 20 demand points in the city, to minimize 
the total construction cost. The corresponding location coordinates of 8 alternative centers, 20 demand 
points, the fixed construction cost, and the quantity of material demand for each demand point are 
shown in Tables 10 and 11. The assumptions made in this paper are listed as follows. 

1) The selected emergency material distribution center needs to meet the demand of the demand 
point.  

2) The emergency material distribution center can only be selected among the alternative 
locations.  

3) One demand point should only be served by one distribution center.  
4) The fixed construction cost of each alternative center is given.  
5) The emergency material distribution center has the maximum capacity constraint.  
6) The transportation cost is proportional to the transportation volume. 
The parameter symbols and their meanings are listed as follows: 
𝑀: number of alternative centers for emergency supplies. 
𝑁: number of demand points. 
𝑑௝: the amount of demand at each demand point j. 
𝑝: number of emergency material distribution centers to open. 
𝑐𝑎𝑝௜: capacity of distribution center 𝑖. 
𝑥௜௝: transportation volume from distribution center 𝑖 to demand point j. 
𝑡௜௝: transportation cost from distribution center 𝑖 to demand point j. 
𝑦௜: 0-1 variable, 𝑦௜=1 indicates that distribution center 𝑖 is selected, otherwise, 𝑦௜=0. 

𝐶௜: fixed cost of emergency material distribution center construction. 
Based on the above assumptions, the objective is to achieve the minimum cost under the 
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constraint of maximum capacity and satisfy contingency requirements. The mathematical model is 
formulated as follows: 

 𝑚𝑖𝑛𝑧 ൌ ∑ ∑ 𝑥௜௝𝑡௜௝
ே
௝ୀଵ

ெ
௜ୀଵ ൅ ∑ 𝑦௜

ெ
௜ୀଵ 𝐶௜                       (13) 

Subject to: 

∑ 𝑥௜௝௜ୀଵ ൒  𝑑௝, 𝑗 ൌ 1,2, ⋯ 𝑛                           (14) 

∑ 𝑦௜௜ୀଵ ൌ 𝑝                                 (15) 

∑ 𝑑௝𝑦௜௜ୀଵ ൑  𝑐𝑎𝑝௜, 𝑖 ൌ 1,2, ⋯ 𝑚                           (16) 

𝑥௜௝ ൒ 0, 𝑖 ൌ 1,2, ⋯ 𝑚; 𝑗 ൌ 1,2, ⋯ 𝑛                           (17) 

𝑦௜ ൒ 0, 𝑖 ൌ 1,2, ⋯ 𝑚                           (18) 

Equation (13) represents the objective function, which is seeking the minimum fixed construction 
cost and total transportation cost of the emergency material distribution center. Equation (14) indicates 
that the selected emergency distribution center can meet demand. Equation (15) represents selecting p 
centers from M alternatives as emergency materials distribution centers. Equation (16) is to ensure that 
alternative centers do not exceed their capacity limit. Equations (17) and (18) indicate the range of 
values of the variables. 

Table 10. Information on alternative centers. 

Alternative center Position coordinates (X, Y) Construction cost (yuan) 
1 (82,12) 35,037 
2 (24,78) 38,357 
3 (21,35) 37,170 
4 (88,60) 38,198 
5 (76,36) 33,320 
6 (75,74) 32,723 
7 (43,23) 36,293 
8 (32,62) 38,021 

6.2. Results analysis 

The improved SFSSA is chosen to compare with the original SSA for the emergency siting 
problem in this study because to the comparative findings of the aforementioned methods. The 
aforementioned emergency material distribution center location model was resolved by multiple 
experimental simulations using MATLAB software to demonstrate the benefits of SFSSA over SSA. 
Table 12 displays the SASSA and SSA parameters. The results of the optimization comparison between 
SFSSA and SSA for the emergency distribution center location problem are displayed in Table 13. 
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Table 11. Information on demand points. 

Demand point Position coordinates (X,Y) Material requirements (box) 

1 (75, 25) 103 

2 (68, 14) 123 

3 (92, 31) 113 

4 (28, 25) 142 

5 (83, 78) 173 

6 (12, 41) 176 

7 (64, 54) 113 

8 (43, 45) 181 

9 (71, 82) 103 

10 (73, 68) 165 

11 (15, 23) 102 

12 (51, 23) 141 

13 (43, 55) 149 

14 (82, 41) 181 

15 (58, 18) 157 

16 (39, 17) 176 

17 (33, 83) 118 

18 (52, 55) 191 

19 (58, 35) 179 

20 (21, 52) 137 

Table 12. Parameter setting. 

Parameters SFSSA SSA 

Population number 5000 5000 

iteration number 100 100 

ST 0.8 0.8 

PD 0.2 0.2 

SD 0.1 0.1 

𝜔௠௔௫ 1.0 — 

𝜔௠௜௡ 0.4 — 

Analysis drawn from comparison results in Table 13 is clear and understandable. Since the 
location results calculated by both algorithms are the same, so is the fixed construction cost, with a 
total of RMB 140,357. However, the demand points served by each distribution center are different, 
which leads to differences in transportation costs. The transportation cost calculated by SFSSA is RMB 
47,712.0915, while that calculated by SSA is much larger, which is RMB 51,707.7721. It can be 
concluded that the emergency material transportation cost is less calculated by SFSSA than SSA, 
which proves that SFSSA has better feasibility than SSA. 
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Table 13. Comparison of location results. 

Algorithm 
No. of  
distribution center 

Demand point 
Fixed cost 
(yuan) 

Transportation cost 
(yuan) 

SFSSA 

5 1, 2, 3, 7, 14, 15 

140,357 47,712.0915 
6 5, 9, 10 

7 4, 8, 11, 12, 16, 19 

8 6, 13, 17, 18, 20 

SSA 

5 1, 2, 3, 8, 14, 15 

140,357 51,707.7721 
6 5, 9, 10 

7 4, 7, 11, 12, 16, 19 

8 6, 13, 17, 18, 20 

Figure 8 shows the routes for the optimal location scheme for SFSSA and SSA. 

     

Figure 8. Route for SFSSA and SSA optimal location solution. 

Figure 8 illustrates how distribution center No. 5’s routes for distributing emergency supplies 
change between SFSSA and SSA. There are 1, 2, 3, 7, 14 and 15 demand points in the No. 5 distribution 
for SFSSA, whereas there are 1, 2, 3, 8, 14 and 15 demand points in the No. 5 distribution for SSA. 
The distinction is that Nos. 7 and 8 have different demand point distributions. The improved sine-
cosine method used in this research helps the algorithm avoid running into the optimum solution 
problem up front, and firefly perturbation is used to boost the original algorithm’s capacity to do 
optimal searches. Figure 5 shows how the algorithm’s search capability has improved for the demand 
point locations of distribution centers 5 and 7 and 8. It is also clear from the figure that SFSSA’s 
optimal site distribution solution is more effective than SSA’s.  

Figure 9 shows the convergence plots of SFSSA and SSA in the optimal location schemes. 
SFSSA and SSA optimal values of 1.8807e+05 and 1.9206e+05, respectively, were obtained from 

the optimal outcomes of alternative center siting ran on MATLAB, demonstrating that the SFSSA 
approach surpasses the SSA algorithm. Tent chaos perturbation improves the algorithm’s global search 
ability, as does enhancing the positive cosine in the discoverer position update, which improves the 
algorithm’s search accuracy and speeds up the algorithm’s convergence. The convergence graph in 
Figure 9 clearly shows that the SFSSA method converges quicker and has higher convergence accuracy 
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than the SSA approach. As a consequence, the SFSSA strategy proposed in this study is more 
practical and successful than the SSA approach in the application of the emergency distribution 
center location problem. 

     

Figure 9. SFSSA and SSA convergence curves. 

7. Conclusions 

This paper proposes a sparrow search algorithm based on sine cosine and firefly perturbation. In 
the proposed algorithm, the diversity of the original population is optimized through Tent mapping 
initializing. Then the sine cosine algorithm and random inertia weights are invoked to update the 
discoverer position to avoid the algorithm falling into the optimum, and the convergence accuracy of 
the algorithm is improved. Finally, the firefly perturbation strategy is introduced to bring all sparrows 
closer to the optimal position and improve the optimal solution of the algorithm.  

To sum up, SFSSA is shown to be more practical and effective when compared with four 
algorithms, namely WOA, PSO, GWO, and SSA, on 13 benchmark test functions and the Wilcoxon 
rank-sum test. Additionally, the above algorithms are contrasted in the CEC 2017 test function to 
further confirm the optimization performance of the algorithm when the optimal solution is not 0. In 
order to further demonstrate the viability of the SFSSA algorithm on real-world issues, the article's 
conclusion involves developing a mathematical model for the placement of emergency material 
distribution centers. In order to address real-world issues, future studies may look into expanding 
SFSSA to additional domains. 
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