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Abstract: In this paper, the prescribed-time stabilization is studied for stochastic high-order nonlinear
systems. Different from the previous research results on stochastic high-order nonlinear systems where
only asymptotic stabilization or finite-time stabilization is considered, this paper proposes a new design
to achieve stabilization in the prescribed-time. Specifically, the designed controller can ensure that the
closed-loop system has an almost surely unique strong solution and the equilibrium of the closed-loop
system is prescribed-time mean-square stable. The design method is verified by an example.
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1. Introduction

Stochastic nonlinear control is a hot topic because of its wide application in economic and engi-
neering fields. The pioneer work is [1–8]. Specifically, [1–3] propose designs with quadratic Lyapunov
functions coupled with weighting functions and [4–8] develop designs with quartic Lyapunov function,
which are further developed by [9–12]. Recently, a class of stochastic systems (SSs) whose Jacobian
linearizations may have unstable modes, has received much attention. Such systems are also called
stochastic high-order nonlinear systems (SHONSs), which include a class of stochastic benchmark me-
chanical systems [13] as a special case. In this direction, [14] studies the state-feedback control with
stochastic inverse dynamics; [15] develops a stochastic homogeneous domination method, which com-
pletely relaxes the order restriction required in [13], and investigates the output-feedback stabilization
for SHONSs with unmeasurable states; [16] investigates the output-feedback tracking problem; [17]
studies the adaptive state-feedback design for state-constrained systems. It should be emphasized
that [13–17], only achieve stabilization in asymptotic sense (as time goes to infinity). However, many
real applications appeals for prescribed-time stabilization, which permits the worker to prescribe the
convergence times in advance.

For the prescribed-time control, [18,19] design time-varying feedback to solve the regulation prob-
lems of normal-form nonlinear systems; [20] considers networked multi-agent systems; [21,22] inves-
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tigates the prescribed-time design for linear systems in controllable canonical form; [23] designs the
output-feedback controller for uncertain nonlinear strict-feedback-like systems. It should be noted that
the results in [18–23] don’t consider stochastic noise. For SSs, [24] is the first paper to address the
stochastic nonlinear inverse optimality and prescribed-time stabilization problems; The control effort
is further reduced in [25]; Recently, [26] studies the prescribed-time output-feedback for SSs with-
out/with sensor uncertainty. It should be noted that [24–26] don’t consider SHONSs. From practical
applications, it is important to solves the prescribed-time control problem of SHONSs since it permits
the worker to set the convergence times in advance.

Motivated by the above discussions, this paper studies the prescribed-time design for SSs with
high-order structure. The contributions include:

1) This paper proposes new prescribed-time design for SHONSs. Since Jacobian linearizations of
such a system possibly have unstable modes, all the prescribed-time designs in [24–26] are invalid.
New design and analysis tools should be developed.

2) This paper develops a more practical design than those in [13–17]. Different from the designs
in [13–17] where only asymptotic stabilization can be achieved, the design in this paper can guarantee
that the closed-loop system is prescribed-time mean-square stable, which is superior to those in [13–17]
since it permits the worker to prescribe the convergence times in advance without considering the initial
conditions.

The remainder of this paper is organized as follows. In Section 2, the problem is formulated. In
Section 3, the controller is designed and the stability analysis is given. Section 4 uses an example to
explain the validity of the prescribed-time design. The conclusions are collected in Section 6.

2. Problem formulation

Consider the following class of SHONSs

dx1 = xp
2dt + ϕT

1 (x)dω, (2.1)
dx2 = udt + ϕT

2 (x)dω, (2.2)

where x = (x1, x2)T ∈ R2 and u ∈ R are the system state and control input. p ≥ 1 is an odd integral
number. The functions ϕi : R2 → Rm are smooth in x with ϕi(0) = 0, i = 1, 2. ω is an m-dimensional
independent standard Wiener process.

The assumptions we need are as follows.
Assumption 1. There is a constant c > 0 such that

|ϕ1(x)| ≤ c|x1|
p+1

2 , (2.3)

|ϕ2(x)| ≤ c(|x1|
p+1

2 + |x2|
p+1

2 ). (2.4)

We introduce the function:

µ(t) =

(
T

t0 + T − t

)m

, t ∈ [t0, t0 + T ), (2.5)

where m ≥ 2 is an integral number. Obviously, the function µ(t) is monotonically increasing on
[t0, t0 + T ) with µ(t0) = 1 and lim

t→t0+T
µ(t) = +∞.
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Our control goal is to design a prescribed-time state-feedback controller, which guarantees that the
closed-loop system has an almost surely unique strong solution and is prescribed-time mean-square
stable.

3. Controller design and stability analysis

In the following, we design a time-varying controller for system (2.1)–(2.2) step by step.
Step 1. In this step, our goal is to design the virtual controller x∗2.
Define V1 = 1

4ξ
4
1, ξ1 = x1, from (2.1), (2.3) and (2.5) we have

LV1(ξ1) = ξ3
1 xp

2 +
3
2
ξ2

1 |ϕ1|
2

≤ ξ3
1 xp

2 +
3
2

c2ξ
p+3
1

≤ ξ3
1(xp

2 − x∗p2 ) + ξ3
1 x∗p2 +

3
2

c2µpξ
p+3
1 . (3.1)

Choosing

x∗2 = −µ

(
2 +

3
2

c2
)1/p

ξ1

, −µα1ξ1, (3.2)

which substitutes into (3.1) yields

LV1(ξ1) ≤ −2µpξ
p+3
1 + ξ3

1(xp
2 − x∗p2 ), (3.3)

where α1 = (2 + 3
2c2)1/p.

Step 2. In this step, our goal is to design the actual controller u.
Define ξ2 = xk − x∗2, from (3.2) we get

ξ2 = x2 + µα1ξ1. (3.4)

By using (2.1)–(2.2) and (3.4) we get

dξ2 =

(
u +

m
T
µ1+1/mα1ξ1 + µα1xp

2

)
dt +

(
ϕT

2 + µα1ϕ
T
1

)
dω. (3.5)

We choose the following Lyapunov function

V2(ξ1, ξ2) = V1(ξ1) +
1
4
ξ4

2. (3.6)

It follows from (3.3), (3.5)–(3.6) that

LV2 ≤ −2µpξ
p+3
1 + ξ3

1(xp
2 − x∗p2 ) + ξ3

2

(
u +

m
T
µ1+1/mα1ξ1 + µα1xp

2

)
+

3
2
ξ2

2 |ϕ2 + µα1ϕ1|
2. (3.7)
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By using (3.4) we have

ξ3
1(xp

2 − x∗p2 ) ≤ |ξ1|
3|ξ2|(xp−1

2 + x∗p−1
2 )

≤ |ξ1|
3|ξ2|((β1 + 1)µp−1α

p−1
1 ξ

p−1
1 + β1ξ

p−1
2 )

= (β1 + 1)µp−1α
p−1
1 |ξ1|

p+2|ξ2| + β1|ξ1|
3|ξ2|

p, (3.8)

where

β1 = max{1, 2p−2}. (3.9)

By using Young’s inequality we get

(β1 + 1)µp−1α
p−1
1 |ξ1|

p+2|ξ2| ≤
1
3
µpξ

p+3
1 +

1
3 + p

(
3 + p

3(2 + p)

)−(2+p)

((β1 + 1)αp−1
1 )p+3µ−3ξ

p+3
2 (3.10)

and

β1|ξ1|
3|ξ2|

p ≤
1
3
µpξ

3+p
1 +

p
p + 3

(
3 + p

9

)−3/p

β
(3+p)/p
1 µ−3ξ

p+3
2 . (3.11)

Substituting (3.10)–(3.11) into (3.8) yields

ξ3
1(xp

2 − x∗p2 ) ≤
2
3
µpξ

p+3
1 +

( p
p + 3

(
p + 3

9

)−3/p

β
(p+3)/p
1

+
1

p + 3

(
p + 3

3(p + 2)

)−(p+2)

((β1 + 1)αp−1
1 )p+3

)
µ−3ξ

p+3
2 . (3.12)

From (2.3), (2.4), (3.2) and (3.4) we have

|ϕ2 + µα1ϕ1|
2 ≤ 2|ϕ2|

2 + 2µ2α2
1|ϕ1|

2

≤ 4c2(|x1|
1+p + |x2|

1+p) + 2c2α2
1µ

2|x1|
1+p

≤ β2µ
1+p|ξ1|

p+1 + 4c22p|ξ2|
1+p, (3.13)

where

β2 = 4c2(1 + 2pα
p+1
1 ) + 2c2α2

1. (3.14)

By using (3.13) we get

3
2
ξ2

2 |ϕ2 + µα1ϕ1|
2 ≤

1
3
µpξ

3+p
1 +

( 2
3 + p

(
p + 3

3(1 + p)

)−(1+p)/2

(
3
2
β2)(3+p)/2 + 6c22p

)
µ3(1+p)/2ξ

p+3
2 . (3.15)

It can be inferred from (3.7), (3.12) and (3.15) that

LV2 ≤ −µpξ
p+3
1 + ξ3

2

(
u +

m
T
µ1+1/mα1ξ1 + µα1xp

2

)
+ β3µ

3(p+1)/2ξ
p+3
2 , (3.16)
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where

β3 =
p

3 + p

(
3 + p

9

)−3/p

β
(3+p)/p
1 +

1
3 + p

(
p + 3

3(p + 2)

)−(p+2)

((β1 + 1)αp−1
1 )3+p

+
2

3 + p

(
p + 3

3(1 + p)

)−(1+p)/2

(
3
2
β2)(3+p)/2 + 6c22p. (3.17)

We choose the controller

u = −
m
T
µ1+1/mα1ξ1 − µα1xp

2 − (1 + β3)µ3(p+1)/2ξ
p
2 , (3.18)

then we get

LV2 ≤ −µpξ
p+3
1 − µ3(p+1)/2ξ

p+3
2 . (3.19)

Now, we describe the main stability analysis results for system (2.1)–(2.2).
Theorem 1. For the plant (2.1)–(2.2), if Assumption 1 holds, with the controller (3.18), the follow-

ing conclusions are held.
1) The plant has an almost surely unique strong solution on [t0, t0 + T );
2) The equilibrium at the origin of the plant is prescribed-time mean-square stable with lim

t→t0+T
E|x|2 =

0.
Proof. By using Young’s inequality we get

1
4
µξ4

1 ≤ µpξ
p+3
1 + β4µ

−3, (3.20)

1
4
µξ4

2 ≤ µ3(p+1)/2ξ
p+3
2 + β4µ

−3, (3.21)

where

β4 =
p − 1
p + 3

(
3 + p

4
)−4/(p−1)(

1
4

)(3+p)/(p−1). (3.22)

It can be inferred from (3.19)–(3.21) that

LV2 ≤ −
1
4
µξ4

1 −
1
4
µξ4

2 + 2β4µ
−3

= −µV2 + 2β4µ
−3. (3.23)

From (2.1), (2.2) and (3.18), the local Lipschitz condition is satisfied by the plant. By (3.23) and using
Lemma 1 in [24], the plant has an almost surely unique strong solution on [t0, t0 + T ), which shows that
conclusion 1) is true.

Next, we verify conclusion 2).
For each positive integer k, the first exit time is defined as

ρk = inf{t : t ≥ t0, |x(t)| ≥ k}. (3.24)
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Choosing

V = e
∫ t

t0
µ(s)dsV2. (3.25)

From (3.23) and (3.25) we have

LV = e
∫ t

t0
µ(s)ds(LV2 + µV2) ≤ 2β4µ

−3e
∫ t

t0
µ(s)ds

. (3.26)

By (3.26) and using Dynkin’s formula we get

EV(ρk ∧ t, x(ρk ∧ t)) = Vn(t0, x0) + E
{∫ ρk∧t

t0
LV(x(τ), τ)dτ

}
≤ Vn(t0, x0) + 2β4

∫ t

t0
µ−3e

∫ τ
t0
µ(s)dsdτ. (3.27)

Using Fatou Lemma, from (3.27) we have

EV(t, x) ≤ Vn(t0, x0) + 2β4

∫ t

t0
µ−3e

∫ τ
t0
µ(s)dsdτ, t ∈ [t0, t0 + T ). (3.28)

By using (3.25) and (3.28) we get

EV2 ≤ e−
∫ t

t0
µ(s)ds

(
Vn(t0, x0) + 2β4

∫ t

t0
µ−3e

∫ τ
t0
µ(s)dsdτ

)
, t ∈ [t0, t0 + T ). (3.29)

By using (3.6) and (3.29) we obtain

lim
t→t0+T

E|x|2 = 0. (3.30)

4. A simulation example

Consider the prescribed-time stabilization for the following system

dx1 = x3
2dt + 0.1x2

1dω, (4.1)
dx2 = udt + 0.2x1x2dω, (4.2)

where p1 = 3, p2 = 1. Noting 0.2x1x2 ≤ 0.1(x2
1 + x2

2), Assumption 1 is satisfied.
Choosing

µ(t) =

(
1

1 − t

)2

, t ∈ [0, 1), (4.3)

According to the design method in Section 3, we have

u = −3µ1.5x1 − 1.5µx3
2 − 57µ6(x2 + 1.5µx1)3 (4.4)

In the practical simulation, we select the initial conditions as x1(0) = −6, x2(0) = 5. Figure 1 shows the
responses of (4.1)–(4.4), from which we can obtain that lim

t→t0+T
E|x1|

2 = lim
t→t0+T

E|x2|
2 = 0, which means

that the controller we designed is effective.
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Figure 1. The responses of closed-loop system (4.1)–(4.4).

5. Concluding remarks

This paper proposes a new design method of prescribed-time state-feedback for SHONSs. the
controller we designed can guarantee that the closed-loop system has an almost surely unique strong
solution and the equilibrium at the origin of the closed-loop system is prescribed-time mean-square
stable. The results in this paper are more practical than those in [13–17] since the design in this
paper permits the worker to prescribe the convergence times in advance without considering the initial
conditions.

There are some related problems to investigate, e.g., how to extend the results to multi-agent systems
[27], impulsive systems [28–30] or more general high-order systems [31–34].
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