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Abstract: In this paper, we propose and justify a synthesized version of the tuberculosis transmission
model featuring treatment abandonment. In contrast to other models that account for the treatment
abandonment, our model has only four state variables or classes (susceptible, latent, infectious, and
treated), while people abandoning treatment are not gathered into an additional class. The proposed
model retains the core properties that are highly desirable in epidemiological modeling. Namely, the
disease transmission dynamics is characterized by the basic reproduction number R0, a threshold value
that determines the number of possible steady states and their stability properties. It is shown that
the disease-free equilibrium is globally asymptotically stable (GAS) only if R0 < 1, while a strictly
positive endemic equilibrium exists and is GAS only if R0 > 1. Analysis of the dependence of R0

on the treatment abandonment rate shows that a reduction of the treatment abandonment rate has a
positive effect on the disease incidence and results in avoiding disease-related fatalities.
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1. Introduction

Pulmonary tuberculosis (TB) is a public health problem in many countries worldwide and consti-
tutes one of the leading causes of morbidity and mortality. This infectious disease puts a large number
of people with weakened immune systems at risk, for example, due to the HIV/AIDS or diabetes co-
morbidities, chemo/radio-therapies, transplants, or malnutrition. Also, tuberculosis is a social disease
that mainly affects poor people living in crowded and precarious conditions of big cities or penitentiary
institutions, especially in low- and middle-income countries [1, 2].

Tuberculosis is caused by a species of pathogenic bacteria called mycobacterium tuberculosis or
Koch’s bacilli. The bacteria can attack any part of the body, but usually attack the lungs. This disease
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is transmitted from person to person through microscopic airborne droplets from the cough or sneeze
of a person with an active form of the disease. Thus, a susceptible person can become infected by
inhaling airborne bacilli. Common symptoms of active pulmonary tuberculosis are severe cough (often
with blood in the sputum), chest pain, weakness, fever, poor appetite, and weight loss.

However, people who are infected with TB do not always feel sick. The World Health Organization
[3] estimates that a quarter of the world’s population has tuberculosis in a “latent” or inactive form;
that is, these people are carriers of inactive bacilli, they have no symptoms of the disease, and they
cannot transmit the infection to others. However, inactive bacilli can regain their vitality together with
replication capacity and cause an active form of the disease when the immune response of a latent
person is disturbed or altered.

A noticeable epidemiological feature of tuberculosis is its long period of latency that may last from
several weeks to a lifetime. On the one hand, people with a latent form of tuberculosis can last in
this state for many years without actively developing the disease, as long as their immune system does
not present alterations. On the other hand, latent people whose immune systems are weakened due
to malnutrition or comorbidities (influenza, pneumonia, COVID19, kidney disease, diabetes, etc.) or
those receiving immunosuppressive treatments for HIV, cancer, or transplants are at much higher risk
of developing an active form of tuberculosis.

The active form of tuberculosis can be diagnosed with the sputum smear test (also known as acid
fast bacillus testing—AFB+) that detects the presence of active bacilli, whereas the latent form of tuber-
culosis can be detected by the tuberculin skin test or the measurement of interferon-γ in whole blood
(also known as interferon-gamma release assays—IGRAs) [4]. Both forms of tuberculosis are treat-
able by antibiotics, although the treatment periods are rather long (6–12 months) and require prolonged
medical monitoring [5].

Most patients may recover from a primary active TB infection without further manifestation of the
disease if they strictly follow all the guidelines of medical treatment. Even though the drugs that are
widely used nowadays for standard TB treatment (namely, isoniazid and rifampicin) are nominally
characterized as “sterilizing”, several studies question this characterization and manifest that a patient
does not always achieve true sterilization after completing treatment [6, 7]. Besides, total bacilli exter-
mination cannot be reliably confirmed by existing test methods, such as blood and sputum markers [8].

Moreover, low- and middle-income countries lack the infrastructure, funding, or capacity to diag-
nose and treat patients with the latent form of tuberculosis. Therefore, TB control in these countries is
centered on preventing latent TB infections from developing into active disease and on diagnosing and
treating patients with the active form of the disease [9, 10].

Several studies (see e.g., [11, 12] and references therein) pointed out that treatment non-adherence
and abandonment mostly occurs due to the patient-related factors (such as low income, unemployment,
illiteracy), to the health services (reduced availability, intermittent access, and bureaucratic structure),
and to the characteristics of the treatment itself (long duration and possible adverse effects). To prevent
the spread of the contagious (or active) form of the disease it is important to ensure that all patients
take their anti-tuberculosis medications exactly as prescribed and do not abandon the treatment before
its full completion. Notably, the patients who do not follow the strict guidelines for treatment or those
who abandon treatment before completion usually remain infectious and develop the so-called “drug-
resistant” form of active tuberculosis. Moreover, people with active TB not receiving proper medical
treatment may die from this infectious disease.
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This paper aims to propose and analyze a lower-dimensional model of TB transmission that ac-
counts for treatment abandonment. Among a wide variety of mathematical models describing the
dynamics of tuberculosis transmission, there are only a few that are deliberately kept mathematically
tractable and apt for theoretical analysis*. The prime feature of such compartmental models is the rela-
tively small number of state variables (four or fewer) that denote the disjoint classes compounding the
target human population. In particular, there are several models where the human population is defined
by the sum of four classes or compartments [14–18]: Susceptible and latently infected people (they are
non-infectious), actively infected people (they are fully infectious), and people undergoing treatment
(they are partially infectious). However, these models do not account for patients who abandon the
treatment before its completion while the treatment abandonment enhances the disease spread.

On the other hand, more sophisticated models of higher dimension where all individuals who aban-
don treatment are gathered in an additional class or compartment have been proposed and studied dur-
ing the last decade [19–23]. These and, possibly, other studies have disclosed through mathematical
modeling the adverse effects of treatment abandonment on the disease persistence and spread.

It is worth mentioning that the four-dimensional model presented in [24] includes two classes of
infectious people, those who receive treatment (partially infectious) and those who refuse (“lost to
follow up” cases or fully infectious), along with susceptible and latent classes (non-infectious). This
is an interesting formulation though it is based on a strong assumption that does not seem realistic.
Namely, all individuals are timely identified as latently or actively infected, then they are immediately
offered to start treatment, and then they either accept or refuse that offer. In other words, people with
identified TB infections either start being treated or become “lost to follow up” cases without starting
treatment. In contrast to the model presented in [24], the model proposed in this work assumes that all
identified carriers of the active bacilli start being treated. Afterward, they either complete the treatment
and become non-infectious or abandon the treatment before completion and become infectious.

The proposed model is presented in Section 2, while its basic reproductive number and its possible
equilibria are derived in Section 3. Section 4 is centered on establishing the properties of global
stability for two possible equilibria of the proposed model. The role of the treatment abandonment rate
is then illustrated in Section 5 by examining two scenarios, with and without treatment abandonment.
Finally, Section 6 provides conclusions of our work.

2. Model for the TB transmission

In this section, we propose a four-dimensional model that incorporates a group of people with an
active form of the disease, who start the anti-tuberculosis treatment and then quit without completing
it. The distinctive feature of this model is that such people are not separated into an additional class.
Thus, our model has only four state variables, namely:

• S (t) – the number of susceptible individuals at the moment t ≥ 0 who are bacillus-free.
• L(t) – the number of latently infected individuals at the moment t ≥ 0 who are carriers of inactive

bacilli but they have no symptoms of the disease and cannot transmit it to the others (i.e., they are
non-infectious).
• I(t) – the number of actively infected individuals at the moment t ≥ 0 who have not commenced

the treatment yet; they are carriers of active bacilli, have symptoms of the disease, and are fully
*A more detailed survey of simplest models describing the transmission of tuberculosis has been performed in [13].
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capable of transmitting it to the others (i.e., they are fully infectious).
• T (t) – the number of individuals undergoing treatment at the moment t ≥ 0; they are carriers of

active bacilli but their infectiousness is reduced by the treatment (i.e., they are partially infec-
tious).

In this model, we assume that all four classes are homogeneously mixed and the disease transmis-
sion depends on the frequency of respiratory contacts between the bacillus-free individuals and those
carrying active bacilli.

Thus, the total population at each moment t ≥ 0 denoted by

N(t) := S (t) + L(t) + I(t) + T (t). (2.1)

The interaction between four disjoint classes S (t), L(t), I(t), and T (t) is described by the following ODE
system 

dS
dt
= Λ − β(I + ϕT )S − µS

dL
dt
= (1 − p)β(I + ϕT )S + δT − ϵL − µL

dI
dt
= pβ(I + ϕT )S + ϵL + kT − γI − αI − µI

dT
dt
= γI − δT − kT − µT

(2.2a)

(2.2b)

(2.2c)

(2.2d)

with nonnegative initial conditions

S (0) = S 0, L(0) = L0, I(0) = I0, T (0) = T0. (2.3)

It is assumed that all newborn individuals are bacillus-free, they belong to the S -class, and they are
recruited at the constant rate Λ > 0 (see Eq (2.2a) above). Notably, even though the immunological
changes during pregnancy may activate the TB infection in pregnant women with the latent form of the
disease, there is no evidence of TB vertical transmission [25]. The average rate of natural mortality of
all human individuals is denoted by µ > 0.

The disease transmission is modeled by the mass action incidence through the term β(I+ϕT ) in Eqs
(2.2a)–(2.2c). Here, β > 0 denotes the so-called per capita rate of effective respiratory contacts with
infectious people (i.e., those leading to the contagion) and can be viewed as

β⇛

(
No. of contacts per person per unit time

)
×

(
probability of contagion

)
Total population size

(
≈ Λ/µ

) .

When a susceptible person inhales active bacilli, he/she may either develop an active form of the
disease with probability p ∈ (0, 1) or progress to the class of latently infected people L(t) with proba-
bility (1 − p) (cf. the first terms in Eqs (2.2b)–(2.2c)). The probability p of developing an active form
of the disease is related to the immune status of the human host that receives active bacilli. Thus, peo-
ple with a weakened immune response due to comorbidities (influenza, pneumonia, COVID19, kidney
disease, diabetes, etc.), malnutrition, or immunosuppressive treatments for HIV, cancer, or transplants
are at much higher risk of developing an active form of tuberculosis.
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Figure 1. Flow diagram of the TB transmission model (2.2) .

Table 1. Parameters of the model (2.2) .

Parameter Description Unit
Λ Recruitment of human individuals person × time−1

µ Natural mortality rate time−1

β TB transmission rate (person × time)−1

ϕ Reduction of the infectiousness by treatment dimensionless
p Fraction of fast infections dimensionless
ϵ Rate of slow infection development time−1

δ Rate of the treatment completion time−1

γ Rate of screening/recruitment for treatment time−1

α Disease-induced mortality rate time−1

k Rate of the treatment abandonment time−1

Susceptible people may become infected through respiratory contacts with either fully infectious
people (from the class I(t)) or partially infectious people (from the class T (t)). It has been shown
that treatment reduces, but does not fully eliminate, the infectiousness of patients with active forms
of tuberculosis [26]. Therefore, our model (2.2) assumes that people from the T -class are capable
of transmitting the disease at a reduced rate ϕβ, where ϕ ∈ (0, 1) can be viewed as a coefficient of
the infectivity reduction. The latter stays in line with other models describing the transmission of
tuberculosis [27, 28].

Non-infectious people from the class L(t) (who are the carriers of inactive bacilli) may also develop
the active form of the disease when their immune status is changed or altered. Such people progress to
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the class I(t) at the rate ϵ > 0 (see Eqs (2.2b)–(2.2c)). Fully infectious people from the class I(t) are
either recruited for treatment at the rate γ > 0 and then progress to the class T (t) or they are removed
at the disease-induced mortality rate α > 0 (see Eqs (2.2c)–(2.2d)).

Thus, people commencing the treatment become partially infectious and belong to the class T (t).
They remain in this class before occurs one of the following events:

• they complete treatment and then return to the class L(t) at the rate δ > 0, meaning they may still
undergo a TB reactivation or relapse towards an active form of the disease;
• they abandon treatment before completion, progress to the class I(t) at the rate k > 0, and become

fully infectious.

The latter is expressed by Eqs (2.2b)–(2.2d). It is worthwhile to emphasize that here we assume, on
the grounds of arguments presented in [6–8], the non-sterilizing treatment, which is typical for low-
and middle-income countries†. Finally, Figure 1 exhibits the flow diagram of the TB transmission
model (2.2) and Table 1 recaps a detailed description of the model’s parameters.

To showcase the well-posedness of the model (2.2), we formulate the following result.

Proposition 1. For any set of positive initial conditions (2.3), the ODE system (2.2) has a unique
nonnegative solution which is ultimately uniformly bounded for all t ≥ 0.

Proof. First, we observe that the right-hand sides of the ODE system (2.2) are continuous with respect
to the state variables S , L, I, and T. Therefore, this system has a unique solution for any initial condition.

To prove that all trajectories of the system (2.2) engendered by nonnegative initial conditions (2.3)
remain nonnegative for all t ≥ 0, let us rewrite the Eq (2.2a) in the following form:

dS
dt
+ h(t)S = Λ, S (0) = S 0 ≥ 0, where h(t) := µ+β

[
I(t) + ϕT (t)

]
.

Then using the integrating factor, we obtain

d
dt

[
S (t)e

∫ t
0 h(τ)dτ

]
= Λe

∫ t
0 h(τ)dτ.

This yields

S (t)e
∫ t

0 h(τ)dτ − S 0 =

t∫
0

e
∫ s

0 h(τ)dτΛds

and finally leads to

S (t) = e−
∫ t

0 h(τ)dτ
(
S 0 +

t∫
0

e
∫ s

0 h(τ)dτΛds
)
≥ 0 for all t ≥ 0.

A similar rationale can be used to show that L(t) ≥ 0, I(t) ≥ 0, and T (t) ≥ 0 for all t ≥ 0. Thus, the
lower bound for all solutions of the system (2.2) is zero.

†It should be recalled that TB control in low- and middle-income countries is mainly centered on diagnosing and treating active
infections with pharm products bearing low sterilizing effects that are more accessible due to their moderate costs [9, 10].
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To establish the upper bounds, let us consider the equation for the total population (2.1) which is
obtained by summing up the four ODEs of the system (2.2):

dN
dt
= Λ − αI − µN, N(0) = N0 = S 0 + L0 + I0 + T0.

From the above equation, we obtain
dN
dt
≤ Λ − µN.

Thus, if N0 ≤
Λ

µ
, we have

N(t) ≤
(
N0 −

Λ

µ

)
e−µt +

Λ

µ
≤
Λ

µ
.

Otherwise, if N0 >
Λ

µ
, then

dN
dt
< 0 for some t ∈ [0, t̄] meaning that N(t) is decreasing towards

Λ

µ
and

its upper bound is N0. Thus, we conclude that

N(t) ≤ max
{

N0,
Λ

µ

}
for all t ≥ 0.

■

3. Local analysis of the model

A direct consequence of Proposition 1 is the existence of the biologically feasible region

Ω :=
{

(S , L, I,T ) ∈ R4
+ : S + L + I + T ≤

Λ

µ

}
(3.1)

that contains all possible solutions of the system (2.2) engendered by the initial conditions that satisfy

S 0 + L0 + I0 + T0 ≤
Λ

µ
. Therefore, Ω is positively invariant and attracting. The latter implies that Ω

contains all possible equilibria of the system (2.2).
In the present section, we derive the basic reproductive number of the TB transmission model (2.2)

and establish the conditions for existence of possible equilibria of the system (2.2) that are nonnegative
solutions of the following algebraic system:

0 = Λ − βS (I + ϕT ) − µS ,
0 = (1 − p)βS (I + ϕT ) + δT − ϵL − µL,
0 = pβS (I + ϕT ) + ϵL + kT − γI − αI − µI,

0 = γI − δT − kT − µT.

(3.2a)
(3.2b)
(3.2c)
(3.2d)

3.1. Disease-free equilibrium and basic reproductive number R0

The disease-free equilibrium (DFE) of the system (2.2) is the solution of (3.2) with L = I = T = 0,
that is,

E0 :=
(
Λ

µ
, 0, 0, 0

)
.
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It is easy to see that E0 ∈ Ω and this equilibrium always exists.
In epidemiology, one of the core metrics related to the speed of the disease propagation in the human

population is the so-called basic reproductive number R0 > 0. This quantity expresses the expected
number of secondary infections produced by one infectious individual in a completely susceptible
population during his/her entire period of the infectiousness [29].

For compartmental epidemiological models, including the proposed model (2.2), the basic repro-
ductive number R0 can be calculated as the largest eigenvalue (or spectral radius) of the next-generation
matrix evaluated at the disease-free steady state [30]. Following this approach, let us first define the
state sub-vector Y ∈ R3

+ that contains the classes (or compartments) of human hosts carrying the infec-
tion, that is,

Y := (L, I,T ).

Second, we extract three differential equations corresponding to the components of Y from the ODE
system (2.2) and write them in the following form

dY
dt
= F (Y) −V(Y),

whereF (Y) ≥ 0 represents the rate of appearance of new infections (or rate of the disease transmission)
andV(Y) ≥ 0 stands for the rate of the disease transition:

F (Y) :=


(1 − p)(βS I + βϕS T )

p(βS I + βϕS T )
0

 , V(Y) :=


(ϵ + µ)L − δT

(γ + α + µ)I − (kT + ϵL)
(δ + k + µ)T − γI

 .
Third, we evaluate the Jacobian matrices of F (Y) and V(Y) at the disease-free equilibrium E0 =(
Λ

µ
, 0, 0, 0

)
and obtain

F :=
∂F

∂Y

∣∣∣∣∣
E0
=


0 (1 − p)β

Λ

µ
(1 − p)βϕ

Λ

µ

0 pβ
Λ

µ
pβϕ
Λ

µ
0 0 0

 , V :=
∂V

∂Y

∣∣∣∣∣
E0
=


ϵ + µ 0 −δ

−ϵ γ + α + µ −k
0 −γ δ + k + µ

 .
Then the next-generation matrix FV −1 can be written as

FV −1 :=
β
Λ

µ

D


(1 − p)(C + ϕγ)ϵ (1 − p)(C + ϕγ)A (1 − p)(Ak + δϵ + ABϕ)

p(C + ϕγ)ϵ p(C + ϕγ)A p(Ak + δϵ + ABϕ)
0 0 0

 ,
where

A := ϵ + µ > 0, B := γ + α + µ > 0, C := δ + k + µ > 0 (3.3a)

denote the elements of V located on its main diagonal, and

D := det V = (ϵ + µ)
[
(δ + k + µ)(α + µ) + γµ

]
+ γδµ > 0. (3.3b)
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Notably, the characteristic polynomial P(λ) of next-generation matrix FV −1 admits the following
form

P(λ) :=
β

D
Λ

µ
(C + ϕγ)

[
pA + (1 − p)ϵ

]
λ2 − λ3.

Given the structure of P(λ), there are two eigenvalues of FV −1 which are equal to zero, and the other
eigenvalue is exactly the spectral radius of FV −1:

λ =
β

D
Λ

µ
(C + ϕγ)

[
pA + (1 − p)ϵ

]
.

Thus we have

R0 =

β
Λ

µ
(δ + k + µ + ϕγ)

(ϵ + µ)
[
(δ + k + µ)(α + µ) + γµ

]
+ γδµ

[
p(ϵ + µ) + (1 − p)ϵ

]
. (3.4)

The above formula expresses the average number of all secondary infections produced by one infec-
tious individual and, therefore, accounts for the fast and slow development of the disease. Let us recall
that the parameter p denotes the fraction of effective contacts leading to the fast TB infections, while
(1− p) denotes the fraction of effective contacts leading to the slow TB infections. Thus, an alternative
form of the formula (3.4) is

R0 = pR0 f + (1 − p)R0s (3.5)

where

R0 f :=
β
Λ

µ
(δ + k + µ + ϕγ)(ϵ + µ)

(ϵ + µ)
[
(δ + k + µ)(α + µ) + γµ

]
+ γδµ

= β
Λ

µD
(δ + k + µ + ϕγ)(ϵ + µ) (3.6)

denotes the basic reproductive number of fast tuberculosis, and

R0s :=
β
Λ

µ
(δ + k + µ + ϕγ)ϵ

(ϵ + µ)
[
(δ + k + µ)(α + µ) + γµ

]
+ γδµ

= β
Λ

µD
(δ + k + µ + ϕγ)ϵ (3.7)

denotes the basic reproductive number of slow tuberculosis. In the expressions (3.6), (3.7), the positive
quantity D is defined by (3.3b).

The stylized definitions of R0 f and R0 f given by (3.6) and (3.7) will play a notable role in the
process of finding other possible solution(s) to (3.2) as illustrated in the next subsection.

3.2. Existence of the endemic equilibrium

Our goal is to find out whether the algebraic system (3.2) possesses another feasible solution

(S ∗, L∗, I∗,T ∗) ∈ Ω besides the disease-free equilibrium E0 =

(
Λ

µ
, 0, 0, 0

)
.
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First, from the Eqs (3.2d) and (3.2a) we can express T ∗ and S ∗, respectively:

T ∗ =
(

γ

δ + k + µ

)
I∗,

S ∗ =
Λ

β(I∗ + ϕT ∗) + µ
.

(3.8a)

(3.8b)

Then, by plugging (3.8a) into (3.2b) we can also express

L∗ =
[
(1 − p)βS ∗

ϵ + µ
+

(1 − p)βϕγS ∗

(ϵ + µ)(δ + k + µ)
+

γδ

(ϵ + µ)(δ + k + µ)

]
I∗. (3.8c)

Now, in Eq (3.2c) we replace T ∗ and L∗ by their underlying expressions (3.8a) and (3.8c) to obtain

pβS ∗I∗ +
pβϕγS ∗

δ + γ + µ
I∗ + ϵ

[ (1 − p)βS ∗

ϵ + µ
+

(1 − p)βϕγS ∗

(ϵ + µ)(δ + k + µ)
+

γδ

(ϵ + µ)(δ + k + µ)

]
I∗

+
γk

δ + k + µ
I∗ − (γ + α + µ)I∗ = 0.

The above equation has an obvious solution I∗ = 0 which leads us to the disease-free equilibrium

E0 =

(
Λ

µ
, 0, 0, 0

)
, and another possible solution is the one satisfying

[
pβ +

pβϕγ
δ + k + µ

+
(1 − p)βϵ
ϵ + µ

+
(1 − p)βϕγϵ

(ϵ + µ)(δ + k + µ)

]
S ∗

+

[
γδϵ

(ϵ + µ)(δ + k + µ)
+

γk
δ + k + µ

− (γ + α + µ)
]
= 0.

(3.9)

Using the definitions of T ∗ and S ∗ given by Eqs (3.8a) and (3.8b), we have

S ∗ =
Λ(δ + k + µ)

β(δ + k + µ + ϕγ)I∗ + µ(δ + k + µ)
.

Thus, the expression (3.9) may also be written as

P
β(δ + k + µ + ϕγ)I∗ + (δ + k + µ)µ

+ Q = 0, (3.10)

where

P :=
[
pβ +

pβϕγ
δ + k + µ

+
(1 − p)βϵ
ϵ + µ

+
(1 − p)βϕγϵ

(ϵ + µ)(δ + k + µ)

]
Λ(δ + k + µ),

Q :=
γδϵ

(ϵ + µ)(δ + k + µ)
+

γk
δ + k + µ

− (γ + α + µ).

(3.11a)

(3.11b)

Applying the definitions of R0s,R0 f ,R0, and D (see Eqs (3.3b) and (3.5)–(3.7), respectively), let
us try to simplify the expressions for P and Q defined by (3.11). Notably, it follows from (3.11a) that

P = pβΛ(δ + k + µ) +
(1 − p)βϵΛ(δ + k + µ)

ϵ + µ
+ pβϕγΛ +

(1 − p)βϕγϵΛ
ϵ + µ

. (3.12)
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The first and second terms in (3.12) can be rewritten as

pβΛ(δ + k + µ) ·
µ(ϵ + µ)(δ + k + µ + ϕγ)D
µ(ϵ + µ)(δ + k + µ + ϕγ)D

=
pµ(δ + k + µ)DR0 f

(ϵ + µ)(δ + k + µ + ϕγ)

and
(1 − p)βϵΛ(δ + k + µ)

ϵ + µ
·
µ(δ + k + µ + ϕγ)D
µ(δ + k + µ + ϕγ)D

=
(1 − p)µ(δ + k + µ)DR0s

(ϵ + µ)(δ + k + µ + ϕγ)
,

respectively. Hence, their sum renders

µ(δ + k + µ)D
(ϵ + µ)(δ + k + µ + ϕγ)

[
pR0 f + (1 − p)R0s

]
=

µ(δ + k + µ)DR0

(ϵ + µ)(δ + k + µ + ϕγ)
. (3.13)

Similarly, the third and fourth terms in (3.12) can be written as

pβϕγΛ ·
µ(ϵ + µ)(δ + k + µ + ϕγ)D
µ(ϵ + µ)(δ + k + µ + ϕγ)D

=
pµϕγDR0 f

(ϵ + µ)(δ + k + µ + ϕγ)

and
(1 − p)βϕγϵΛ
ϵ + µ

·
µ(δ + k + µ + ϕγ)D
µ(δ + k + µ + ϕγ)D

=
(1 − p)µϕγDR0s

(ϵ + µ)(δ + k + µ + ϕγ)
,

respectively. Hence, their sum renders

µϕγD
(ϵ + µ)(δ + k + µ + ϕγ)

[
pR0 f + (1 − p)R0s

]
=

µϕγDR0

(ϵ + µ)(δ + k + µ + ϕγ)
. (3.14)

Thus, we obtain the final simplified expression for P by summing up (3.13) and (3.14), that is,

P =
µDR0

(ϵ + µ)(δ + k + µ + ϕγ)
[
δ + k + µ + ϕγ

]
=
µDR0

ϵ + µ
.

To simplify the expression for Q defined by (3.11b), we rewrite it as follows:

Q =
1

(ϵ + µ)(δ + k + µ)

[
γδϵ + γk(ϵ + µ) − (γ + α + µ)(δ + k + µ)(ϵ + µ)

]
=

−1
(ϵ + µ)(δ + k + µ)

[
(ϵ + µ)

(
γδ + γk + γµ + (δ + k + µ)(α + µ) − γk

)
− γδϵ

]
=

−1
(ϵ + µ)(δ + k + µ)

[
(ϵ + µ)

[
(δ + k + µ)(α + µ) + γµ

]
+ (ϵ + µ)γδ − γδϵ

]
=

−1
(ϵ + µ)(δ + k + µ)

[
(ϵ + µ)

[
(δ + k + µ)(α + µ) + γµ

]
+ γδµ

]
=

−D
(ϵ + µ)(δ + k + µ)

.

Now we have
P =
µDR0

ϵ + µ
, Q =

−D
(ϵ + µ)(δ + k + µ)

instead of (3.11), and their substitution into (3.10) leads to

µDR0

ϵ + µ
·

1
β(δ + k + µ + ϕγ)I∗ + (δ + k + µ)µ

−
D

(ϵ + µ)(δ + k + µ)
= 0
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or, equivalently,
µR0

β(δ + k + µ + ϕγ)I∗ + (δ + k + µ)µ
=

1
δ + k + µ

that can be rewritten as

µ(δ + k + µ)R0 = β(δ + k + µ + ϕγ)I∗ + µ(δ + k + µ).

Solving this last expression for I∗, we then obtain

I∗ =
µ(δ + k + µ)(R0 − 1)
β(δ + k + µ + ϕγ)

. (3.15)

Finally, we proceed to formulate the following result regarding the existence of a strictly positive
endemic equilibrium E∗ :=

(
S ∗, L∗, I∗,T ∗

)
of the ODE system (2.2).

Proposition 2. When R0 > 1, the ODE system (2.2) has a strictly positive endemic equilibrium E∗ =(
S ∗, L∗, I∗,T ∗

)
∈ Ω defined by

S ∗ =
Λ

µR0
,

L∗ =
[

(1 − p)Λ
(ϵ + µ)R0

+
γδµ

β(ϵ + µ)(δ + k + µ + ϕγ)

]
(R0 − 1),

I∗ =
µ(δ + k + µ)

β(δ + k + µ + ϕγ)
(R0 − 1),

T ∗ =
γµ

β(δ + k + µ + ϕγ)
(R0 − 1).

(3.16a)

(3.16b)

(3.16c)

(3.16d)

Furthermore, E∗ ∈ int Ω if α > 0, and E∗ ∈ ∂Ω if α = 0.

Proof. In the first place, we note that Eq (3.16c) for I∗ has been already derived (see Eq (3.15) above).
The coordinates S ∗, L∗, and T ∗ of E∗ can be obtained by plugging I∗ into Eq (3.8) (the underlying
computations are omitted here). From the form of Eq (3.16), it is easy to conclude that all coordinates

of E∗ are positive whenever R0 > 1. Moreover, S ∗ <
Λ

µ
only if R0 > 1.

To prove that E∗ ∈ Ω, let us define N∗ := S ∗ + L∗ + I∗ + T ∗ > 0 and show that N∗ ≤
Λ

µ
. Notably, S ∗

admits the following form:

S ∗ =
Λ

µ
−
Λ

µR0
(R0 − 1).

Using this form for S ∗ together with the formulas (3.16b)–(3.16d), we have

N∗ =
Λ

µ
+

[
−
Λ

µR0
+

(1 − p)Λ
(ϵ + µ)R0

]
(R0 − 1)

+

[
γδµ

β(ϵ + µ)(δ + k + µ + ϕγ)
+
µ(δ + k + µ + γ)
β(δ + k + µ + ϕγ)

]
(R0 − 1).

(3.17)
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Applying the definition of R0 given by (3.4) together with the identity pµ + ϵ = p(ϵ + µ) + (1 − p)ϵ,
the term inside the square brackets in the first row of (3.17) can be rewritten as

−
Λ

µR0
+

(1 − p)Λ
(ϵ + µ)R0

= −
pµ + ϵ

µ(ϵ + µ)R0
Λ = −

Λ

µ(ϵ + µ)R0

[
p(ϵ + µ) + (1 − p)ϵ

]

= −
Λ
[
p(ϵ + µ) + (1 − p)ϵ

](
γδµ + (ϵ + µ)

[
(δ + k + µ)(α + µ) + γµ

])
µ(ϵ + µ)β

Λ

µ
(δ + k + µ + ϕγ)

[
p(ϵ + µ) + (1 − p)ϵ

]
= −
γδµ + (ϵ + µ)

[
(δ + k + µ)(α + µ) + γµ

]
β(ϵ + µ)(δ + k + µ + ϕγ)

.

Thus, Eq (3.17) becomes

N∗ =
Λ

µ
+
µ(δ + k + µ + γ) − (δ + k + µ)(α + µ) − γµ

β(δ + k + µ + ϕγ)
(R0 − 1)

=
Λ

µ
−
α(δ + k + µ)

β(δ + k + µ + ϕγ)
(R0 − 1) ≤

Λ

µ
.

The above relationship clearly indicates that N∗ <
Λ

µ
when R0 > 1 and α > 0, meaning that E∗ is an

interior equilibrium with respect to Ω. On the other hand, if R0 > 1 and α = 0, then N∗ =
Λ

µ
meaning

that E∗ is a boundary equilibrium with respect to Ω. Indeed, for α = 0 we have that N(t) defined by

(2.1) solves the differential equation
dN
dt
= Λ − µN. ■

4. Stability properties of the TB transmission model

In the previous section, it has been shown that the ODE system (2.2) possesses only one equilibrium
E0 contained in Ω if R0 ≤ 1 and has two equilibria, E0 and E∗ (both contained in Ω) if R0 > 1.

In the present section, we analyze the long-term behavior of the TB transmission system (2.2) and
establish the stability properties of its equilibria. Notably, the basic reproductive number R0 defined
by (3.4) will play the core role in this analysis.

4.1. Stability for the disease-free equilibrium

Let us recall that R0 < 1 implies that one infectious individual produces, on average, less than
one new infection during his/her period of contagiousness. Furthermore, when R0 < 1, the dynamical
system (2.2) has only the disease-free equilibrium E0. Thus, it is expected that

(
S (t), L(t), I(t),T (t)

)
→

E0 as t → ∞ in the “component-by-component” sense, meaning that the disease will eventually die out
regardless of its current state. This intuitive rationale is formalized by the following theorem.

Theorem 1 (Stability properties of the disease-free equilibrium E0). The disease-free equilibrium E0 =(
Λ

µ
, 0, 0, 0

)
is globally asymptotically stable when R0 < 1 and is unstable when R0 > 1.
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Proof. Let us suppose that R0 < 1. Under this condition, the disease-free equilibrium E0 is the unique
steady state of (2.2) and E0 ∈ Ω. To establish global stability of E0 we employ the result proposed
in [31]. First, we write the vector of states as (S , L, I,T ) := (X,Y) where X := S and Y := (L, I,T )
denote the noninfected and infected classes or compartments, respectively. Using this notation, the

disease-free equilibrium becomes E0 = (X∗, 0) where X∗ =
Λ

µ
. Second, the dynamical system (2.2)

should be put into the form 
dX
dt
= F(X,Y),

dY
dt
= G(X,Y), G(X, 0) = 0.

(4.1a)

(4.1b)

The latter is accomplished by defining

F(X,Y) := Λ − βS (I + ϕT ) − µS ,

G(X,Y) :=


(1 − p)βS (I + ϕT ) + δT − (ϵ + µ)L

pβS (I + ϕT ) + ϵL + kT − (γ + α + µ)I
γI − (δ + k + µ)T

 .
(4.2a)

(4.2b)

According to [31], the following conditions must be met to guarantee both local and global stability of
E0 = (X∗, 0):

(H1) X∗ is globally asymptotically stable equilibrium of the system
dX
dt
= F(X, 0).

(H2) If Ω is the set where the model (4.1) makes biological sense, then for all (X,Y) ∈ Ω the function
G(X,Y) in (4.1b) admits the following form:

G(X,Y) = AY − Ĝ(X,Y), with Ĝ(X,Y) ≥ 0 ∀ (X,Y) ∈ Ω

whereA :=
∂G
∂Y

∣∣∣∣∣
E0

is a Metzler matrix (all its off-diagonal elements are nonnegative).

Third, we verify the conditions (H1)–(H2) stated above bearing in mind that Ω ⊂ R4
+ is defined by

(3.1). Notably, for F(X,Y) defined by (4.2a), we have that
dX
dt
= F(X, 0) reduces to a single ODE

dX
dt
= Λ − µX.

This equation possesses a unique equilibrium X∗ =
Λ

µ
, which is globally asymptotically stable for all

X ≥ 0. Thus, condition (H1) holds. Regarding the condition (H2), we observe that (4.2b) can be
written as G(X,Y) = AY − Ĝ(X,Y) withA and Ĝ(X,Y) given by

A =
∂G
∂Y

∣∣∣∣∣
E0
=


−(ϵ + µ) (1 − p)β

Λ

µ
(1 − p)βϕ

Λ

µ
+ δ

ϵ pβ
Λ

µ
− (γ + α + µ) pβϕ

Λ

µ
+ k

0 γ −(δ + k + µ)

 (4.3)
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and

Ĝ(X,Y) =


(1 − p)β(I + ϕT )

(
Λ

µ
− S

)
pβ(I + ϕT )

(
Λ

µ
− S

)
0


, (4.4)

respectively. It is immediate to check via (4.3) thatAi j ≥ 0 when i , j and i, j = 1, 2, 3. Therefore,A
is a Metzler matrix. From (4.4) it also follows that Ĝ(X,Y) ≥ 0 for all (X,Y) ∈ Ω since it holds that

0 ≤ S ≤
Λ

µ
. Thus, both conditions (H1)–(H2) are verified, and this completes the proof that E0 is a

globally asymptotically stable equilibrium of the system (2.2) whenever R0 < 1.
Now, let us suppose that R0 > 1. To prove that E0 is unstable under this condition, it is sufficient

to show that the Jacobian matrix J(E0) of the system (2.2) evaluated at E0 has at least one eigenvalue
with positive real part whenever R0 > 1. Using the positive quantities A, B, and C introduced by the
relationships (3.3a) in Section 3, it is easy to deduce that

J(E0) =



−µ 0 −β
Λ

µ
−βϕ
Λ

µ

0 −A (1 − p)β
Λ

µ
(1 − p)βϕ

Λ

µ
+ δ

0 ϵ pβ
Λ

µ
− B pβϕ

Λ

µ
+ k

0 0 γ −C


.

Let us also recall that

detJ(E0) =
4∏

i=1

λi,

where λi, i = 1, 2, 3, 4 denote four eigenvalues ofJ(E0). Therefore, it suffices to show that detJ(E0) <
0 whenever R0 > 1. Indeed,

detJ(E0) = −µ


−A (1 − p)β

Λ

µ
(1 − p)βϕ

Λ

µ
+ δ

ϵ pβ
Λ

µ
− B pβϕ

Λ

µ
+ k

0 γ −C


= µA det

pβ
Λ

µ
− B pβϕ

Λ

µ
+ k

γ −C

 + µϵ det

(1 − p)β
Λ

µ
(1 − p)βϕ

Λ

µ
+ δ

γ −C


= µA

[
BC −Cpβ

Λ

µ
− γpβϕ

Λ

µ
− kγ

]
+ µϵ

[
−C(1 − p)β

Λ

µ
− γ(1 − p)βϕ

Λ

µ
− γδ

]
= µ

[(
ABC − ϵγδ − kγA

)
− A

(
Cpβ
Λ

µ
+ γpβϕ

Λ

µ

)
− ϵ

(
C(1 − p)β

Λ

µ
+ γ(1 − p)βϕ

Λ

µ

)]
.

In the above expression, we observe that

ABC − ϵγδ − kγA = det V = D
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in virtue of the relationship (3.3b). Furthermore, R0 admits the form

R0 =
β

D
Λ

µ
(C + γϕ)

[
pA + (1 − p)ϵ

]
.

Thus, we have

detJ(E0) = µ
(
D − β

Λ

µ
(C + γϕ)

[
pA + (1 − p)ϵ

])
= µD(1 −R0).

Therefore, detJ(E0) < 0 whenever R0 > 1 and E0 is unstable if R0 > 1. This completes the proof of
Theorem 1. ■

It is worthwhile to note that E0 cannot be a repeller when R0 > 1 since J(E0) possesses at least
one strictly negative eigenvalue (λ1 = −µ < 0). Thus, E0 is a saddle point. In fact, when R0 > 1

the solution of the system (2.2) engendered by the initial conditions (S 0, 0, 0, 0) , E0 with S 0 ,
Λ

µ
converges to E0.

4.2. Stability of the endemic equilibrium

Let us recall that R0 > 1 implies that one infectious individual produces, on average, more than
one new infection during his/her period of contagiousness. It was also shown in Section 3 that, when
R0 > 1, the dynamical system (2.2) has two equilibria: the disease-free equilibrium E0 and the endemic
equilibrium E∗ ∈ Ω whose coordinates are strictly positive and defined by (3.16). Moreover, Theorem
1 has established that the disease-free equilibrium E0 is unstable when R0 > 1 meaning that E0 is
hardly reachable when R0 > 1. Thus it is expected that

(
S (t), L(t), I(t),T (t)

)
→ E∗ as t → ∞ in

the “component-by-component” sense, the endemic equilibrium E∗ can be eventually reached, and the
disease may persist regardless of its current state. This intuitive rationale is formalized by the following
theorem.

Theorem 2 (Stability properties of the endemic equilibrium E∗). When R0 > 1, the endemic equilib-
rium E∗ =

(
S ∗, L∗, I∗,T ∗

)
is globally asymptotically stable in the open set Ω∗ ⊂ Ω where

Ω∗ :=
{
(S , L, I,T ) ∈ Ω : L + I + T > 0

}
.

Proof. As stated by Proposition 2, the endemic equilibrium E∗ =
(
S ∗, L∗, I∗,T ∗

)
defined by (3.16)

exists whenever R0 > 1 and E∗ ∈ Ω∗. To prove that E∗ is globally stable in Ω∗, we will use the
so-called Lyapunov-LaSalle theorem (see, e.g., Theorem 6.2 in [32]). The first step is to construct a
Lyapunov function for the ODE system (2.2). Let us recall that a continuously differentiable scalar
function V : R4

+ 7→ R is a Lyapunov function of model (2.2) if it has the following properties [33]:

(i) V(E∗) = 0;

(ii) V(S , L, I,T ) is radially unbounded in R4
+;

(iii)
d
dt

V(S , L, I,T ) ≤ 0 for all (S , L, I,T ) ∈ R4
+ and t ≥ 0.
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A good candidate for V(S , L, I,T ) is the separable scalar function proposed by B. Goh [33, p10]
which is radially unbounded and has been used by many scholar in the context of TB transmission
models (see, e.g., [20,21,27,34] and references therein). Therefore, let us consider the following form
of V:

V(S , L, I,T ) =
[
S − S ∗ − S ∗ ln

( S
S ∗

)]
+ B1

[
L − L∗ − L∗ ln

( L
L∗

)]
+ B2

[
I − I∗ − I∗ ln

( I
I∗

)]
+ B3

[
T − T ∗ − T ∗ ln

( T
T ∗

)]
,

(4.5)

where B1, B2, and B3 are positive constants to be determined. Notably, function V defined by (4.5)
fulfills items (i) and (ii) mentioned above, while item (iii) requires further considerations. Namely, we
should find the proper positive values for B1, B2, and B3 so that the orbital derivative of V (i.e., the time
derivative of V along all solutions of the system (2.2)) be nonpositive. For further analysis, it will be
convenient to consider an alternative form of (3.2) which is satisfied by the coordinates (S ∗, L∗, I∗,T ∗)
of E∗:

Λ = βS ∗(I∗ + ϕT ∗) + µS ∗,
(ϵ + µ)L∗ = (1 − p)βS ∗(I∗ + ϕT ∗) + δT ∗,

(γ + α + µ)I∗ = pβS ∗(I∗ + ϕT ∗) + ϵL∗ + kT ∗,

(δ + k + µ)T ∗ = γI∗.

(4.6a)
(4.6b)
(4.6c)
(4.6d)

These relationships will play an important role in the sequel. Using the chain rule together with (4.6),
the orbital derivative of V can be written as

dV
dt
=

(
1 −

S ∗

S

)
dS
dt
+ B1

(
1 −

L∗

L

)
dL
dt
+ B2

(
1 −

I∗

I

)
dI
dt
+ B3

(
1 −

T ∗

T

)
dT
dt
, (4.7)

where the first term is(
1 −

S ∗

S

)
dS
dt
=

(
1 −

S ∗

S

) [
Λ − βS (I + ϕT ) − µS

] 〈
in virtue of (4.6a)

〉
=

(
1 −

S ∗

S

) [
βS ∗(I∗ + ϕT ∗) + µS ∗ − βS (I + ϕT ) − µS

]
= −µ

(S − S ∗)2

S
+ βS ∗(I∗ + ϕT ∗)

(
1 −

S ∗

S

)
− βS (I + ϕT ) + βS ∗(I + ϕT ).

The second and the third terms in the right-hand side of (4.7) can be written, respectively, as

B1

(
1−

L∗

L

)
dL
dt
= B1

(
1 −

L∗

L

) [
(1 − p)βS (I + ϕT ) + δT − (ϵ + µ)L

]
= B1

(
1 −

L∗

L

) [
(1 − p)βS (I + ϕT ) + δT

]
− B1(ϵ + µ)L + B1(ϵ + µ)L∗

= B1

(
1 −

L∗

L

) [
(1 − p)βS (I + ϕT ) + δT

]
− B1(ϵ + µ)L

+ B1

[
(1 − p)βS ∗(I∗ + ϕT ∗) + δT ∗

] 〈
in virtue of (4.6b)

〉
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and

B2

(
1−

I∗

I

)
dI
dt
= B2

(
1 −

I∗

I

) [
pβS (I + ϕT ) + ϵL + kT − (γ + α + µ)I

]
= B2

(
1−

I∗

I

)[
pβS (I+ϕT ) + ϵL + kT

]
− B2(γ+α+µ)I + B2(γ+α+µ)I∗

= B2

(
1 −

I∗

I

) [
pβS (I + ϕT ) + ϵL + kT

]
− B2(γ + α + µ)I

+ B2

[
pβS ∗(I∗ + ϕT ∗) + ϵL∗ + kT ∗

] 〈
in virtue of (4.6c)

〉
,

while the last term of (4.7) gives

B3

(
1−

T ∗

T

)
dT
dt
= B3

(
1−

T ∗

T

)[
γI − (δ+k+µ)T

]
=B3

(
1−

T ∗

T

)
γI − B3(δ+k+µ)(T−T ∗)

= B3

(
1−

T ∗

T

)
γI − B3(δ + k + µ)T + B3γI∗

〈
in virtue of (4.6d)

〉
.

Using the expressions from the four previous formulas and making some laborious rearrangements,
the orbital derivative of V can be written as

dV
dt
= −µ

(S − S ∗)2

S
+ βS ∗(I∗ + ϕT ∗)

(
1 −

S ∗

S

)
+ βS (I + ϕT )

[
(1 − p)B1 + pB2 − 1

]
+ L

[
− B1(ϵ + µ) + B2ϵ

]
+ I

[
βS ∗ − B2(γ + α + µ) + B3γ

]
+ T

[
ϕβS ∗ + B1δ + B2k − B3(δ + k + µ)

]
− B1(1 − p)βL∗

S I
L
− B1(1 − p)ϕβL∗

S T
L

− B1δL∗
T
L
− B2 pβI∗S − B2 pϕβI∗

S T
I
− B2ϵI∗

L
I
− B2kI∗

T
I
− B3γT ∗

I
T

+ B1(1 − p)βS ∗(I∗ + ϕT ∗) + B2 pβS ∗(I∗ + ϕT ∗) + B1δT ∗ + B2ϵL∗ + B2kT ∗ + B3γI∗.

Now the positive constants B1, B2, and B3 should be chosen in a way that the coefficients of S (I +
ϕT ), L, I, and T in the above expression become equal to zero, that is, the following four equations
must be satisfied: 

(1 − p)B1 + pB2 − 1 = 0
−(γ + α + µ)B2 + γB3 + βS ∗ = 0

δB1 + kB2 − (δ + k + µ)B3 + ϕβS ∗ = 0
−(ϵ + µ)B1 + ϵB2 = 0

(4.8a)
(4.8b)
(4.8c)
(4.8d)

This is a tedious task, so we present here the final solution of (4.8), while the meticulous details are
moved to Appendix A:

B1 =
ϵ

(1 − p)ϵ + p(ϵ + µ)
> 0,

B2 =
ϵ + µ

(1 − p)ϵ + p(ϵ + µ)
> 0,

B3 =
δB1 +

[
k + ϕ(γ + α + µ)

]
B2

δ + k + µ + ϕγ
> 0.

(4.9a)

(4.9b)

(4.9c)
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With B1, B2 and B3 defined by (4.9), the orbital derivative of V becomes

dV
dt
= −µ

(S − S ∗)2

S
+ βS ∗(I∗ + ϕT ∗)

(
1 −

S ∗

S

)
− B1(1 − p)βL∗

S I
L
− B1(1 − p)ϕβL∗

S T
L

− B1δL∗
T
L
− B2 pβI∗S − B2 pϕβI∗

S T
I
− B2ϵI∗

L
I
− B2kI∗

T
I
− B3γT ∗

I
T

+ B1(1 − p)βS ∗(I∗ + ϕT ∗) + B2 pβS ∗(I∗ + ϕT ∗) + B1δT ∗ + B2ϵL∗ + B2kT ∗ + B3γI∗.

For convenience, we introduce new variables

x :=
S
S ∗
, y :=

L
L∗
, z :=

I
I∗
, u :=

T
T ∗

to eliminate S , L, I and T in the expression for
dV
dt

. Here, we observe that for B1 and B2 satisfying the
Eq (4.8a) it holds that

βS ∗(I∗ + ϕT ∗)
(
1 −

S ∗

S

)
=

[
(1 − p)B1 + pB2

]
βS ∗(I∗ + ϕT ∗)

(
1 −

1
x

)
.

Keeping in mind this relationship, the orbital derivative of V can be written as

dV
dt
= − µS ∗

(x − 1)2

x
+ B1(1 − p)βS ∗I∗

(
2 −

1
x
−

xz
y

)
+ B1(1 − p)ϕβS ∗T ∗

(
2 −

1
x
−

xu
z

)
+ B2 pβS ∗I∗

(
2 −

1
x
− x

)
+ B2 pϕβS ∗T ∗

(
2 −

1
x
−

xu
z

)
+ B1δT ∗

(
1 −

u
y

)
+ B2kT ∗

(
1 −

u
z

)
+ B2ϵL∗

(
1 −

y
z

)
+ B3γI∗

(
1 −

z
u

)
.

(4.10)

Following the idea proposed in [27], we multiply the Eq (4.6b) by B1 and the Eq (4.8d) by L∗ in
order to obtain

(ϵ + µ)L∗B1 = B1(1 − p)βS ∗(I∗ + ϕT ∗) + B1δT ∗,

(ϵ + µ)L∗B1 = B2ϵL∗.

Hence, it follows that

B2ϵL∗ − B1(1 − p)βS ∗(I∗ + ϕT ∗) − B1δT ∗ = 0. (4.11)

Similarly, we multiply the Eq (4.6d) by B3 and the Eq (4.8c) by T ∗ and obtain

(δ + k + µ)T ∗B3 = B3γI∗,

(δ + k + µ)T ∗B3 = B1δT ∗ + B2kT ∗ + ϕβS ∗T ∗.

Then we have
B3γI∗ − B1δT ∗ − B2kT ∗ − ϕβS ∗T ∗ = 0. (4.12)
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Let F1(Z) and F2(Z),Z := (x, y, z, u) be two scalar functions which will be defined later. Then it is
also fulfilled that

B2ϵL∗F1(Z) − B1(1 − p)βS ∗(I∗ + ϕT ∗)F1(Z) − B1δT ∗F1(Z) = 0
B3γI∗F2(Z) − B1δT ∗F2(Z) − B2kT ∗F2(Z) − ϕβS ∗T ∗F2(Z) = 0

in virtue of (4.11) and (4.12). By summing the above expressions (both equal to zero) to the right-hand
side of formula (4.10) and rearranging some terms, the orbital derivative of V becomes

dV
dt
= − µS ∗

(x − 1)2

x
+ B1(1 − p)βS ∗I∗

(
2 −

1
x
−

xz
y
− F1(Z)

)
+ B1(1 − p)ϕβS ∗T ∗

(
2 −

1
x
−

xu
y
− F1(Z) − F2(Z)

)
+ B2 pβS ∗I∗

(
2 −

1
x
− x

)
+ B2 pϕβS ∗T ∗

(
2 −

1
x
−

xu
z
− F2(Z)

)
+ B1δT ∗

(
1 −

u
y
− F1(Z) − F2(Z)

)
+ B2kT ∗

(
1 −

u
z
− F2(Z)

)
+ B2ϵL∗

(
1 −

y
z
+ F1(Z)

)
+ B3γI∗

(
1 −

z
u
+ F2(Z)

)
.

To make vanish the last two summands in the above formula, we choose the functions F1(Z) and F2(Z)
in the following way:

F1(Z) :=
y
z
− 1, F2(Z) :=

z
u
− 1.

Using this selection of F1(Z) and F2(Z), the orbital derivative of V is now written as

dV
dt
= − µS ∗

(x − 1)2

x
+ B1(1 − p)βS ∗I∗

(
3 −

1
x
−

xz
y
−

y
z

)
+ B1(1 − p)ϕβS ∗T ∗

(
4 −

1
x
−

xu
y
−

y
z
−

z
u

)
+ B2 pβS ∗I∗

(
2 −

1
x
− x

)
+ B2 pϕβS ∗T ∗

(
3 −

1
x
−

xu
z
−

z
u

)
+ B1δT ∗

(
3 −

u
y
−

y
z
−

z
u

)
+ B2kT ∗

(
2 −

u
z
−

z
u

)
.

(4.14)

Finally, to demonstrate that
dV
dt
≤ 0, we observe that the first term in the right-hand side of (4.14)

is strictly negative whenever x , 1 or, equivalently, whenever S , S ∗. However, this term vanishes
when S = S ∗. Further, we apply the so-called “arithmetic mean – geometric mean inequality” (see,
e.g., [35] or similar textbooks) to all other terms on the right-hand side of (4.14) and obtain that they
are nonpositive for any positive (x, y, z, u) and vanish only if

x = 1 and y = z = u meaning that S = S ∗ and
L
L∗
=

I
I∗
=

T
T ∗
.

Thus V = V(S , L, I,T ) defined by (4.5) with positive constants B1, B2 and B3 satisfying (4.9) is a
Lyapunov function for the system (2.2) and we also have

dV
dt
< 0 for all (S , L, I,T ) ∈ Ω∗ \Ω0,
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where

Ω0 :=
{

(S , L, I,T ) ∈ Ω∗ :
dV
dt
= 0

}
=

{
(S , L, I,T ) ∈ Ω∗ : S = S ∗ and

L
L∗
=

I
I∗
=

T
T ∗

}
.

Notably, the largest invariant subset of Ω0 is the singleton E∗ (endemic equilibrium). Then in virtue
of the Lyapunov-LaSalle theorem [32, Theorem 6.2, p. 138], every solution of (2.2) engendered by
an initial condition

(
S 0, L0, I0,T0

)
∈ Ω∗ converges to E∗ when t → ∞. In other words, E∗ is globally

asymptotically stable in Ω∗. This completes the proof of Theorem 2. ■

Summarizing the results presented so far, we conclude that the number of equilibria of the system
(2.2) located in Ω, together with their stability, is determined by the value of the basic reproductive
number R0. It is also clear that the dynamical system (2.2) undergoes a forward (or transcritical)
bifurcation at R0 = 1 which is depicted in Figure 2. In the bifurcation diagram, the values of R0 are
located on the horizontal axis, and the vertical axis corresponds to the equilibrium size of population
groups contributing to the disease spread (that is, L∗ + I∗ + T ∗). In Figure 2, an asymptotically stable
equilibrium (E0 if R0 < 1 or E∗ if R0 > 1) is depicted by a red solid line, while a black dashed line
displays the unstable equilibrium E0 only if R0 > 1.

10

0

Figure 2. Bifurcation diagram for the model (2.2).

Thus, when R0 changes its value due to perturbation of some parameter(s) included in its expression
(3.4), either from less than unity to greater than unity or vice versa, it alters the long-term behavior of
the system (2.2).

5. Numerical solutions of the model and the role of treatment abandonment

In the preceding sections, it has been shown that the four-dimensional TB transmission model (2.2)
is biologically meaningful and well-posed. Furthermore, this model exhibits rather explicit stability
properties tightly related to the basic reproductive number R0 that are highly desirable in epidemio-
logical modeling.

Let us briefly illustrate that the proposed model (2.2) exhibits the behavior predicted by Theorems 1
and 2 given in Section 4. Having assigned plausible values to all constant parameters of the model (2.2)
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(see Table 2), we proceed to solve numerically the ODE system (2.2) using Mathematica 12 software
tool under two illustrative scenarios:

Scenario 1: TB transmission without treatment abandonment (k = 0);

Scenario 2: TB transmission with treatment abandonment (k = 0.3 > 0).

Table 2. Numerical values of parameters of the model (2.2); time is measured in years.

Parameter Value Range References/Comments
Λ 32 000 — assumed

µ
1

77
— assumed

β 1.65 × 10−7

[
0.01
Λ/µ
,

1
Λ/µ

]
fitted

ϕ 0.25 (0, 1) [26, 37]
p 0.05 [0.025, 0.3] [22, 24, 38]
ϵ 0.05 [0.004, 0.2] [20, 36]
δ 1.5 [1.125, 1.5] [36, 37]
γ 2 [0.3, 2.5] [19, 20, 36]
α 0.03 [0.0227, 0.3] [24, 36]
k varied [0, 0.5] [19, 20]

We first recall that tuberculosis is a social disease that is easily spread under crowded conditions
of big cities [1]. Therefore, we take as an example a city with an average population of 2.5 million
people and scale the parameter Λ accordingly. The average life expectancy varies between 66 and
88 depending on the country, and we assume it is equal to 77 years‡. Furthermore, in 2019, the TB
incidence per year varied between 0 and 654 cases per 100 000 inhabitants in different countries§, and
we fit the value of β to match the TB incidence of approximately 250 cases per 100 000 inhabitants per
year. Numerical values of other parameters and their underlying ranges are borrowed from the existing
literature.

For both scenarios, we assign the same set of initial conditions that are relatively close to the en-
demic equilibrium E∗. The coordinates of E∗ are calculated using four formulas of (3.16):

E∗ =
(
S ∗, L∗, I∗,T ∗

)
=

(
2.35 × 106, 100 585, 2 981, 3 288

)
.

The initial conditions should fulfill the relationship N(0) = S (0) + L(0) + I(0) + T (0) = 2.5 × 106, and
we assume that

S (0) = N(0) − L(0) − I(0) − T (0), L(0) = 1.15L∗,
I(0) = 1.15I∗, T (0) = 1.15T ∗.

(5.1)

‡For more information on life expectancy, please refer to the WORLDOMETER website
(https://www.worldometers.info/demographics/life-expectancy/)

§More information is available at The World Bank Data (https://data.worldbank.org/indicator/SH.TBS.INCD)
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We are interested in the time evolution of two infectious groups: I-class (fully capable of transmitting
the disease) and T -class (partially infectious). Their profiles are presented in Figure 3 for short-term
(left column) and long-term evolution (right column).

0 1 2 3
t

1000

2000

3000

4000
I(t)

k=0
k=0.3
I
*

0 500
t

1000

2000

3000

4000
I(t)

0 1 2 3
t

1000

2000

3000

4000
T(t)

k=0
k=0.3
T
*

0 500
t

1000

2000

3000

4000
T(t)

Figure 3. System profiles of the infectious classes I (upper charts) and T (lower charts) for
short-term evolution (left column) and long-term evolution (right column); the curves corre-
sponding to Scenario 1 and Scenario 2 are depicted by dashed and solid lines, respectively,
while the dotted horizontal lines mark the underlying coordinates of the endemic equilib-
rium.

Notably, Figure 3 reveals different short- and long-term tendencies of the disease propagation for
Scenario 1 (dashed-line curves) and Scenario 2 (solid-line curves), and this has a straightforward
explanation from the standpoint of Theorems 1 and 2. Namely, since

R0

∣∣∣∣
k=0
= 0.928997 < 1 and R0

∣∣∣∣
k=0.3
= 1.04839 > 1, (5.2)

the trajectories of the system (2.2) converge either to the disease-free equilibrium E0 (under Scenario 1)
or to the endemic equilibrium E∗ (under Scenario 2). Thus, theoretical findings presented in Sections
3 and 4 are confirmed by numerical simulations of the proposed TB transmission model.

Let us now recall the primary reason why this model has been proposed. Namely, we intended to
include the group of patients who abandon treatment before its completion, without assigning them to
an additional class and, thus, retaining only the four original compartments of the model (S , L, I and T ).
Therefore, we proceed now to analyze the effect of treatment abandonment on disease transmission.
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The model should reflect that TB-positive patients who abandon treatment before completion con-
tribute to the disease spread by passing from “partially infectious” to “fully infectious”. Let us verify if
the proposed model (2.2) fulfills this expectation by analyzing the partial derivative of R0 with respect
to k, the parameter expressing the rate of treatment abandonment:

∂R0

∂k
=

β
Λ

µ
γ
(
(ϵ + µ)

[
µ − ϕ(α + µ)

]
+ δµ

)
(
(ϵ + µ)

[
(δ + k + µ)(α + µ) + γµ

]
+ γδµ

)2

[
p(ϵ + µ) + (1 − p)ϵ

]
.

Thus R0 is an increasing function of k whenever

(ϵ + µ)
[
µ − ϕ(α + µ)

]
+ δµ > 0, (5.3)

that is, for all α such that

0 ≤ α < α∗ :=
µ

ϕ(ϵ + µ)
[
δ + (1 − ϕ)(ϵ + µ)

]
. (5.4)

Notably, the relationship (5.3) holds trivially if α = 0, i.e. if there is no disease-induced mortality.
Furthermore, for any positive value of α below the threshold α∗ (defined by formula (5.4) above), an
increase in the rate of treatment abandonment k would increase the value of R0. In other words, by
increasing k, a greater average number of secondary TB infections could be expected from one person
carrying active bacilli.

However, if α > α∗, the basic reproductive number R0 is a decreasing function of the treatment
abandonment rate k. In this case, a smaller average number of secondary TB infections could be ex-
pected from one actively infected person if k is increased. The rationale behind this statement is rather
simple and intuitive. When the disease-induced mortality is high (α > α∗), more people are removed
from the I-class per unit time, meaning that they stop spreading the infection. As k increases, more
people pass from the “partially infectious” T -class to the “fully infectious” I-class, from which they are
fastly removed (because α is high) instead of remaining in the system and bearing a reduced capacity
of infecting the others. As a consequence, when k increases, one infectious individual produces, on
average, a smaller number of secondary infections, meaning that R0 is a decreasing function of k when
α > α∗. Furthermore, it is easy to check that R0 is a decreasing function of α:

∂R0

∂α
=

−β
Λ

µ
(ϵ + µ)(δ + k + µ)(

(ϵ + µ)
[
(δ + k + µ)(α + µ) + γµ

]
+ γδµ

)2

[
p(ϵ + µ) + (1 − p)ϵ

]
< 0.
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Figure 4. Basic reproductive number R0 as a function of k (treatment abandonment rate)
and α (disease-induced mortality rate).

Let us now examine the behavior of R0 as a function of k (treatment abandonment rate) and α
(disease-induced mortality rate), which is denoted by R0 := R0(k, α) and displayed by a yellow-colored
surface in Figure 4. In this figure, the green-colored horizontal plane indicates the threshold surface
R0 = 1. The intersection between R0(k, α) and R0 = 1 is marked by a red-colored curve.

R0=1
R0
k(k)

0 0.1 0.2 0.3 0.4 0.5

0.4

0.8

1.2

R0
k

R0=1
R0 ( )

0 0.1 0.2 0.3

0.4

0.8

1.2

R0

Figure 5. Basic reproductive number represented by one-parameter functions: Rk
0(k) depends

only on the treatment abandonment rate k ∈ [0, 0.5] while α = 0.03 (left chart) and Rα0 (α)
depends only on the disease-induced mortality rate α ∈ [0, 0.3] while k = 0.3 (right chart).

When both arguments of the function R0(k, α) take values corresponding to Scenario 1, that is,
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k = 0 and α = 0.03, the respective point R0(0, 0.03) lies below the threshold plane R0 = 1. On the
other hand, the point R0(0.3, 0.03) corresponding to Scenario 2 is located above the threshold plane
R0 = 1. It is also displayed in Figure 4 that if k = 0.3 but α is enhanced to α = 0.15, the respective
point R0(0.3, 0.15) of the yellow-colored surface R0(k, α) lies below the green-colored threshold plane
R0 = 1.

Thus, from a purely mathematical standpoint, the current value of R0 can be driven below 1 either
by reducing the treatment abandonment rate k or by augmenting the disease-induced mortality rate
α. Naturally, the former seems a lot more reasonable and compelling than the latter, meaning that
even a small reduction in k (ceteris paribus) can certainly abate the disease propagation. Two charts
displayed in Figure 5 depict these tendencies for variation of each parameter within its range, while
other parameters retain their values determined in Table 2. Namely, the left chart shows the change in
the value of R0 as a function Rk

0(k) that depends only on k ∈ [0, 0.5]. Similarly, the right chart shows
the change in the value of R0 as a function Rα0 (α) that depends only on α ∈ [0, 0.3]. The black points
on both charts of Figure 5 mark the critical values kc = 0.1771 and αc = 0.0493 such that Rk

0(kc) = 1
and Rα0 (αc) = 1, respectively.

To conclude this section, let us assess the negative effect of the treatment abandonment in terms of
additional active TB infections it may cause and additional deaths it may induce. For that purpose, let
us introduce two auxiliary variables:

C(t) :=

t∫
0

[
pβ

(
I(τ) + ϕT (τ)

)
S (τ) + ϵL(τ) + kT (τ)

]
dτ and M(t) :=

t∫
0

αI(τ)dτ.

The first one, C(t), denotes the cumulative incidence and expresses the overall number of active TB
infections that appear during the period [0, t]. The second one, M(t), denotes the cumulative disease-
induced mortality and expresses the overall number of TB-infected people who died of the disease
during the period [0, t]. Notably, in the above expressions, the variables S , L, I and T are solutions
of the system (2.2) engendered by the initial conditions (5.1) when other parameters take values from
Table 2. Hence C(t) and M(t) can be viewed as solutions of the following differential equations with
underlying initial conditions

dC
dt
= pβ(I + ϕT )S + ϵL + kT, C(0) = 0,

dM
dt
= αI, M(0) = 0.

(5.5a)

(5.5b)

Thus, we can compose a six-dimensional ODE system by complementing the original model (2.2)
with two auxiliary Eqs (5.5) and solve it numerically using the Mathematica software package for two
scenarios established earlier. Figure 6 exhibits the cumulative incidence C(t) (left chart) and cumulative
mortality M(t) (right chart) under Scenario 1 (dashed-line curves) and Scenario 2 (solid-line curves)
when t ∈ [0, 3].
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Figure 6. Cumulative incidence C(t) (left chart) and cumulative mortality M(t) (right chart)
obtained by numerical solution of the six-dimensional system (2.2), (5.5); the curves corre-
sponding to Scenario 1 and Scenario 2 are depicted by dashed and solid lines, respectively.

Our numerical simulations also allow to estimate, through the model, how many new infections and
fatalities may occur by the end of the observation period (3 years) under both scenarios. In effect, we
have that

C(3)
∣∣∣∣
k=0
= 17 441, C(3)

∣∣∣∣
k=0.3
= 21 016 (cumulative new TB infections)

M(3)
∣∣∣∣
k=0
= 265, M(3)

∣∣∣∣
k=0.3
= 309 (cumulative TB-induced fatalities)

Thus, if the treatment abandonment rate is reduced from k = 0.3 to k = 0 and then for three years
no patient abandons treatment, it may help to avoid about 3725 active TB infections together with 44
TB-induced fatalities in a population of 2.5 million people.

6. Conclusions

In the present paper, we have proposed and justified a synthesized version of the tuberculosis trans-
mission model that accounts for treatment abandonment. A distinctive feature of this model is that it
contains only four standard state variables or compartments expressing the classes of susceptible, la-
tently infected, actively infected, and treated individuals, while other models accounting for treatment
abandonment contain more state variables [19–23].

It was also shown that the proposed model is biologically meaningful and well-posed from a math-
ematical standpoint. We have also rigorously proved that the proposed model exhibits the properties
of global stability that are highly desirable in epidemiological modeling, and this constitutes another
characteristic attribute of our model. The qualitative analysis of the system behavior with treatment de-
sertion is helpful for a better understanding of the endemic persistence of tuberculosis. It also explains
why this infectious disease is difficult to exterminate.

Furthermore, the proposed model enables us to visualize that the treatment abandonment enhances
the incidence of the disease and disease-induced mortality. This is an important feature that may
motivate the patients with active TB not to abandon their ongoing treatment and thus to avoid new
infections and fatalities. On the other hand, the model also revealed that a reduction of the treatment
abandonment rate has a positive effect on the disease incidence and results in avoiding disease-related
fatalities.
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Once our lower-dimensional model with treatment desertion is rigorously justified from the theoret-
ical standpoint, this model can be further used for fitting the realistic data of active TB infections de-
tected, patients being treated, and treatment abandonment cases. Since tuberculosis is a social disease,
its spread depends on social strata that may feature lower/higher transmission and treatment abandon-
ment rates. In this context, adding social heterogeneity through the metapopulation or network-based
modeling approaches [39, 40] in combination with parameter estimations [41] brings forward a ger-
mane outlook for our future research.
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Appendix A: Solution of the system (4.8)

For convenience, the algebraic System (4.8) is replicated here
(1 − p)B1 + pB2 − 1 = 0

−(γ + α + µ)B2 + γB3 + βS ∗ = 0
δB1 + kB2 − (δ + k + µ)B3 + ϕβS ∗ = 0

−(ϵ + µ)B1 + ϵB2 = 0

(A-1a)
(A-1b)
(A-1c)
(A-1d)

and we immediately observe that system (A-1) is over-determined for it has four equations in only
three unknowns B1, B2, and B3. Nonetheless, we can prove that the positive constants B1, B2 and B3

defined by (4.9) are solutions of all four equations of (A-1).
First, from Eq (A-1d) we obtain

B1 =
ϵ

ϵ + µ
B2,

and plugging this expression into Eq (A-1a) we get

(1 − p)
ϵ

ϵ + µ
B2 + pB2 = 1 ⇒ B2

[
(1 − p)ϵ + p(ϵ + µ)

ϵ + µ

]
= 1,

so that
B1 =

ϵ

(1 − p)ϵ + p(ϵ + µ)
> 0, B2 =

ϵ + µ

(1 − p)ϵ + p(ϵ + µ)
> 0

coincide with (4.9a) and (4.9b).
Further, Eq (A-1b) multiplied by −ϕ is added to Eq (A-1c) and yields

δB1 +
[
k + ϕ(γ + α + µ)

]
B2 − (δ + k + µ + ϕγ)B3 = 0 ⇒ B3 =

δB1 +
[
k + ϕ(γ + α + µ)

]
B2

δ + k + µ + ϕγ
> 0

This formula agrees with (4.9c).
Let us now verify that B1, B2, and B3 defined by (4.9) effectively satisfy all four equations of the

System (A-1) (which are identical to (4.8)). Verification of Eqs (A-1a) and (A-1d) seems rather trivial
and we omit it here. To verify (A-1b) and (A-1c), we recall the definition of S ∗,R0 and D provided by
the formulas (3.16a), (3.4) and (3.3b), respectively.

S ∗ =
Λ

µR0
, R0 =

βΛ(δ + k + µ + ϕγ)
µD

[
p(ϵ + µ) + (1 − p)ϵ

]
,
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D = (ϵ + µ)
[
(δ + k + µ)(α + µ) + γµ

]
+ γδµ.

From the above relationships, we can also deduce an alternative form of B2 that will be used in the
sequel:

B2 =
βΛ(ϵ + µ)(δ + k + µ + ϕγ)

µDR0
. (A-2)

We begin by proving that Eq (A-1b) is satisfied:

−(γ + α + µ)B2 + γB3 + βS ∗ = −(γ + α + µ)B2 +

γδϵ

ϵ + µ
B2 +

[
k + ϕ(γ + α + µ)

]
γB2

δ + k + µ + ϕγ
+ βS ∗

=
B2

δ + k + µ + ϕγ

[
−(γ + α + µ)(δ + k + µ + ϕγ) +

γδϵ

ϵ + µ
+ γk + ϕγ(γ + α + µ)

]
+ βS ∗

=
B2

δ + k + µ + ϕγ

[
− ϕγ(γ + α + µ) − (γ + α + µ)(δ + k + µ)

+
γδϵ

ϵ + µ
+ γk + ϕγ(γ + α + µ)

]
+ βS ∗

=
B2

δ + k + µ + ϕγ

[
−γδ − γk − γµ − (α + µ)(δ + k + µ) +

γδϵ

ϵ + µ
+ γk

]
+ βS ∗

=
B2

δ + k + µ + ϕγ

−γδϵ − γδµ − (ϵ + µ)
[
(α + µ)(δ + k + µ) + γµ

]
+ γδϵ

ϵ + µ

 + βS ∗
=

−B2D
(ϵ + µ)(δ + k + µ + ϕγ)

+ βS ∗
〈
replacing B2 by (A-2)

〉
=
−βΛ(ϵ + µ)(δ + k + µ + ϕγ)D
µDR0(ϵ + µ)(δ + k + µ + ϕγ)

+ βS ∗ = −β
Λ

µR0
+ βS ∗ ≡ 0.

The latter implies that Eq (A-1b) is fulfilled by B1, B2 and B3 defined by (4.9). To complete our
verification, we check the Eq (A-1c):

δB1 + kB2 − (δ + k + µ)B3 + ϕβS ∗ =
δϵB2

ϵ + µ
+ kB2 − (δ + k + µ)

δϵB2

ϵ + µ
+

[
k + ϕ(γ + α + µ)

]
B2

δ + k + µ + ϕγ
+ ϕβS ∗

=
B2

δ + k + µ + ϕγ

[
δϵ(δ + k + µ)
ϵ + µ

+
ϕγδϵ

ϵ + µ
+ k(δ + k + µ) + ϕγk

−
δϵ(δ + k + µ)
ϵ + µ

− k(δ + k + µ) − ϕ(δ + k + µ)(γ + α + µ)
]
+ ϕβS ∗

=
ϕB2

δ + k + µ + ϕγ

[
γδϵ

ϵ + µ
+ γk − (δ + k + µ)(α + µ) − γδ − γk − γµ

]
+ ϕβS ∗

=
ϕB2

δ + k + µ + ϕγ

γδϵ − (ϵ + µ)
[
(δ + k + µ)(α + µ) + γµ

]
− γδϵ − γδµ

ϵ + µ

 + ϕβS ∗
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=
−ϕB2D

(ϵ + µ)(δ + k + µ + ϕγ)
+ ϕβS ∗

〈
replacing B2 by (A-2)

〉
=
−ϕβΛ(ϵ + µ)(δ + k + µ + ϕγ)D
µDR0(ϵ + µ)(δ + k + µ + ϕγ)

+ ϕβS ∗ = −ϕβ
Λ

µR0
+ ϕβS ∗ ≡ 0.

Thus, we have proven that positive quantities B1, B2 and B3 defined by (4.9) are solutions of all four
Eqs (A-1).
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