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Abstract: Among many epidemic prevention measures, isolation is an important method to control
the spread of infectious disease. Scholars rarely study the impact of isolation on disease dissemina-
tion from a quantitative perspective. In this paper, we introduce an isolation ratio and establish the
corresponding model. The basic reproductive number and its biological explanation are given. The
stability conditions of the disease-free and endemic equilibria are obtained by analyzing its distribu-
tion of characteristic values. It is shown that the isolation ratio has an important influence on the basic
reproductive number and the stability conditions. Taking the COVID-19 in Wuhan as an example,
isolating more than 68% of the population can control the spread of the epidemic. This method can
provide precise epidemic prevention strategies for government departments. Numerical simulations
verify the effectiveness of the results.
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1. Introduction

Even if the vaccine is successfully developed and widely vaccinated all over the world, COVID-
19 [1–8] still rages around the world. During a pandemic, governments take various measures to slow
down the spread of the disease, such as keeping social distance, banning large-scale parties, and even
imposing curfews. Strictly controlling the flow of people can combat the epidemic, but it can hurt
economic development at the same time. So it is very meaningful to find a suitable isolation ratio
which can not only ensure the orderly progress of work and life, but also control the wide spread of the
virus. In this paper, we construct a model to analyze the relationship between infected population and
social isolation by introducing the isolation ratio.

With the efforts of previous scholars, many typical models have been gradually accumulated, which
also reflects that infectious disease model is an important content of research [9–14]. System (1.1) first
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proposed by Kermack and McKendrick pioneered the study of infectious diseases [15].
Ṡ = bN − βS I − bS ,

İ = βS I − γI − (a + b)I,
Ṙ = γI − bR.

(1.1)

S , R, and I respectively represent susceptible population, recovered population and infected population.
The total population N satisfies the equation N = S+I+R without considering the migration population.
β is the infected rate, and γ is the recovery rate. The elimination rate of the infected people is a + b.
SIR model has an assumption that infected patients are immune after rehabilitation. When rehabilitated
people are no longer immune to the virus, it means that they are at risk of secondary infection. Then,
it becomes SIRS [16, 17] model 

Ṡ = bN − βS I − bS + cR,

İ = βS I − γI − (a + b)I,
Ṙ = γI − bR,

(1.2)

where c represents infection rate of convalescent patients. Zhao et al. [17] studied an SIRS model
with pulse vaccination and birth pulse. The stability of the infection-free periodic solution and the
existence of nontrivial periodic solution which was bifurcated from the infection-free periodic solution
were discussed by the Poincaré map and the bifurcation theory. It was obtained when the threshold
was reached, a nontrivial periodic solution would appear through supercritical bifurcation.

Since some infectious diseases such as COVID-19 have latent period, asymptomatic infections must
be considered. Then SEIR model [18–24] is proposed

Ṡ = bN − βS I − bS ,

Ė = βS I − γE − bE,

İ = γE − (a + b)I,
Ṙ = γI − bR.

(1.3)

Saikia et al. [18] used SEIR model to predict the epidemic trend in India, and found the existence of
peak day, meaning a sudden shift in the mode of disease transmission. In [19], based on the propagation
characteristics of COVID-19, SEIR model was improved to SEIQR model and its basic reproductive
number was derived. The results showed that the improved model had better predictive power and
successfully captured the development process of the COVID-19. When we need to consider that the
rehabilitated persons have secondary infection, the system (1.3) becomes SEIRS model [25–27] as
follows 

Ṡ = bN − βS I − bS + cR,

Ė = βS I − γE − bE,

İ = γE − (a + b)I,
Ṙ = γI − bR.

(1.4)

In [25], Britton et al. considered the impact of an infectious disease with escape ability on population
growth. Four possible results were obtained in this paper: (1) disease died out quickly, only infecting
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few; (2) epidemic took off, but the proportion of infected people was still negligible; (3) infectious
disease spread rapidly, and the proportion of infected people had reached a local balance; (4) disease
spread widely and rapidly, transforming exponential population growth into exponential decay. Lu et
al. [26] proposed a new criterion for determining the global asymptotic stability of nonlinear systems,
which was based on the geometric method proposed by Li and Muldowney. Otunuga et al. [27] es-
timated and analyzed the time-dependent parameters: symptomatic recovery rate, transmission rate,
immunity rate and the effective reproduction number for COVID-19 in the United States during the
01/22/2020–02/25/2021 period based on the SEIRS model, where the infected population was clas-
sified as the symptomatic infected population and asymptomatic infectious population. It should be
noted that the infectious disease model we discussed, whether SEIR model or SEIRS model, does not
have the ability of vertical transmission. In other words, the virus cannot be transmitted to the unborn
foetus.

In [28], Abdelaziz et al. investigated a discrete-time SEIR epidemic model with constant vaccina-
tion and fractional-order, and got its basic reproduction number. They obtained the local and global
stability conditions at equilibriums and discussed two types of codimension one bifurcation which were
called Neimark-Sacker bifurcation and flip bifurcation. The criterion used was based on the character-
istic coefficient equation instead of the properties of the eigenvalues of the Jacobian matrix. Thirthar
et al. [29] established an S I1I2R model with general recovery functions and saturated incidence of the
disease I1. The local stability and global stability of disease-free equilibrium and endemic equilibrium
were given by the basic reproductive number and Lyapunov function. The system studied had neither
Saddle-node bifurcation and Transcritical bifurcation near the disease-free equilibrium point under
c2β2S 0 < µ + ϵ1 + ϵ2 and E0 = 1. Liu et al. [30] studied the existence and uniqueness of the positive
solution in the transmission of two diseases between two groups, which could be called S 1I1R1S 2I2R2

model.
Most works on infectious disease models mainly study the prediction of future trends based on sta-

tistical data from different regions. This paper introduces the isolation ratio and establishes the S IaIsQR
model where S , Ia, Is,Q and R respectively represent susceptible, asymptomatic, symptomatic, quar-
antined and recovery classes. We give the basic reproductive number of the model and its biological
significance. The stability conditions of the disease-free and endemic equilibria are obtained by ana-
lyzing its distribution of characteristic values. The results show that isolation ratio has an important
impact on the basic reproductive number and the stability conditions. As p increases, R0 decreases, and
this effect is amplified by square. The simulation results verify the influence of isolation ratio on the
system. The rest of this paper is as follows. In Section 2, we establish an S IaIsQR model. In Section 3,
we obtain the basic reproductive number and give its biological explanation. In Section 4, the stability
conditions of the disease-free and endemic equilibria are discussed. In Section 5, we investigate the
influence of several important parameters on epidemic spread from numerical simulations. Finally, in
Section 6, we summarize and discuss this paper.

2. Modeling

In recent years, in view of the frequent attacks of infectious diseases on humans, experts and schol-
ars have established various models according to different propagation characteristics [31–34]. In this
paper, we divide the crowd into five storerooms, which are susceptible class (S (t)), asymptomatic in-
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fection class (Ia(t)), symptomatic infection class (Is(t)), quarantine class (Q(t)), and recovery class
(R(t)), assuming the general population is N(t) = S (t) + Ia(t) + Is(t) + Q(t) + R(t).

Susceptible class (S (t)): It is assumed that the input of the population is a constant (Λ) and the nat-
ural mortality of the population is µ. Both symptomatic patients and asymptomatic patients have the
ability to infect, and the transmission ability of symptomatic patients is stronger than that of asymp-
tomatic patients (αa < αs). The proportion of people isolated by the government is p. The contact
between susceptible people and infected people is αaS (1 − p)Ia(1 − p) + αsS (1 − p)Is(1 − p). There is
no vertical transmission of the disease. The change rate of susceptible groups is

Ṡ = Λ − αa(1 − p)2S Ia − αs(1 − p)2S Is − µS .
Remark 1 In the process of disease transmission, the infection process has a linear and proportional
relationship with (1 − p)2, because the isolated objects include infected class and susceptible class.
From the perspective of spatial density, if two groups are reduced by the same proportion of p, then
the probability of meeting becomes (1 − p)2 of the original ones. In the predator-prey model, if the
proportion of sheltered prey is q, the probability of predator and prey meeting is 1 − q of the original
ones. It is a linear and proportional relation between the predatory process and 1 − q, because the
shelter only acts on the prey [35].

Asymptomatic class (Ia(t)): It is assumed that all infected persons will experience a incubation
period, and the infected persons in the incubation period will be transformed into symptomatic patients
in a fixed proportion of β. The change rate of asymptomatic groups is

İa = αa(1 − p)2S Ia + αs(1 − p)2S Is − βIa − µIa.
Symptomatic class (Is(t)): Symptomatic infected persons will be detected and admitted to hospitals

for isolation in proportion to γ. The recovery and mortality rate of infected patients without treatment
are δ1 and µ1 + µ. Then, the change rate of symptomatic class is

İs = βIa − γIs − δ1Is − µ1Is − µIs.
Quarantined class (Q(t)): Because of medical treatment, the cure rate of isolated patients will be

higher and the mortality rate will be lower than the symptomatic class δ2 > δ1, µ2 < µ1. Differential
equation on quarantined class (Q(t)) is

Q̇ = γIs − δ2Q − µ2Q − µQ.
Recovery class (R(t)): The recovery class comes from symptomatic class in the proportion δ1 and

quarantined class in proportion δ2. Then we get
Ṙ = δ1Is + δ2Q − µR.

Integrating the above five dimensions, we obtain

Ṡ = Λ − αa(1 − p)2S Ia − αs(1 − p)2S Is − µS ,

İa = αa(1 − p)2S Ia + αs(1 − p)2S Is − βIa − µIa,

İs = βIa − γIs − δ1Is − µ1Is − µIs,

Q̇ = γIs − δ2Q − µ2Q − µQ,

Ṙ = δ1Is + δ2Q − µR.

(2.1)

The initial conditions of system (2.1) are S (t0) = S 0 ≥ 0, Ia(t0) = I0
a ≥ 0, Is(t0) = I0

s ≥ 0
Q(t0) = Q0 ≥ 0,R(t0) = R0 ≥ 0. In order to ensure the biological significance of system (2.1), all
solutions must be limited to the positive five dimensional Euclidean space region.
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Lemma 2.1 All solutions of system (2.1) with nonnegative initial values keep positive in R5
+ for all

t > 0. All solutions of system (2.1) with nonnegative initial values are uniformly bounded in Ω =
{(S , Ia, Is,Q,R) ∈ R5

+ : 0 ≤ S , Ia, Is,Q,R ≤ Λµ }.

3. Basic reproductive number

The basic reproductive number is an important reference index for the study of infectious disease
model, which represents the number of people infected by each patient during the disease period. The
most commonly used method to calculate the basic reproductive number (R0) is the next-generation
matrix [36]. The following is the general process.
Let

dxi

dt
= fi(x) = ri(x) − hi(x), i = 1, 2, · · · ,m, (3.1)

where ri(x) is the rate of newly infected individuals in group i, hi(x) is the transfer rate. Denote
F = [ ∂ri

∂x j
(x0)], V = [ ∂hi

∂x j
(x0)], where x0 = {x|xi = 0, i = 1, 2, · · · ,m}, 1 ≤ i, j ≤ m. FV−1 is the

reproducing matrix. ρ(FV−1) is the spectral radius of the reproducing matrix. R0 is equal to ρ(FV−1)
representing the largest modulus of the eigenvalues of the Jacobian matrixes.

Rewrite system (2.1) to X = [Ia, Is,Q, S ,R]T . The disease-free equilibrium is x0 =

(Ia(0), Is(0),Q(0), S (0),R(0)) = (0, 0, 0, Λ
µ
, 0). According to Eq (3.1),

ri(x) =


αs(1 − p)2S Is + αa(1 − p)2S Ia

0
0
0
0


,

hi(x) =


βIa + µIa

−βIa + γIs + δ1Is + µ1Is + µIs

−γIs + δ2Q + µ2Q + µQ
−Λ + αs(1 − p)2S Is + αa(1 − p)2S Ia + µS

−δ1Is − δ2Q + µR


,

i = 1, 2, 3, 4, 5. Then, we calculate the Jacobian matrix of r(xi) and h(xi) on disease-free equilibrium

F(x0) =
∂r(xi)
∂x j

(x0) =


αa(1 − p)2Λ

µ
αs(1 − p)2Λ

µ
0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


,

V(x0) =
∂h(xi)
∂x j

(x0) =


M1 0 0 0 0
−β M2 0 0 0
0 −γ M3 0 0

αa(1 − p)2Λ
µ
αs(1 − p)2Λ

µ
0 µ 0

0 −δ1 −δ2 0 µ


,
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where M1 = β + µ, M2 = γ + δ1 + µ1 + µ, M3 = δ2 + µ2 + µ, 1 ≤ i, j ≤ 5. Denote

F1 =

[
αa(1 − p)2Λ

µ
αs(1 − p)2Λ

µ

0 0

]
,

V1 =

[
β + µ 0
−β γ + δ1 + µ1 + µ

]
.

We obtain

FV−1 = F1V−1
1 =

[
A1 A2

0 0

]
,

where

A1 = αa(1 − p)2Λ

µ

1
β + µ

+ αs(1 − p)2Λ

µ

β

(β + µ)(γ + δ1 + µ1 + µ)
,

A2 = αs(1 − p)2Λ

µ

1
γ + δ1 + µ1 + µ

.

Hence, the basic reproductive number is

R0 = ρ(FV−1) = Ra
0 + Rs

0,

where

Ra
0 = αa(1 − p)2Λ

µ

1
β + µ

,

Rs
0 = αs(1 − p)2Λ

µ

β

β + µ

1
γ + δ1 + µ1 + µ

.

Remark 2 1
β+µ

and 1
γ+δ1+µ1+µ

represent the average removal time of the asymptomatic and symptomatic
patients respectively. β

β+µ
is the ratio of asymptomatic patients to symptomatic patients. Ra

0 and Rs
0 can

be regarded as the number of people infected by each asymptomatic patient and symptomatic patient
during the infectious period. As p increases, R0 decreases, and this effect is amplified by square. This
shows that isolation is a very good measure to control the spread of disease. We compare the R0 of five
different models [31, 37–40]. The same parameters of the different basic reproductive numbers have
the same effect in their respective models, such as conversion rate and infection rate.

4. Stability of equilibrium point

In this section, we show the local and global stability of the disease-free and endemic equilibria
respectively.
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4.1. Stability analysis of disease-free equilibrium

In this part, we will discuss the local stability of system (2.1) at the equilibrium point x0 =

(Λ
µ
, 0, 0, 0, 0), and we also use Lyapunov function to judge its global stability.

Theorem 1 When R0 < 1, the equilibrium point x0 of system (2.1) is locally stable; When R0 > 1, it is
unstable [36].

Theorem 2 The disease-free equilibrium point is global stable with R0 < 1.

Proof. We construct the Lyapunov function

V(t) = (γ + δ1 + µ1 + µ)Ia(t) + αs(1 − p)2Λ

µ
Is(t).

Obviously, V(t) ≥ 0.
By direct calculation

dV(t)
dt

= B5[αs(1 − p)2S Is + αa(1 − p)2S Ia − βIa

− µIa] + αs(1 − p)2Λ

µ
(βIa − γIs − δ1Is − µ1Is − µIs)

= [B5αa(1 − p)2S − (β + µ)B5 + αs(1 − p)2Λ

µ
β]Ia

+ [B5αs(1 − p)2S − αs(1 − p)2Λ

µ
(γ + δ1 + µ1 + µ)]Is.

As S ≤ Λ
µ

,

dV(t)
dt

≤ [B5αa(1 − p)2Λ

µ
− (β + µ)B5 + αs(1 − p)2Λ

µ
β]Ia

+ [B5αs(1 − p)2Λ

µ
− αs(1 − p)2Λ

µ
B5]Is

= (R0 − 1)B5(β + µ)Ia.

When R0 < 1, dVt
dt ≤ 0. According to the second Lyapunov method, the disease-free equilibrium

point is globally gradually steady.

4.2. Stability of endemic equilibrium

Before discussing the stability of the endemic disease, we consider its existence.

Theorem 3 The positive equilibrium x∗ = (S ∗, I∗a, I
∗
s ,Q

∗,R∗) of system (2.1) exists if R0 > 1 is satisfied.
When D1D2 > D3 > 0 is also satisfied, where
D1 = 2µ + β + m + αs(1 − p)2I∗s + αa(1 − p)2I∗a − αa(1 − p)2S ∗,
D2 = [β + µ − αa(1 − p)2S ∗ + αs(1 − p)2I∗s + αa(1 − p)2I∗a](µ + c) + µc − βαs(1 − p)2S ∗,
D3 = [β + µ − αa(1 − p)2S ∗ + αs(1 − p)2I∗s + αa(1 − p)2I∗a]µc − µβαs(1 − p)2S ∗,
the positive equilibrium is locally stable.
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Proof. By solving the zero solution of system (2.1), we get x∗ = (S ∗, I∗a, I
∗
s ,Q

∗,R∗), where

S ∗ =
(β + µ)B5

αs(1 − p)2β + αa(1 − p)2B5
,

I∗a =
Λ

β + µ
−

µB5

αs(1 − p)2β + αa(1 − p)2B5
,

I∗s =
β

B5
I∗a,

Q∗ =
γ

δ2 + µ2 + µ
I∗s ,

R∗ =
δ1

µ
I∗s +
δ2

µ
Q∗.

We just need to judge the negative and positive of I∗a. By direct calculation,

I∗a =
C1 −C2

(β + µ)(αs(1 − p)2β + αa(1 − p)2B5)
,

where, C1 = Λ(αsβ + αaB5,C2 = (β + µ)µB5. Note that, C1 −C2 > 0, i.e., C1
C2
− 1 > 0. Then,

C1

C2
=
Λ(αs(1 − p)2β + αa(1 − p)2B5

(β + µ)µB5

=
Λαs(1 − p)2β

(β + µ)µB5
+
Λαa(1 − p)2

(β + µ)µ
= R0.

So when R0 > 1, I∗a > 0. The positive equilibrium of system (2.1) exists. The Jacobian matrix of
system (2.1) at the positive equilibrium point is

J(x∗) =


E1 E2 E3 0 0
E4 E5 E6 0 0
0 β −B5 0 0
0 0 γ −B6 0
0 0 δ1 δ2 −µ


,

where E1 = −αs(1 − p)2I∗s − αa(1 − p)2I∗a − µ, E2 = −αa(1 − p)2S ∗, E3 = −αs(1 − p)2S ∗, E4 = αs(1 −
p)2I∗s + αa(1 − p)2I∗a, E5 = αa(1 − p)2S ∗ − β − µ, E6 = αs(1 − p)2S ∗.

Then, we get

|λE − J(x∗)| = (λ + µ)(λ + δ2 + µ2 + µ)(λ3 + D1λ
2 + D2λ + D3),

where D1 = 2µ + β + m + αs(1 − p)2I∗s + αa(1 − p)2I∗a − αa(1 − p)2S ∗,D2 = [β + µ − αa(1 − p)2S ∗ +
αs(1 − p)2I∗s + αa(1 − p)2I∗a](µ + c) + µc − βαs(1 − p)2S ∗,D3 = [β + µ − αa(1 − p)2S ∗ + αs(1 − p)2I∗s +
αa(1 − p)2I∗a]µc − µβαs(1 − p)2S ∗.

According to the Routh-Hurwitz theorem,

∆1 = D1 > 0, ∆2 =

∣∣∣∣∣∣D1 1
D3 D2

∣∣∣∣∣∣ > 0,∆3 =

∣∣∣∣∣∣∣∣∣
D1 1 0
D3 D2 D1

0 0 D3

∣∣∣∣∣∣∣∣∣ > 0.

We obtain D1 > 0,D1D2 > D3 > 0.
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Table 1. Parameters estimation of Model (5.1).

Parameters Definitions Values Source

µ Mortality 1.6 × 10−5day−1 [41]
N Total population 1.11 × 107 [41]

αa
Transmission rate of
asymptomatic infection

2.1 × 10−8day−1 [39]

αs
Transmission rate of
symptomatic infection

1.9 × 10−7day−1 [39]

γ Detection rate 0.13day−1 [39]
σ−1 Mean latent period 2days [42]
τ−1 Mean infectious period 3days [42]
κ−1 Mean duration from loss infectiousness to death 8days [42]

5. Numerical simulations and discussions

This section is divided into four parts. Subsection 5.1 mainly discusses the influence of the incu-
bation period from asymptomatic to symptomatic patients. Subsection 5.2 studies the impact of the
infectious period on disease dissemination. In Subsection 5.3, we focus on the relationship between
isolation ratio and epidemic spread. In this subsection, we obtain the isolation ratio to control the
spread of the epidemic. In Subsection 5.4, the simulations show the disease-free and endemic equilib-
ria of system 2.1 are stable with certain conditions.

5.1. Influence of incubation period

This section mainly discusses the influence of the incubation period on disease dissemination. We
simulate the outbreak of the COVID-19 in Wuhan [39, 43–46]. To simplify parameter estimation, we
make σ = β + µ, τ = γ + δ1 + µ1 + µ, κ = δ2 + µ2 + µ. So system (2.1) can be simplified as

Ṡ = Λ − αa(1 − p)2S Ia − αs(1 − p)2S Is − µS ,

İa = αa(1 − p)2S Ia + αs(1 − p)2S Is − σIa,

İs = σIa − τIs,

Q̇ = τIs − κQ.

(5.1)

Relevant parameters are shown in Table 1. The initial value of system (5.1) is (S (0), Ia(0), Is(0),Q(0)) =
(1.11 × 107, 105, 28, 1) [39].

As σ is the conversion rate from asymptomatic to symptomatic infections, σ−1 can be seen the
incubation period from asymptomatic to symptomatic infections. The incubation period of COVID-
19 is 2–14 days [47]. We study the spread of COVID-19 by changing the incubation period with-
out considering isolation. When the value range of σ−1 is 2 to 14, the reproductive number of sys-
tem (5.1) is greater than 1, and the COVID-19 will spread. Figure 1a shows the change of S when
σ = 1/2, 1/6, 1/10, 1/14. It can be seen that all susceptible persons will be infected if nothing is done.
We can also see from Figure 1a that the higher the conversion rate, the faster the dissemination speed.
Figure 1b shows the change of Ia when σ = 1/2, 1/6, 1/10, 1/14. It can be seen that the longer the
incubation period, the greater the peak value of asymptomatic infections. When the incubation period
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Figure 1. Sequence diagrams for S , Ia, Is,Q with σ = 1/2, 1/6, 1/10, 1/14.

is shorter, the peak infection will come faster for asymptomatic infections. Figure 1c shows the change
of Is when σ = 1/2, 1/6, 1/10, 1/14. Contrary to asymptomatic infections, the shorter the incubation
period, the greater the peak value for symptomatic infections. When the incubation period is shorter,
the peak infection will also come faster for symptomatic infections. Figure 1d shows the change of Q
when σ = 1/2, 1/6, 1/10, 1/14. When the incubation period is longer, the peak of infections will be
lower and arrive later. To sum up, the longer the incubation period, the slower the disease spreads and
the greater the peak. One reason why COVID-19 can spread across the world is largely due to its long
incubation period.

5.2. Influence of infectious period

This section studies the impact of the infectious period on disease dissemination without isolation.
τ is the elimination rate of symptomatic population, then τ−1 can represent its infectious period. The
parameters follow the subsection 5.1. When τ is equal to 1/2, 1/3, 1/4 and 1/5, the reproductive
numbers are greater than 1, and the COVID-19 will spread. Figure 2a shows the larger τ is, the
slower S decreases. This means that the longer the infectious period, the faster the transmission speed.
Figure 2b shows the longer the infectious period, the higher the asymptomatic infections. The peak
will come earlier for the smaller elimination rate. The curves of symptomatic infections are similar to
that of asymptomatic infections, which is shown in Figure 2c. However, there is little difference in the
time of peak for symptomatic infections under different τ. Figure 2d is similar to Figure 2c. Its peak is
lower and later. It is concluded that the longer the infectious period, the more infected people, and the
faster the dissemination speed.
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Figure 2. Sequence diagrams for S , Ia, Is,Q with τ = 1/2, 1/3, 1/4, 1/5

5.3. Influence of isolation ratio

This section studies the impact of different isolation ratios on disease dissemination when the incu-
bation periods from asymptomatic to symptomatic infections are 1/2, 1/7 and 1/14. Except for σ, the
values of other parameters are the same as those in Subsection 5.1. Figures 3–5 are sequence diagrams
for S , Ia, Is,Q of σ = 1/2, 1/7, and 1/14. We study the spread of the COVID-19 by changing the
isolation ratio.

Figure 3 shows the curves of the disease dissemination with the isolation ratio from 0 to 70% during
the 2-day incubation period. When p < 0.5, the number of infections is millions. When 0.5 < p < 0.6,
the number drops to six figures. When the isolation ratio exceeds 60%, the number of infected people
will not exceed tens of thousands. When the isolation ratio exceeds 62%, the epidemic will not spread.
Therefore, in view of the outbreak of COVID-19 in Wuhan, theoretically controlling the flow of more
than 62% of people can prevent the wide spread.

Figure 4 shows the curves of the disease dissemination with the isolation ratio from 0 to 70%
during the 7-day incubation period. When 0 < p < 0.5, the number of infections is millions. When
0.55 < p < 0.62, the number drops to six figures. When the isolation ratio exceeds 62%, the number of
infected people will not exceed tens of thousands. When the isolation ratio exceeds 65%, the epidemic
will not spread.

Figure 5 shows the curves of the disease dissemination with the isolation ratio from 0 to 75%
during the 14-day incubation period. When 0 < p < 0.6, the number of infections is millions. When
0.6 < p < 0.65, the number drops to six figures. When the isolation ratio exceeds 65%, the number of
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Figure 3. Sequence diagrams for S , Ia, Is,Q with 2-day incubation period.

Figure 4. Sequence diagrams for S , Ia, Is,Q with 7-day incubation period.
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Figure 5. Sequence diagrams for S , Ia, Is,Q with 14-day incubation period.

infected people will not exceed tens of thousands. When the isolation ratio exceeds 68%, the epidemic
will not spread.

Through the above analysis, in order to stop the spread of COVID-19 in Wuhan, the isolation ratio
should exceed 68%. Comparing Figures 3–5, we can find when the incubation period increases, the
isolation ratio required to control the spread will increase. An important reason why COVID-19 is
widely spread around the world is that its incubation period is very long.

5.4. Simulations of disease-free and endemic equilibria

This subsection presents the stability of disease-free and endemic equilibria through simulation. In
order to verify that the disease-free equilibrium is globally stable, the parameters of system (2.1) meet
R0 < 1. The initial value is (S (0), Ia(0), Is(0),Q(0),R(0)) = (800000, 700, 400, 300, 200). Figure 6a
proves the number of susceptible population is constant by changing the initial value of S . Figure 6b,
c and d show the numbers of asymptomatic, symptomatic and quarantined infections tend to 0 under
different initial values. Therefor the disease-free equilibrium of system (2.1) is stable when R0 < 1.

System (2.1) has an endemic equilibrium when the parameters conform to R0 > 1. Select the initial
value as (S (0), Ia(0), Is(0),Q(0),R(0)) = (800000, 700, 400, 300, 200). When the initial value of S is
changed, different curves eventually tend to the same positive value which can be seen in Figure 7a.
Applying the same method to Ia, Is,Q, we get Figure 7b, c and d. Therefor system (2.1) has an endemic
equilibrium with R0 > 1, and it is stable.
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Figure 6. Sequence diagrams with R0 = 0.76.

Figure 7. Sequence diagrams with R0 = 2.28.
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6. Conclusions

In this paper, we introduce the isolation ratio to quantify the impact of isolation on diseases dis-
semination. The basic reproductive number solved by the next-generation matrix can be divided into
two parts, which are contributed by asymptomatic and symptomatic infections respectively. We obtain
the effects of conversion rate from asymptomatic to symptomatic infections, mortality rate of infec-
tions and isolation ratio on disease dissemination. Through the stability analysis, we get the local and
global stability conditions for the disease-free and endemic equilibria of the system. When R0 < 1,
the disease-free equilibrium is globally asymptotically stable; When R0 > 1, the disease-free equilib-
rium is not stable. When R0 < 1, the positive equilibrium does not exist; When R0 > 1, the positive
equilibrium exists and is stable. Taking the outbreak of COVID-19 in Wuhan as an example, when
the proportion of the isolated population exceeds 68%, the epidemic will not be spread. Therefore, we
can formulate different proportions of isolated population according to different regions. This not only
ensures the epidemic will not spread on a large scale, but also does not stop the economic activities.

Acknowledgments

This work was supported by the Science and Technology Research Project of Henan Province
(222102240108).

Conflict of interest

The authors declare there is no conflicts of interest.

Data availability statements

The datasets analysed during the current study are available from the corresponding author on rea-
sonable request.

References

1. H. Wang, Z. Wang, Y. Dong, R. Chang, C. Xu, X. Yu, et al., Phase-adjusted estimation of
the number of coronavirus disease 2019 cases in wuhan, china, Cell Discov., 6 (2020), 1–8.
https://doi.org/10.1038/s41421-020-0148-0

2. D. Wang, M. Zhou, X. Nie, W. Qiu, M. Yang, X. Wang, et al., Epidemiological characteristics
and transmission model of corona virus disease 2019 in china, J. Infect., 80 (2020), e25–e27.
https://doi.org/10.1016/j.jinf.2020.03.008

3. F. S. Dawood, P. Ricks, G. J. Njie, M. Daugherty, W. Davis, J. A. Fuller, et al., Ob-
servations of the global epidemiology of covid-19 from the prepandemic period using web-
based surveillance: A cross-sectional analysis, Lancet Infect. Dis., 20 (2020), 1255–1262.
https://doi.org/10.1016/S1473-3099(20)30581-8

Mathematical Biosciences and Engineering Volume 19, Issue 11, 10846–10863.

http://dx.doi.org/https://doi.org/10.1038/s41421-020-0148-0
http://dx.doi.org/https://doi.org/10.1016/j.jinf.2020.03.008
http://dx.doi.org/https://doi.org/10.1016/S1473-3099(20)30581-8


10861

4. C. Jiang, X. Li, C. Ge, Y. Ding, T. Zhang, S. Cao, et al., Molecular detection of sars-cov-2 being
challenged by virus variation and asymptomatic infection, J. Pharm. Anal., 11 (2021), 257–264.
https://doi.org/10.1016/j.jpha.2021.03.006

5. F. A. Engelbrecht, R. J. Scholes, Test for covid-19 seasonality and the risk of second waves, One
Health, 12 (2021), 100202.

6. M. Yao, H. Wang, A potential treatment for covid-19 based on modal characteristics
and dynamic responses analysis of 2019-ncov, Nonlinear Dyn., 106 (2021), 1425–1432.
https://doi.org/10.1007/s11071-020-06019-1

7. P. Das, R. K. Upadhyay, A. K. Misra, F. A. Rihan, P. Das, D. Ghosh, Mathematical model of
covid-19 with comorbidity and controlling using non-pharmaceutical interventions and vaccina-
tion, Nonlinear Dyn., 106 (2021), 1213–1227. https://doi.org/10.1007/s11071-021-06517-w

8. K. Shah, Z. A. Khan, A. Ali, R. Amin, H. Khan, A. Khan, Haar wavelet collocation approach for
the solution of fractional order covid-19 model using caputo derivative, Alex. Eng. J., 59 (2020),
3221–3231. https://doi.org/10.1016/j.aej.2020.08.028

9. C. Han, Y. Liu, J. Tang, Y. Zhu, C. Jaeger, S. Yang, Lessons from the mainland of China’s epidemic
experience in the first phase about the growth rules of infected and recovered cases of covid-19
worldwide, Int. J. Disaster Risk Sci., 11 (2020), 497–507. https://doi.org/10.1007/s13753-020-
00294-7

10. J. T. Machado, J. Ma, Nonlinear dynamics of covid-19 pandemic: modeling, control, and fu-
ture perspectives, Nonlinear Dyn., 101 (2020), 1525–1526. https://doi.org/10.1007/s11071-020-
05919-6

11. S. He, Y. Peng, K. Sun, Seir modeling of the covid-19 and its dynamics, Nonlinear Dyn., 101
(2020), 1667–1680. https://doi.org/10.1007/s11071-020-05743-y

12. G. Stewart, K. van Heusden, G. A. Dumont, How control theory can help us control covid-19,
IEEE Spectrum, 57 (2020), 22–29. https://doi.org/10.1109/MSPEC.2020.9099929

13. D. Fanelli, F. Piazza, Analysis and forecast of covid-19 spreading in china, italy and france, Chaos
Solitons Fract., 134 (2020), 109761.

14. R. Li, S. Pei, B. Chen, Y. Song, T. Zhang, W. Yang et al., Substantial undocumented infection
facilitates the rapid dissemination of novel coronavirus (sars-cov-2), Science, 368 (2020), 489–
493.

15. W. O. Kermack, A. G. McKendrick, Contributions to the mathematical theory of epidemics.
ii.—the problem of endemicity, Bull. Math. Biol., 138 (1932), 55–83.

16. C. Zheng, Complex network propagation effect based on sirs model and research on the
necessity of smart city credit system construction, Alex. Eng. J., 61 (2022), 403–418.
https://doi.org/10.1016/j.aej.2021.06.004

17. Z. Zhao, L. Pang, Y. Chen, Nonsynchronous bifurcation of sirs epidemic model with birth pulse
and pulse vaccination, Nonlinear Dyn., 79 (2015), 2371–2383. https://doi.org/10.1007/s11071-
014-1818-y

18. D. Saikia, K. Bora, M. P. Bora, Covid-19 outbreak in india: An seir model-based analysis, Non-
linear Dyn.,104 (2021), 4727–4751.

Mathematical Biosciences and Engineering Volume 19, Issue 11, 10846–10863.

http://dx.doi.org/https://doi.org/10.1016/j.jpha.2021.03.006
http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.1007/s11071-020-06019-1
http://dx.doi.org/https://doi.org/10.1007/s11071-021-06517-w
http://dx.doi.org/https://doi.org/10.1016/j.aej.2020.08.028
http://dx.doi.org/https://doi.org/10.1007/s13753-020-00294-7
http://dx.doi.org/https://doi.org/10.1007/s13753-020-00294-7
http://dx.doi.org/https://doi.org/10.1007/s11071-020-05919-6
http://dx.doi.org/https://doi.org/10.1007/s11071-020-05919-6
http://dx.doi.org/https://doi.org/10.1007/s11071-020-05743-y
http://dx.doi.org/https://doi.org/10.1109/MSPEC.2020.9099929
http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.1016/j.aej.2021.06.004
http://dx.doi.org/https://doi.org/10.1007/s11071-014-1818-y
http://dx.doi.org/https://doi.org/10.1007/s11071-014-1818-y
http://dx.doi.org/


10862

19. C. Xu, Y. Yu, Y. Chen, Z. Lu, Forecast analysis of the epidemics trend of covid-19 in the
usa by a generalized fractional-order seir model, Nonlinear Dyn., 101 (2020), 1621–1634.
https://doi.org/10.1007/s11071-020-05946-3

20. R. K. Upadhyay, A. K. Pal, S. Kumari, P. Roy, Dynamics of an seir epidemic model
with nonlinear incidence and treatment rates, Nonlinear Dyn., 96 (2019), 2351–2368.
https://doi.org/10.1007/s11071-019-04926-6

21. P. Yarsky, Using a genetic algorithm to fit parameters of a covid-19 seir model for us states, Math.
Comput. Simulat., 185 (2021), 687–695. https://doi.org/10.1016/j.matcom.2021.01.022

22. N. ben Khedher, L. Kolsi, H. Alsaif, A multi-stage seir model to predict the potential of a new
covid-19 wave in ksa after lifting all travel restrictions, Alex. Eng. J., 60 (2021), 3965–3974.
https://doi.org/10.1016/j.aej.2021.02.058

23. N. Piovella, Analytical solution of seir model describing the free spread of the covid-19 pandemic,
Chaos Solitons Fract., 140 (2020), 110243.

24. S. J. Weinstein, M. S. Holland, K. E. Rogers, N. S. Barlow, Analytic solution of the
seir epidemic model via asymptotic approximant, Physica D., 411 (2020), 132633–132633.
https://doi.org/10.1016/j.physd.2020.132633
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of the basic reproduction number for dengue, zika and chikungunya across global climate zones,
Environ. Res., 182 (2020), 109114.

Mathematical Biosciences and Engineering Volume 19, Issue 11, 10846–10863.

http://dx.doi.org/https://doi.org/10.1007/s11071-020-05946-3
http://dx.doi.org/https://doi.org/10.1007/s11071-019-04926-6
http://dx.doi.org/https://doi.org/10.1016/j.matcom.2021.01.022
http://dx.doi.org/https://doi.org/10.1016/j.aej.2021.02.058
http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.1016/j.physd.2020.132633
http://dx.doi.org/https://doi.org/10.1016/j.mbs.2017.11.006
http://dx.doi.org/https://doi.org/10.1016/j.mbs.2017.11.010
http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/


10863

35. Y. Zhou, W. Sun, Y. Song, Z. Zheng, J. Lu, S. Chen, Hopf bifurcation analysis of a predator–prey
model with holling-ii type functional response and a prey refuge, Nonlinear Dyn., 97 (2019),
1439–1450. https://doi.org/10.1007/s11071-019-05063-w

36. P. Van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equi-
libria for compartmental models of disease transmission, Math Biosci. 180 (2002), 29–48.
https://doi.org/10.1016/S0025-5564(02)00108-6

37. M. Samsuzzoha, M. Singh, D. Lucy, Uncertainty and sensitivity analysis of the basic reproduction
number of a vaccinated epidemic model of influenza, Appl. Math. Model., 37 (2013), 903–915.
https://doi.org/10.1016/j.apm.2012.03.029

38. S. Tchoumi, M. Diagne, H. Rwezaura, J. Tchuenche, Malaria and covid-19 co-dynamics:
A mathematical model and optimal control, Appl. Math. Model., 99 (2021), 294–327.
https://doi.org/10.1016/j.apm.2021.06.016

39. B. Tang, X. Wang, Q. Li, N. L. Bragazzi, S. Tang, Y. Xiao, et al., Estimation of the transmission
risk of the 2019-ncov and its implication for public health interventions, J. Clin. Med., 9 (2020),
462.

40. G. Rohith, K. Devika, Dynamics and control of covid-19 pandemic with nonlinear incidence rates,
Nonlinear Dyn., 101 (2020), 2013–2026. https://doi.org/10.1007/s11071-020-05774-5

41. Wuhan Municipal Bureau of Statistics. Available from: http://tjj.wuhan.gov.cn.

42. G. Fan, H. Song, S. Yip, T. Zhang, D. He, Impact of low vaccine coverage on the
resurgence of covid-19 in central and eastern europe, One Health, 14 (2022), 100402.
https://doi.org/10.1016/j.onehlt.2022.100402

43. K. Adhikari, R. Gautam, A. Pokharel, K. N. Uprety, N. K. Vaidya, Transmission dynamics of
covid-19 in nepal: Mathematical model uncovering effective controls, J. Theor. Biol., 521 (2021),
110680.

44. A. Ali, F. S. Alshammari, S. Islam, M. A. Khan, S. Ullah, Modeling and analysis of the dynam-
ics of novel coronavirus (covid-19) with caputo fractional derivative, Results Phys., 20 (2021),
103669.

45. A. B. Gumel, E. A. Iboi, C. N. Ngonghala, E. H. Elbasha, A primer on using mathematics to
understand covid-19 dynamics: Modeling, analysis and simulations, Infect. Dis. Model., 6 (2021),
148–168.

46. A. M. Salman, I. Ahmed, M. H. Mohd, M. S. Jamiluddin, M. A. Dheyab, Scenario analysis of
covid-19 transmission dynamics in malaysia with the possibility of reinfection and limited medical
resources scenarios, Comput. Biol. Med., 133 (2021), 104372.

47. Q. Fan, W. Zhang, B. Li, D. J. Li, J. Zhang, F. Zhao, Association between abo blood group
system and covid-19 susceptibility in wuhan, Front. Cell. Infect. Microbiol., 10 (2020), 404.
https://doi.org/10.3389/fcimb.2020.00404

© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 19, Issue 11, 10846–10863.

http://dx.doi.org/https://doi.org/10.1007/s11071-019-05063-w
http://dx.doi.org/https://doi.org/10.1016/S0025-5564(02)00108-6
http://dx.doi.org/https://doi.org/10.1016/j.apm.2012.03.029
http://dx.doi.org/https://doi.org/10.1016/j.apm.2021.06.016
http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.1007/s11071-020-05774-5
http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.1016/j.onehlt.2022.100402
http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.3389/fcimb.2020.00404
http://creativecommons.org/licenses/by/4.0

	Introduction
	Modeling
	Basic reproductive number
	Stability of equilibrium point
	Stability analysis of disease-free equilibrium
	Stability of endemic equilibrium

	Numerical simulations and discussions
	Influence of incubation period
	Influence of infectious period
	Influence of isolation ratio
	Simulations of disease-free and endemic equilibria

	Conclusions

