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Abstract: In this paper, we apply the fractal-fractional derivative in the Atangana-Baleanu sense to
a model of the human immunodeficiency virus infection of CD4+ T-cells in the presence of a reverse
transcriptase inhibitor, which occurs before the infected cell begins producing the virus. The existence
and uniqueness results obtained by applying Banach-type and Leray-Schauder-type fixed-point theo-
rems for the solution of the suggested model are established. Stability analysis in the context of Ulam’s
stability and its various types are investigated in order to ensure that a close exact solution exists. Addi-
tionally, the equilibrium points and their stability are analyzed by using the basic reproduction number.
Three numerical algorithms are provided to illustrate the approximate solutions by using the Newton
polynomial approach, the Adam-Bashforth method and the predictor-corrector technique, and a com-
parison between them is presented. Furthermore, we present the results of numerical simulations in the
form of graphical figures corresponding to different fractal dimensions and fractional orders between
zero and one. We analyze the behavior of the considered model for the provided values of input fac-
tors. As a result, the behavior of the system was predicted for various fractal dimensions and fractional
orders, which revealed that slight changes in the fractal dimensions and fractional orders had no impact
on the function’s behavior in general but only occur in the numerical simulations.
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1. Introduction

Presently, human immunodeficiency virus (HIV) is still a serious health issue since it is a fatal,
incurable disease that has claimed the lives of millions of people. HIV is the cause of acquired immun-
odeficiency syndrome (AIDS), which reduces the body’s ability to fight disease and makes it vulnerable
to other infections [1]. When HIV gets into the body of healthy people, it targets CD4+ T-cells, which
are white blood cells that function as an essential part of the human immune system and quickly repro-
duce to damage the CD4+ T-cells. The deterioration of CD4+ T-cells can have a wide-ranging impact
on the protective capacity of a healthy immune system. However, due to medical evolution and effec-
tive HIV treatments, people living with HIV can live long and healthy lives. Antiretroviral therapy is
the use of HIV drugs to treat HIV infection and protect the immune system by preventing the virus
from replicating at various phases of the HIV life cycle [2], such as the phase of fusion inhibitors,
reverse transcription inhibitors (RTIs), integrase inhibitors and protease, see; [3–5].

Mathematical modeling of dynamical systems plays a significant role in many fields of applied and
natural sciences in term of understanding the dynamic behavior of problems in the real world, such as
COVID-19 [6], the DateJimbo-Kashiwara-Miwa equation [7], magnetohydrodynamics [8,9], Maxwell
materials [10], non-Newtonian fluids [11] and the problems described in the references cited therein.
Many mathematical models have been that are created related to the HIV epidemic. It is beneficial to
use a mathematical framework to determine the significance of the interaction between HIV infection
and CD4+ T-cells. Numerous models have been designed and expanded to represent the transmission
phenomena of CD4+ T-cells with HIV and describe the infection of HIV and its interaction with the
immune system. A large number of publications can be found for examples, e.g., Wang and Li [12]
created a model of HIV infection with CD4+ T-cells and investigated the global dynamics of the model
in 2006. After that, Srivastava et al. [13] demonstrated a model under an RTI, which occurs before
the virus is produced by the infected cell in 2009. They divided the class of infected CD4+ T-cells
into two classes, namely pre-reverse transcription (RT) and post-RT classes which denote the stage of
the infected cells in which the reverse transcription is not finished or completed, respectively. For the
results, they established stability analysis at equilibrium points (EPs) as well as performed numerical
simulations. See more examples in [14–19].

Fractional calculus is a huge body of knowledge that has piqued the curiosity of numerous re-
searchers. Modeling with fractional calculus tools provides additional advantages in term of describing
the dynamics of real-world problems with memory because a fractional-order derivative depends on
local conditions and historical events. Some studies have found that fractional-order models provide
more accurate and dependable information on dynamical behavior than ordinary differential integer-
order models,such as those previously developed for HIV [20,21], Rift Valley fever [22], dengue [23],
chemical kinetics [24], COVID-19 [25] and Zika [26]. Various fractional operators have been ex-
tensively utilized in mathematical models to solve a wide range of real-world problems. There exist
different types of operators based on the kernels utilized, such as the Liouville-Caputo operator which
involves the singularity of the kernel, the Caputo-Fabrizio (CF) fractional derivative which concerns
the exponential kernel, and the Atangana-Baleanu (AB) fractional derivative operator which deals with
the Mittag-Leffler (ML) kernel. There is also the newly established fractal-fractional (FF) operator
which combines fractional and fractal derivatives was introduced by Atangana [27]. The power law,
exponential law, and generalized ML law were convoluted with fractal derivatives to create this new
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operator. The three different kernels depend on two criteria: the fractional order and fractal dimen-
sion. The memory and fractal dimension of existing fractional-order derivatives are represented by
these derivatives. According to Atangana’s study and investigation, the FF order operator is a good
alternative to looking at the mathematical model for real-world problems.

However, the memory characteristic of fractional-order systems enables a more accurate prediction
and translation of the models by allowing for the incorporation of more historical data. Additionally,
the hereditary characteristic describes the genetic profile as well as the age and immune system con-
dition. Furthermore, dealing with fractional-order systems enables a more accurate understanding of
the HIV systems by taking into account their memory and hereditary properties, which are the intricate
behavioral patterns of biological systems. Using fractional derivatives and applying them to various
models, several different sorts of research investigations have been established for example, in 2018,
Bushnaq et al. [28] studied the existence theory and stability results of an HIV-AIDS infection model
with a CF fractional derivative. In 2020, a fractional mathematical model of the rotavirus epidemic
with the impacts of breastfeeding and vaccination was investigated using the AB derivative; it is dis-
cussed in [29]. In the same year, Naik et al. [30] applied a fractional-order HIV epidemic model in the
Caputo sense to study the effects of prostitution in the population on disease transmission. In 2021,
Shah et al. [31] incorporated CF into the HIV model proposed in [12] involving a source term for the
provision of novel CD4+ T-cells depending on the viral load. In 2021, Kongson et al. [32], the existence
theory and stability for the HIV CD4+ T-cells under the condition of treatment was investigated using
a generalized fractional derivative of the Caputo type. After that, the FF operators were applied to
analyze the dynamics of the dengue disease model with the hospitalization class of infected cases [33].
In 2022, a nonlinear fractional order system with a Caputo fractional derivative was proposed for an
SEIR epidemic model of HIV transmission; additionally, an approximate solution was established by
using the homotopy analysis method [34]. For more details and interesting analyses, see the examples
of models of the human liver [35], cancer [36], HIV/AIDS [37–41] and an epidemic [42].

Since the fractional differential operators can be either local or nonlocal which are effective tools
for explaining real-world issues, they are needed to develop mathematical models. In addition, the
most recent operators are the FF operators, and there has not been much research on their use and
application in the literature. In light of the foregoing reasoning, to make our work distinguishable
from that of others, we developed the HIV model presented in [13] by utilizing the FF derivative in the
AB sense because it gives a much more realistic result with a greater degree of freedom than integer
order. In terms of the FF derivatives, the considered model explains the memory effect, as well as
fractal qualities such as the fractal dimension β and fractional order α; these qualities are necessary for
describing real-world phenomena. The existence and uniqueness of the solutions for an HIV model
in the context of FF operators which also utilzes a variety of fixed-point theories (e.g., Banach and
Leray-Schauder types), are investigated. We present the stability of EPs using the basic reproduction
number (BRN) and analyze the stability of the solutions via various Ulam stability-based functions,
such as Ulam-Hyers (UH), generalized UH (GUH), UH-Rassias (UHR) and GUH-Rassias (GUHR)
functions. Moreover, we use the Newton polynomial approach, the Adams-Bashforth method and the
predictor-corrector technique to find the approximated solutions and achieve the numerical form for
the ML law of the proposed model for different fractal dimensions and fractional orders. We give a
comparison of the three numerical algorithms and also detect some dynamic behaviors of the solutions
using our simulations.
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The rest of this paper is structured as follows. Section 2 gives some foundational information on
FF operators in the AB sense, formulations of fixed-point theorems and the fractional HIV model
construction. In Section 3, we demonstrate the solution’s existence and positivity, as well as the EPs
and BRN, and conduct a stability study on the proposed model. The unique result for the FF-HIV model
is established by using Banach’s fixed-point theory, while the existence result is investigated by using
Leray-Schauder’s nonlinear fixed-point theory in Section 4. Various categories of stability results,
known as Ulam-type stability, are extensively verified in Section 5. In Section 6, the discussion of
numerical simulations utilizing the Newton polynomial, the Adams-Bashforth and predictor-corrector
methods are provided to analyze the behaviors of the considered model. Finally, we give the conclusion
of our paper in the last section.

2. Preliminaries

2.1. Background materials

In this subsection, we survey the associated findings using FF calculus. We look at the fundamentals
of FF calculus.

Definition 2.1. ( [27]). Assume f (t) is a differentiable function in (a, b). If f is a fractal dimension
on (a, b) with the order β ∈ (0, 1], then the Riemann-Liouville-type FF derivative of f of the order
α ∈ (0, 1] with the generalized ML kernel is defined by

FFM
t D

α,β
a f (t) =

AB(α)
1 − α

·
d

dtβ

∫ t

a
f (s)Eα

[
−

α

1 − α
(t − s)α

]
ds, (2.1)

where
d f (t)
dtβ

= lim
u→t

f (u) − f (t)
uβ − tβ

is the fractal derivative, AB(α) = 1 − α + α/Γ(α) with AB(0) = AB(1) = 1 and the ML function is
defined by

Eα(u) =

∞∑
k=0

uk

Γ(αk + 1)
, u, α ∈ C, Re(α) > 0, (2.2)

with C being the set of the complex numbers.

Definition 2.2. ( [27]). If f (t) is a continuous function in (a, b), then the FF integral of f with the
order α ∈ (0, 1] and fractal dimension β ∈ (0, 1] is defined by

FFM
t Iα,βa f (t) =

β(1 − α)tβ−1 f (t)
AB(α)

+
βα

AB(α)

∫ t

a
sα−1(t − s)α−1 f (s)ds. (2.3)

Definition 2.3. ( [27]). Let f be continuous on an open interval (a, b); the fractal Laplace transform
of the order α is given by

FLαp f (t) =

∫ ∞

0
f (s)e−pssα−1ds, α > 0. (2.4)
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Figure 1. Transfer diagram of the HIV model.

2.2. Construction of FF-HIV model (2.5)

Consider the model of drug therapy for HIV infection that is presented in [13], which studied the
antiretroviral therapy in the phase of RTI. The population was separated into four unknown variables
(T (t), I(t),V(t), L(t)), as shown in Figure 1.

They constructed the model as below.

dT
dt

= λ − kL(t)T (t) − µT (t) + (ηξ + b)I(t),

dI
dt

= kL(t)T (t) − (σ + ξ + b)I(t),

dV
dt

= (1 − η)ξI(t) − δV(t),

dL
dt

= NδV(t) − cL(t),

with the initial conditions T (0) = T0 ≥ 0, I(0) = I0 ≥ 0, V(0) = V0 ≥ 0 and L(0) = L0 ≥ 0;
descriptions of the unknown variables and parameters are described in Tables 1 and 2.

Table 1. Descriptions of dependent variables of the FF-HIV model (2.5).

Variable Description
T (t) The density of susceptible CD4+ T-cells
I(t) The density of infected CD4+ T-cells before reverse transcription (i.e., those

infected cells that are in the pre-RT class)
V(t) The density of infected CD4+ T-cells in which reverse transcription has been

completed (post-RT class) and are thus capable of producing virus
L(t) The virus density

This work further develops the model in [13] using a fractional framework, which allows for more
precise and realistic predictions of the dynamic behavior over time. Therefore, we are going to establish
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Table 2. Descriptions of dependent parameters of the FF-HIV model (2.5).

Parameter Description
λ The inflow rate of CD4+ T-cells
µ The natural rate of CD4+ T-cells
k The interaction-infection rate of CD4+ T-cells (here , infection means the at-

tachment and fusion of the virus to a cell)
η The efficacy of the RTI
σ The death rate of infected cells
ξ The transition rate from pre-RT infected CD4+ T-cells class to productively

infected class (post-RT)
b The reverting rate of infected cells to the uninfected class due to non-

completion of reverse transcription
δ The death rate of actively infected cells, which includes the possibility of

death by the bursting of infected T-cells
c The clearance rate of virus
N The total number of viral particles produced by an infected cell

the HIV model by using the FF operator in the AB sense (FF-HIV model). The proposed model is
described as follows: 

FFM
t D

α,β
a T (t) = λ − kL(t)T (t) − µT (t) + (ηξ + b)I(t),

FFM
t D

α,β
a I(t) = kL(t)T (t) − (σ + ξ + b)I(t),

FFM
t D

α,β
a V(t) = (1 − η)ξI(t) − δV(t),

FFM
t D

α,β
a L(t) = NδV(t) − cL(t),

(2.5)

which is subject to

T (0) = T0 ≥ 0, I(0) = I0 ≥ 0, V(0) = V0 ≥ 0, L(0) = L0;

and, α and β represent the fractional and fractal orders, respectively. FFMt D
α,β
a is the FF derivative with

the fractional order α ∈ (0, 1] and the fractal order β ∈ (0, 1] with the generalized ML kernel.

3. Model analysis

3.1. Existence and positivity of the solution

This subsection analyzes the existence and positivity of the FF-HIV model (2.5).

Theorem 3.1. There is a unique positive solution for the FF-HIV model (2.5) that remains in R4
+.

Moreover, the solution is non-negative.

Proof. In the FF-HIV model (2.5), we obtain its existence and uniqueness on the time interval (0,∞).
Next, we are going to show that the non-negative region R4

+ is a positivity invariant region. From the
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FF-HIV model (2.5), we get 

FFM
t D

α,β
a T (t) = λ + (ηξ + b)I(t) ≥ 0,

FFM
t D

α,β
a I(t) = kL(t)T (t) ≥ 0,

FFM
t D

α,β
a V(t) = ξI(t) ≥ 0,

FFM
t D

α,β
a L(t) = NδV(t) ≥ 0.

(3.1)

If (T (0),I(0),V(0),L(0)) ∈ R4
+, then, according to (3.1), the solutions cannot escape from the hyper-

plane.
Since

FFM
t D

α,β
a (T (t) + I(t)) = λ − µT (t) − σI(t) − (1 − η)ξI(t) ≤ λ − φµ.σ(T (t) + I(t)), (3.2)

where φµ.σ = min {µ, σ}, solving (3.2) by using the fractal Laplace transform (2.4), we obtain

lim sup
t→∞

(T (t) + I(t)) ≤
λ

φµ,σ
.

Without loss of generality, we can suppose that

lim sup
t→∞

T (t) ≤
λ

φµ,σ
and lim sup

t→∞
I(t) ≤

λ

φµ,σ
.

Then, we have the following biologically feasible region of the FF-HIV model (2.5):

Θ =

{
(T ,I,V,L) ∈ R4

+ : 0 ≤ T ,I ≤
λ

φµ,σ
, 0 ≤ V ≤ Φ, 0 ≤ L ≤ Ψ

}
with respect to the FF-HIV model (2.5), where

Φ =
ξλ(1 − η)
φµ,σδ

and Ψ =
Nξλ(1 − η)
φµ,σc

.

The proof is completed.

3.2. EPs and BRN

This subsection describes how to find the EPs of the FF-HIV model (2.5). We are going to determine
the EPs and the model’s BRN (R0). In the FF-HIV model (2.5), there are two types of possible EPs.
The first point is the point at which there is no disease in the group, which is called the disease-free EP
(E∗0). In the method of obtaining E∗0, we will be determining the right hand side of the FF-HIV model
(2.5) when equal to zero, with I(t) = 0,V(t) = 0 and L(t) = 0. Then,

E
∗
0 = (T ∗0 ,I

∗
0,V

∗
0,L

∗
0) =

(
λ

µ
, 0, 0, 0

)
. (3.3)

To analyze the stability of E∗0, we will focus on R0, which can be obtained via the next-generation
matrix (NGM) method [43, 44] for the FF-HIV model (2.5). To solve R0, we focus solely on the
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infectious classes of the FF-HIV model (2.5), i.e., I, V and L. The transmission matrix F and the
transition matrixV are acquired as follows:

F =


0 0 kλ

µ

0 0 0
0 0 0

 and V =


σ + ξ + b 0 0
−(1 − η)ξ δ 0

0 −Nδ c

 . (3.4)

Hence, the NGM is provided by

FV−1 =


kλ(1−η)ξN
µ(σ+ξ+b)c

kλN
µc

kλ
µc

0 0 0
0 0 0

 . (3.5)

Then, the spectral radius of the NGM (3.5) provides R0 = ρ(FV−1), where

R0 =
kλ(1 − η)ξN

(σ + ξ + b)µc
(3.6)

and ρ represents the spectral radius.

Theorem 3.2. The FF-HIV model (2.5) at the disease-free EP (E0) is locally asymptotically stable
(LAS) whenever R0 < 1, with the necessary and sufficient conditions:∣∣∣arg(θi)

∣∣∣ > απ

2
. (3.7)

Proof. In order to investigate the sufficient conditions for the FF-HIV model (2.5), we must obtain the
eigenvalues θi of the Jacobian matrix (J(E0)) by computing the FF-HIV model (2.5) at E0, which gives

J(E0) =


−µ ηξ + b 0 − kλ

µ

0 −(σ + ξ + b) 0 kλ
µ

0 (1 − η)ξ −δ 0
0 0 Nδ −c

 .
Then, we obtain the characteristic equation as follows:

θ4 + ω3θ
3 + ω2θ

2 + ω1θ + ω0 = 0, (3.8)

where

ω0 = (σ + ξ + b)δcµ − kλ(1 − η)ξNδ,

ω1 = (σ + ξ + b)δc −
kλ
µ

(1 − η)ξNδ + µ((c + δ)(σ + ξ + b) + cδ),

ω2 = (c + δ)(σ + ξ + b) + cδ + µ(c + δ + σ + ξ + b),
ω3 = σ + ξ + b + c + δ + µ.

The coefficients given by ωi (i = 0, 1, 2, 3) are positive. Then, we have the eigenvalue θ = −µ,
which provides negative real parts; the others can be obtained by solving

θ3 + ε2θ
2 + ε1θ + ε0 = 0, (3.9)
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where

ε0 = (σ + ξ + b)δc −
kλ
µ

(1 − η)ξNδ = (σ + ξ + b)δc(1 − R0),

ε1 = (c + δ)(σ + ξ + b) + cδ,

ε2 = σ + ξ + b + c + δ.

Obviously, the coefficients ε1 and ε2 are positive, while ε0 is positive whenever R0 < 1, which
corresponds to the assumption. Since

kλ
µ

(1 − η)ξNδ > 0 and ε1ε2 > (σ + ξ + b)δc,

we have that

ε1ε2 > (σ + ξ + b)δc −
kλ
µ

(1 − η)ξNδ = ε0.

Thus, by the Routh-Hurwitz conditions given in [45], if ε2 > 0, ε0 > 0 and ε1ε2 > ε0 , we can
conclude that all roots of (3.9) have negative real parts. This assures the assumption of (3.7) for all
α ∈ (0, 1]. Therefore, the model (2.5) at the steady-state E0 is LAS if R0 < 1.

As we know, the value of R0 provides the knowledge needed to estimate the transmission potential
of an infectious disease over time. The FF-HIV model (2.5) has an endemic EP (E∗1) when R0 > 1.
To solve E∗1, we will be applying the fact that all unknown variables T (t), I(t), V(t) and L(t) of the
FF-HIV model (2.5) are non-negative. It is possible to compute it by equating each equation of the
FF-HIV model (2.5) to zero, that is,

FFM
t D

α,β
a T (t) = 0, FFM

t D
α,β
a I(t) = 0, FFM

t D
α,β
a V(t) = 0, FFM

t D
α,β
a L(t) = 0, (3.10)

which yields that E∗1 = (T ∗1 ,I
∗
1,V

∗
1,L

∗
1), where the components of E∗1 are given by

T ∗1 =
(σ + ξ + b)c
Nξk(1 − η)

, I∗1 =
λ − µT ∗1

σ + ξ(1 − η)
, V∗1 =

ξ(1 − η)I∗1
δ

, L∗1 =
NαδαV∗1

cα
. (3.11)

Theorem 3.3. The FF-HIV model (2.5) at the endemic EP (E∗1) is LAS whenever R0 > 1, with the
necessary and sufficient conditions given by (3.7) and

ω1ω2ω3 > ω
2
1 + ω2

3ω0, (3.12)

where

ω0 = cδkL∗1(σ + ξ(1 − η)) = δµc(σ + ξ + b)(R0 − 1),
ω1 = cδ(µ + kL∗1) + (c + δ)(µσ + µξ + µb + σkL∗1 + (1 − η)ξkL∗1),
ω2 = (c + δ)(σ + ξ + b + µ + kL∗1) + cδ + µ(σ + ξ + b) + kL∗1(σ + (1 − η)ξ),
ω3 = µ + kL∗1 + σ + ξ + b + δ + c.
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Proof. The Jacobian matrix computed at E∗1 is provided as follows:

J(E∗1) =


−µ − kL∗1 ηξ + b 0 −kT ∗1

kL∗1 −(σ + ξ + b) 0 kT ∗1
0 (1 − η)ξ −δ 0
0 0 Nδ −c

 .
Then, the characteristic equation of J(E∗1) is

θ4 + ω3θ
3 + ω2θ

2 + ω1θ + ω0 = 0. (3.13)

We can see that ω1 and ω3 are positive, while ω0 is positive if R0 > 1. We utilize the proposition
given in [46], which applies the Routh-Hurwitz criterion that, if the given condition (3.12) is satisfied,
then all real eigenvalues and all real parts of complex conjugate eigenvalues of (3.13) are negative,
which ensures the condition (3.7) for all α ∈ (0, 1]. Therefore, the point E∗1 is LAS.

4. Existence properties for the FF-HIV model (2.5)

In this section, we establish the uniqueness, existence and stability properties with fixed-point the-
orems. To demonstrate the existence and unique results of solutions for the FF-HIV model (2.5), we
define a Banach space B = C(J × R4,R) equipped with the norm

‖U‖B = sup
t∈J
{|T (t)|} + sup

t∈J
{|I(t)|} + sup

t∈J
{|V(t)|} + sup

t∈J
{|L(t)|} .

Since the integral is differentiable, the FF-HIV model (2.5) can be rewritten as

ABR
t D

α,β
a T (t) = βtβ−1U1(t,T ,I,V,L),

ABR
t D

α,β
a I(t) = βtβ−1U2(t,T ,I,V,L),

ABR
t D

α,β
a V(t) = βtβ−1U3(t,T ,I,V,L),

ABR
t D

α,β
a L(t) = βtβ−1U4(t,T ,I,V,L),

(4.1)

where 

U1(t,T ,I,V,L) = λ − kL(t)T (t) − µT (t) + (ηξ + b)I(t),

U2(t,T ,I,V,L) = kL(t)T (t) − (σ + ξ + b)I(t),

U3(t,T ,I,V,L) = (1 − η)ξI(t) − δV(t),

U4(t,T ,I,V,L) = NδV(t) − cL(t),

(4.2)

For the sake of discussion, we can rewrite the system (4.1) to have the following form:
ABR
t D

α,β
a U(t) = βtβ−1H(t,U(t)),

U(0) = U0 ≥ 0, 0 ≤ t < T < ∞,
(4.3)
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where

U(t) =


T (t)
I(t)
V(t)
L(t)

 , U0 =


T0

I0

V0

L0

 ,

U1(t)
U2(t)
U3(t)
U4(t)

 =


U1(t,T ,I,V,L)
U2(t,T ,I,V,L)
U3(t,T ,I,V,L)
U4(t,T ,I,V,L)

 (4.4)

and

H(t,U(t)) =


U1(t)
U2(t)
U3(t)
U4(t)

 =


λ − kL(t)T (t) − µT (t) + (ηξ + b)I(t)

kL(t)T (t) − (σ + ξ + b)I(t)
(1 − η)ξI(t) − δV(t)

NδV(t) − cL(t)

 . (4.5)

By replacing ABRt D
α,β
a with ABCt D

α,β
a and applying the AB-fractional integral, we obtain

U(t) = U(0) +
(1 − α)β
AB(α)

tβ−1H(t,U(t)) +
αβ

AB(α)Γ(α)

∫ t

a
(t − s)α−1sβ−1H(s,U(s))ds. (4.6)

Define an operator Q : B → B as

(QU)(t) = U(0) +
(1 − α)β
AB(α)

tβ−1H(t,U(t)) +
αβ

AB(α)Γ(α)

∫ t

a
(t − s)α−1sβ−1H(s,U(s))ds. (4.7)

Clearly, the problem (4.3) has the solution if and only if Q has the fixed points.

4.1. Uniqueness property

Theorem 4.1. Suppose that H ∈ C(J × R4,R) satisfies the following condition:

(A1) There is a number LH > 0 such that

|H(t,U1(t)) − H(t,U2(t))| ≤ LH |U1(t) − U2(t)|

for all U1, U2 ∈ B and t ∈ J . If(
(1 − α)β
AB(α)

tβ−1 +
αΓ(β + 1)

AB(α)Γ(α + β)
Tα−β+1

)
LH < 1, (4.8)

then the problem (4.3) has one solution, which signifies that the FF-HIV model (2.5) has a unique
solution.

Proof. First, we will tranform (4.3), corresponding to (2.5), into U = QU (fixed-point problem).
Let H∗ be a non-negative number so that supt∈J |H(t, 0)| = H∗ < +∞. Set a bounded, closed and

convex subsetDr1 = {U ∈ B : ‖U‖ ≤ r1}, where rU is chosen so that

r1 ≥
‖U0‖ +

(
(1−α)β
AB(α) tβ−1 +

αΓ(β+1)
AB(α)Γ(α+β)T

α−β+1
)
H∗

1 −
(

(1−α)β
AB(α) tβ−1 +

αΓ(β+1)
AB(α)Γ(α+β)T

α−β+1
)
LH

.

Next, the proof is separated into two steps.
Step 1. We present QDr1 ⊂ Dr1 .
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For any U ∈ Dr1 , we obtain

|(QU)(t)| ≤ |U(0)| +
(1 − α)β
AB(α)

tβ−1 |H(t,U(t))| +
αβ

AB(α)Γ(α)

∫ t

0
(t − s)α−1sβ−1 |H(s,U(s))| ds

≤ |U(0)| +
(1 − α)β
AB(α)

tβ−1
[
|H(t,U(t)) − H(t, 0)| + |H(t,U(t))|

]
+

αβ

AB(α)Γ(α)

∫ t

0
(t − s)α−1sβ−1

[
|H(s,U(s)) − H(s, 0)| + |H(s,U(s))|

]
ds

≤ ‖U0‖ +
(1 − α)β
AB(α)

tβ−1
[
LHr1 + H∗

]
+

αβ

AB(α)Γ(α)
tα−1−β+1

∫ t

0

(
1 −

s
t

)α−1 ( s
t

)β−1
ds

[
LHr1 + H∗

]
≤ ‖U0‖ +

(1 − α)β
AB(α)

tβ−1
[
LHr1 + H∗

]
+

αβ

AB(α)Γ(α)
tα−β+1

∫ 1

0
(1 − u)α−1 uβ−1du

[
LHr1 + H∗

]
≤ ‖U0‖ +

(1 − α)β
AB(α)

tβ−1
[
LHr1 + H∗

]
+

αβ

AB(α)Γ(α)
tα−β+1 ·

Γ(β)Γ(α)
Γ(α + β)

[
LHr1 + H∗

]
≤ ‖U0‖ +

(
(1 − α)β
AB(α)

tβ−1 +
αΓ(β + 1)

AB(α)Γ(α + β)
Tα−β+1

) (
LHr1 + H∗

)
,

which yields that QDr1 ⊂ Dr1 .
Step 2. We present that Q is a contraction.
For each U1, U2 ∈ Dr1 and t ∈ J , we obtain

|(QU1)(t) − (QU2)(t)| ≤
(1 − α)β
AB(α)

tβ−1 |H(t,U1(t)) − H(t,U2(t))|

+
αβ

AB(α)Γ(α)

∫ t

0
(t − s)α−1sβ−1 |H(s,U1(s)) − H(s,U2(s))| ds

≤

(
(1 − α)β
AB(α)

tβ−1 +
αΓ(β + 1)

AB(α)Γ(α + β)
Tα−β+1

)
LH ‖U1 − U2‖

≤

(
(1 − α)β
AB(α)

tβ−1
min +

αΓ(β + 1)
AB(α)Γ(α + β)

Tα−β+1
)
LH ‖U1 − U2‖ ,

where tmin = min{t ∈ J}, which yields that

‖(QU1) − (QU2)‖ ≤
(
(1 − α)β
AB(α)

tβ−1
min +

αΓ(β + 1)
AB(α)Γ(α + β)

Tα−β+1
)
LH ‖U1 − U2‖ .

Since ([(1 − α)βtβ−1
min ]/AB(α) + [αΓ(β + 1)Tα−β+1]/[AB(α)Γ(α + β)])LH < 1, by the summary of the

Banach contraction principle (defined as in [47]), then Q is called a contraction. Therefore, Q has the
unique fixed-point, which is the unique solution of the FF-HIV model (2.5).

4.2. Existence property

Theorem 4.2. Suppose that H ∈ C(J × R4,R) satisfies the following condition:

(A2) There are non-decreasing functions G ∈ C(R+,R+) and q ∈ C(J ,R+), such that

|H(t,U(t))| ≤ q(t)G(‖U(t)‖), ∀(t, u) ∈ J × R,

with q∗ = supt∈J {q(t)}.
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(A3) There is a numberM∗ > 0 such that

M∗

‖U0‖ +
(

(1−α)β
AB(α) tβ−1

min +
αΓ(β+1)

AB(α)Γ(α+β)T
α+β−1

)
q∗G(M∗)

> 1.

Then, the problem (4.3), which is consistent with the FF-HIV model (2.5), has at least one solution
U ∈ B.

Proof. Suppose that Q is defined by (4.7). In the first procedure, we show that Q maps bounded sets
(balls) into bounded sets in B. For any number r2 > 0, set Dr2 := {U ∈ B : ‖U‖ ≤ r2} is a bounded set
(ball) in B. From (A2), for t ∈ J , we have

|(QU)(t)| ≤ ‖U0‖ +
1 − α
AB(α)

βtβ−1 |H(t,U(t))| +
αβ

AB(α)Γ(α)

∫ t

0
(t − s)α−1sβ−1 |H(s,U(s))| ds

≤ ‖U0‖ +

(
(1 − α)β
AB(α)

tβ−1
min +

αΓ(β + 1)
AB(α)Γ(α + β)

Tα+β−1
)

q∗G(‖U‖),

where tmin = min{t ∈ J}. It follows that

‖QU‖ ≤ ‖U0‖ +

(
(1 − α)β
AB(α)

tβ−1
min +

αΓ(β + 1)
AB(α)Γ(α + β)

Tα+β−1
)

q∗G(‖U‖).

Now, we present that Q maps bounded sets into equicontinuous sets of B. Let t1, t2 ∈ J given
t1 < t2, and for any U ∈ Dr2 . Hence, we obtain that

|(QU)(t2) − (QU)(t1)|

≤
(1 − α)β
AB(α)

∣∣∣tβ−1
2 H(t2,U(t2)) − tβ−1

1 H(t1,U(t1))
∣∣∣

+
αβ

AB(α)Γ(α)

∣∣∣∣∣∣
∫ t2

0
(t2 − s)α−1sβ−1H(s,U(s))ds −

∫ t1

0
(t1 − s)α−1sβ−1H(s,U(s))ds

∣∣∣∣∣∣
≤

(
(1 − α)β
AB(α)

∣∣∣tβ−1
2 − tβ−1

1

∣∣∣ +
αΓ(β + 1)

AB(α)Γ(α + β)

∣∣∣tα+β−1
2 − tα+β−1

1

∣∣∣) q∗G(‖U‖).

Obviously, the above result is independent of U ∈ Dr2 when t2 → t1; then, |(QU)(t2) − (QU)(t1)| →
0. Consequently, ‖(QU)(t2) − (QU)(t1)‖ → 0 as t2 → t1. Thus, Q is equicontinuous. So, by the
Arzelá-Ascoli theorem (defined as in [48]), Q is completely continuous.

Finally, we present that there exists an open set D ⊂ B with U , υQU for 0 < υ < 1 and U ∈ ∂D.
Assume that U ∈ B is a solution of U = υQU for each 0 < υ < 1. Then, for any t ∈ J , we will present
that Q is bounded; thus, we have that

|U| = |υQU| ≤ ‖U0‖ +

(
(1 − α)β
AB(α)

tβ−1
min +

αΓ(β + 1)
AB(α)Γ(α + β)

Tα+β−1
)

q∗G(‖U‖). (4.9)

Taking the norm of both sides of (4.9) for any t ∈ J , yields that

‖U‖

‖U0‖ +
(

(1−α)β
AB(α) tβ−1

min +
αΓ(β+1)

AB(α)Γ(α+β)T
α+β−1

)
q∗G(‖U‖)

≤ 1.
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In view of (A3), there isM∗ > 0 such that ‖U‖ , M∗. Define D := {U ∈ B : ‖U‖ < M∗ + 1} and
E = D ∪Dr2 . Clearly, Q : E → B is continuous and completely continuous. By the choice of D, there
is no U ∈ ∂D such that U = υQU for some 0 < υ < 1.

Hence, by using a nonlinear alternative of the Leray-Schauder type (defined as in [47]), we can
conclude that Q has the fixed-point U ∈ D, which suggests that the FF-HIV model (2.5) has at least
one solution U ∈ B. The proof is completed.

5. Ulam stability for the FF-HIV model (2.5)

In this section, we are going to prove different types of Ulam’s stability for the FF-HIV model (2.5).
First, we will provide the definitions of Ulam’s stability that will be used in this section. Assume that
we have a real number ε ∈ R+ and a function KH ∈ C(J ,R+).

Definition 5.1. The FF-HIV model (2.5) is called UH-stable if there is a constant RH > 0 so that, for
every ε > 0 and any solution Z ∈ B of∣∣∣ABRt D

α,β
a Z(t) − H(t,Z(t))

∣∣∣ ≤ ε, ∀t ∈ J , (5.1)

there exists the solution U ∈ B of the FF-HIV model (2.5) with

|Z(t) − U(t)| ≤ RHε, t ∈ J , (5.2)

where ε = max(εi)T and RH = max(RHi)
T , i = 1, 2, 3, 4.

Definition 5.2. The FF-HIV model (2.5) is called GUH-stable if there is a function KH ∈ C(R+,R+)
given KH(0) = 0 so that, for every solution Z ∈ B of∣∣∣ABRt D

α,β
a Z(t) − H(t,Z(t))

∣∣∣ ≤ εKH(t), ∀t ∈ J , (5.3)

there exists the solution U ∈ B of the FF-HIV model (2.5) so that

|Z(t) − U(t)| ≤ KH(ε), t ∈ J , (5.4)

where ε = max(εi)T and RH = max(KHi)
T , i = 1, 2, 3, 4.

Definition 5.3. The FF-HIV model (2.5) is called RUH-stable with respect to KH ∈ C(J ,R+) if there
is a constant RKH > 0 so that, for every ε > 0 and any solution Z ∈ B of (5.3), there is a solution
U ∈ B of the FF-HIV model (2.5) with

|Z(t) − U(t)| ≤ RKHεKH(t), t ∈ J , (5.5)

where ε = max(εi)T , RKH = max(RKHi
)T and KH = max(KHi)

T , i = 1, 2, 3, 4.

Definition 5.4. The FF-HIV model (2.5) is called GUHR-stable with respect to KH(J ,R+) if there is
a constant RKH > 0 so that, for every solution Z ∈ B of∣∣∣ABRt D

α,β
a Z(t) − H(t,Z(t))

∣∣∣ ≤ KH(t), ∀t ∈ J , (5.6)

there is the solution U ∈ B of the FF-HIV model (2.5) with

|Z(t) − U(t)| ≤ RKHKH(t), t ∈ J , (5.7)

where RKH = max(RKHi
)T and KH = max(KHi)

T , i = 1, 2, 3, 4.
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Remark 5.5. It is obvious that

(i) Definition 5.1 implies Definition 5.2.
(ii) Definition 5.3 implies Definition 5.4.

(iii) Definition 5.3 with KH(t) = 1 implies Definition 5.1.

Remark 5.6. Z ∈ B is the solution of (5.1) if and only if there isW ∈ B (which depends on Z) so that
the following properties apply:

(H1) |W(t)| ≤ ε withW = max(Wi)T for i = 1, 2, 3, 4 and t ∈ J .
(H2) ABRt D

α,β
a Z(t) = H(t,Z) +W(t) for all t ∈ J .

Remark 5.7. Z ∈ B is the solution of (5.3) if and only if there is V ∈ B (which depends on Z) so that
the following properties apply:

(H3) |V(t)| ≤ εKH(t) withW = max(Wi)T and KH = (KHi)
T for i = 1, 2, 3, 4 and t ∈ J .

(H4) ABRt D
α,β
a Z(t) = H(t,Z) + V(t) for all t ∈ J .

5.1. UH and GUH stability properties

Lemma 5.8. Assume that α ∈ (0, 1] and β ∈ (0, 1]. If Z ∈ B is the solution of (5.1) then, Z is the
solution of ∣∣∣∣∣∣Z − GZ(t) − αβ

AB(α)Γ(α)

∫ t

a
(t − s)α−1sβ−1H(s,Z(s))ds

∣∣∣∣∣∣
≤

(
(1 − α)β
AB(α)

tβ−1
min +

αΓ(β + 1)
AB(α)Γ(α + β)

Tα+β−1
)
ε, (5.8)

where GZ(t) = Z(0) +
(1−α)β
AB(α) tβ−1H(t,Z(t)).

Proof. Assume that Z is the solution of (5.1). By applying (H2) in Remark 5.6, we get
ABR
t D

α,β
a Z(t) = βtβ−1H(t,Z(t)) +W(t),

Z(0) = Z0 ≥ 0, 0 ≤ t < T < ∞.
(5.9)

Hence, the solution of (5.9) is given by

Z(t) = Z(0) +
(1 − α)β
AB(α)

tβ−1H(t,Z(t)) +
αβ

AB(α)Γ(α)

∫ t

a
(t − s)α−1sβ−1H(s,Z(s))ds

+
(1 − α)β
AB(α)

tβ−1W(t) +
αβ

AB(α)Γ(α)

∫ t

a
(t − s)α−1sβ−1W(s)ds.

By using (H1) in Remark 5.6, we have that∣∣∣∣∣∣Z − GZ(t) − αβ

AB(α)Γ(α)

∫ t

a
(t − s)α−1sβ−1H(s,Z(s))ds

∣∣∣∣∣∣
≤

(1 − α)β
AB(α)

tβ−1 |W(t)| +
αβ

AB(α)Γ(α)

∫ t

a
(t − s)α−1sβ−1 |W(s)| ds

≤

(
(1 − α)β
AB(α)

tβ−1
min +

αΓ(β + 1)
AB(α)Γ(α + β)

Tα+β−1
)
ε.

Hence, the property (5.8) is achieved.
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Theorem 5.9. AssumeH ∈ C(J×R,R) for anyU ∈ B. If (A1) and (4.8) are satisfied, then the FF-HIV
model (2.5) is UH-stable on J .

Proof. Let ε > 0 be a real number and Z ∈ B be the solution of (5.1). Suppose that U ∈ B is the unique
solution of the problem 

ABR
t D

α,β
a U(t) = βtβ−1H(t,U(t)),

U(0) = U0 ≥ 0, 0 ≤ t < T < ∞,
(5.10)

where U(t) is provided by

U(t) = GU(t) +
αβ

AB(α)Γ(α)

∫ t

a
(t − s)α−1sβ−1H(s,U(s))ds

when GU(t) = U(0) +
(1−α)β
AB(α) tβ−1H(t,U(t)).

From Lemma 5.8 with (A1) in Theorem 4.1, we have that

|Z(t) − U(t)| ≤

∣∣∣∣∣∣Z(t) − GU(t) −
αβ

AB(α)Γ(α)

∫ t

a
(t − s)α−1sβ−1H(s,U(s))ds

∣∣∣∣∣∣
≤

∣∣∣∣∣∣Z(t) − GZ(t) −
αβ

AB(α)Γ(α)

∫ t

a
(t − s)α−1sβ−1H(s,Z(s))ds

∣∣∣∣∣∣
+

αβ

AB(α)Γ(α)

∫ t

a
(t − s)α−1sβ−1

∣∣∣∣H(s,Z(s)) − H(s,U(s))
∣∣∣∣ds

≤

(
(1 − α)β
AB(α)

tβ−1
min +

αΓ(β + 1)
AB(α)Γ(α + β)

Tα+β−1
)
ε +

αΓ(β + 1)
AB(α)Γ(α + β)

Tα+β−1LH |Z(t) − U(t)| .

Setting

RH :=
(1−α)β
AB(α) tβ−1

min +
αΓ(β+1)

AB(α)Γ(α+β)T
α+β−1

1 − αΓ(β+1)
AB(α)Γ(α+β)T

α+β−1LH

yields that
|Z(t) − U(t)| ≤ RHε.

Therefore, we can conclude that the FF-HIV model (2.5) is UH-stable.

Corollary 5.10. Setting KH(ε) = RHε with KH(0) = 0 in Theorem 5.9, implies that the FF-HIV model
(2.5) is GUH-stable.

5.2. UHR and GUHR stability properties

Next, we will prove the UHR and GUHR stability results. Assume the following:

(H5) There exist an increasing function KH ∈ B and a number CKH > 0 so that
FFM
t Iα,βa KH(t) ≤ CKHKH(t), ∀t ∈ J . (5.11)

Lemma 5.11. Assume that α ∈ (0, 1] and β ∈ (0, 1]. If Z ∈ B is the solution of (5.3), then Z is the
solution of ∣∣∣∣∣∣Z − GZ(t) − αβ

AB(α)Γ(α)

∫ t

a
(t − s)α−1sβ−1H(s,Z(s))ds

∣∣∣∣∣∣ ≤ εCKHKH(t), (5.12)

where GZ(t) = Z(0) +
(1−α)β
AB(α) tβ−1H(t,Z(t)).
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Proof. Let Z be a solution of (5.3). By applying (H4) in Remark 5.7, we obtain the following:
ABR
t D

α,β
a Z(t) = βtβ−1H(t,Z(t)) + V(t),

Z(0) = Z0 ≥ 0, 0 ≤ t < T < ∞.
(5.13)

Hence, the solution of (5.13) is given by

Z(t) = Z(0) +
(1 − α)β
AB(α)

tβ−1H(t,Z(t)) +
αβ

AB(α)Γ(α)

∫ t

a
(t − s)α−1sβ−1H(s,Z(s))ds

+
(1 − α)β
AB(α)

tβ−1V(t) +
αβ

AB(α)Γ(α)

∫ t

a
(t − s)α−1sβ−1V(s)ds.

By using (H3) in Remark 5.7, we have that∣∣∣∣∣∣Z − GZ(t) − αβ

AB(α)Γ(α)

∫ t

a
(t − s)α−1sβ−1H(s,Z(s))ds

∣∣∣∣∣∣
≤

(1 − α)β
AB(α)

tβ−1 |V(t)| +
αβ

AB(α)Γ(α)

∫ t

a
(t − s)α−1sβ−1 |V(s)| ds

≤ εCKHKH(t).

Then, the property (5.12) is achieved.

Theorem 5.12. Assume H ∈ C(J × R,R) for every U ∈ B. If (A1), (H5) and (4.8) are satisfied, then
the FF-HIV model (2.5) is UHR-stable on J .

Proof. Let ε > 0 be a real constant and Z ∈ B be the solution of (5.6). Suppose that U ∈ B is the
unique solution of 

ABR
t D

α,β
a U(t) = βtβ−1H(t,U(t)),

U(0) = U0 ≥ 0, 0 ≤ t < T < ∞,
(5.14)

where U(t) is provided by

U(t) = GU(t) +
αβ

AB(α)Γ(α)

∫ t

a
(t − s)α−1sβ−1H(s,U(s))ds

when GU(t) = U(0) +
(1−α)β
AB(α) tβ−1H(t,U(t)).

From Lemma 5.11 with (A1) in Theorem 4.1 and (H5), we obtain that

|Z(t) − U(t)| ≤

∣∣∣∣∣∣Z(t) − GU(t) −
αβ

AB(α)Γ(α)

∫ t

a
(t − s)α−1sβ−1H(s,U(s))ds

∣∣∣∣∣∣
≤

∣∣∣∣∣∣Z(t) − GZ(t) −
αβ

AB(α)Γ(α)

∫ t

a
(t − s)α−1sβ−1H(s,Z(s))ds

∣∣∣∣∣∣
+

αβ

AB(α)Γ(α)

∫ t

a
(t − s)α−1sβ−1

∣∣∣∣H(s,Z(s)) − H(s,U(s))
∣∣∣∣ds

≤ εCKHKH(t) +
αΓ(β + 1)

AB(α)Γ(α + β)
Tα+β−1LH |Z(t) − U(t)| .
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Setting

RKH :=
CKHKH(t)

1 − αΓ(β+1)
AB(α)Γ(α+β)T

α+β−1LH

yields that
|Z(t) − U(t)| ≤ RKHεKH(t).

Hence, we can conclude that the FF-HIV model (2.5) is UHR-stable.

Corollary 5.13. Setting ε = 1 in |Z(t) − U(t)| ≤ RKHεKH(t), implies that the FF-HIV model (2.5) is
GUHR-stable.

6. Numerical schemes with the generalized ML kernel for the FF-HIV model (2.5)

In this section, we apply three powerful algorithms for the FF-HIV model (2.5) by implementing
the Newton polynomial approach, the Adams-Bashforth method and the predictor-corrector method.
The numerical simulations are described and presented, as well as a comparison of the three methods,
which will be handled later in the subsection on dynamical discussion.

In order to obtain the numerical schemes, we recall (4.3) and (4.6), which was obtained after inte-
grating (4.3) on both sides. We now have

FFM
t D

α
aT (t) = βtβ−1U1(t,T ,I,V,L),

FFM
t D

α
aI(t) = βtβ−1U2(t,T ,I,V,L),

FFM
t D

α
aV(t) = βtβ−1U3(t,T ,I,V,L),

FFM
t D

α
aL(t) = βtβ−1U4(t,T ,I,V,L).

(6.1)

The following result was obtained by using the AB-fractional integral; we do not show I(t), V(t)
and L(t) because they contain the same steps.

T (t) = T (0) +
(1 − α)β
AB(α)

tβ−1U1(t,T ,I,V,L)

+
αβ

AB(α)Γ(α)

∫ t

a
(t − s)α−1sβ−1U1(s,T ,I,V,L)ds, (6.2)

I(t) = I(0) +
(1 − α)β
AB(α)

tβ−1U2(t,T ,I,V,L)

+
αβ

AB(α)Γ(α)

∫ t

a
(t − s)α−1sβ−1U2(s,T ,I,V,L)ds, (6.3)

V(t) = V(0) +
(1 − α)β
AB(α)

tβ−1U3(t,T ,I,V,L)

+
αβ

AB(α)Γ(α)

∫ t

a
(t − s)α−1sβ−1U3(s,T ,I,V,L)ds, (6.4)

L(t) = L(0) +
(1 − α)β
AB(α)

tβ−1U4(t,T ,I,V,L)
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+
αβ

AB(α)Γ(α)

∫ t

a
(t − s)α−1sβ−1U4(s,T ,I,V,L)ds. (6.5)

We rewrite (6.2)–(6.5) at t = tn+1 = (n + 1)∆t, which gives

Tn+1 = T0 +
(1 − α)β
AB(α)

tβ−1
n U1(tn,Tn,In,Vn,Ln)

+
αβ

AB(α)Γ(α)

∫ tn+1

a
(tn+1 − s)α−1sβ−1U1(s,T ,I,V,L)ds, (6.6)

In+1 = I0 +
(1 − α)β
AB(α)

tβ−1
n U2(tn,Tn,In,Vn,Ln)

+
αβ

AB(α)Γ(α)

∫ tn+1

a
(tn+1 − s)α−1sβ−1U2(s,T ,I,V,L)ds. (6.7)

Vn+1 = V0 +
(1 − α)β
AB(α)

tβ−1
n U3(tn,Tn,In,Vn,Ln)

+
αβ

AB(α)Γ(α)

∫ tn+1

a
(tn+1 − s)α−1sβ−1U3(s,T ,I,V,L)ds, (6.8)

Ln+1 = L0 +
(1 − α)β
AB(α)

tβ−1
n U4(tn,Tn,In,Vn,Ln)

+
αβ

AB(α)Γ(α)

∫ tn+1

a
(tn+1 − s)α−1sβ−1U4(s,T ,I,V,L)ds. (6.9)

6.1. Numerical method for the Newton polynomial technique

With an effective idea of an algorithm that has been studied in [49], a numerical approximation form
for solving the FF-HIV model (4.3) using the Newton approach will be considered.

By using the approximation of the integrals in (6.6), we have that

Tn+1 = T0 +
(1 − α)β
AB(α)

tβ−1
n U1(tn,Tn,In,Vn,Ln)

+
αβ

AB(α)Γ(α)

n∑
j=2

∫ t j+1

t j

(tn+1 − s)α−1sβ−1U1(s,T ,I,V,L)ds. (6.10)

Applying the Newton polynomial for the term tβ−1U1(t,T ,I,V,L), yields

Pn(s) = tβ−1
j−2U1(t j−2,T j−2,I j−2,V j−2,L j−2)

+
(s − t j−2)

∆t

[
tβ−1

j−1U1(t j−1,T j−1,I j−1,V j−1,L j−1) − tβ−1
j−2U1(t j−2,T j−2,I j−2,V j−2,L j−2)

]
+

(s − t j−2)(s − t j−1)
2(∆t)2

[
tβ−1

j U1(t j,T j,I j,V j,L j) − 2tβ−1
j−1U1(t j−1,T j−1,I j−1,V j−1,L j−1)

+tβ−1
j−2U1(t j−2,T j−2,I j−2,V j−2,L j−2)

]
. (6.11)

Plugging (6.11) into (6.10), we get

Tn+1 = T0 +
(1 − α)β
AB(α)

tβ−1
n U1(tn,Tn,In,Vn,Ln)
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+
αβ

AB(α)Γ(α)

n∑
j=2

tβ−1
j−2U1(t j−2,T j−2,I j−2,V j−2,L j−2)

∫ t j+1

t j

(tn+1 − s)α−1ds

+
αβ

AB(α)Γ(α)

n∑
j=2

1
∆t

[
tβ−1

j−1U1(t j−1,T j−1,I j−1,V j−1,L j−1)

−tβ−1
j−2U1(t j−2,T j−2,I j−2,V j−2,L j−2)

] ∫ t j+1

t j

(tn+1 − s)α−1(s − t j−2)ds

+
αβ

AB(α)Γ(α)

n∑
j=2

1
2(∆t)2

[
sβ−1

j U1(t j,T j,I j,V j,L j) − 2sβ−1
j−1U1(t j−1,T j−1,I j−1,V j−1,L j−1)

+sβ−1
j−2U1(t j−2,T j−2,I j−2,V j−2,L j−2)

] ∫ t j+1

t j

(tn+1 − s)α−1(s − t j−2)(s − t j−1)ds. (6.12)

Integration by parts to solve the integrals given in (6.12) yields∫ t j+1

t j

(tn+1 − s)α−1ds =
(∆t)α

α
Λn, j, (6.13)∫ t j+1

t j

(tn+1 − s)α−1(s − t j−2)ds =
(∆t)α+1

α(α + 1)
Ξn, j, (6.14)∫ t j+1

t j

(tn+1 − s)α−1(s − t j−2)(s − t j−1)ds =
(∆t)α+2

α(α + 1)(α + 2)
Ωn, j, (6.15)

where the constants Λn, j, Ξn, j and Ωn, j are given by

Λn, j = (n + 1 − j)α − (n − j)α, (6.16)
Ξn, j = (n + 1 − j)α(n + 3 − j + 2α) − (n − j)α(n + 3 − j + 3α), (6.17)
Ωn, j = (n + 1 − j)α

[
2(n − j)2 + (3α + 10)(n − j) + 2α2 + 9α + 12

]
−(n − j)α

[
2(n − j)2 + (5α + 10)(n − j) + 6α2 + 18α + 12

]
. (6.18)

Plugging (6.13)–(6.15) into (6.12), we obtain the numerical scheme as follows:

Tn+1 = T0 +
(1 − α)β
AB(α)

tβ−1
n U1(tn,Tn,In,Vn,Ln)

+
(∆t)ααβ

AB(α)Γ(α + 1)

n∑
j=2

Λn, j tβ−1
j−2U1(t j−2,T j−2,I j−2,V j−2,L j−2)

+
(∆t)ααβ

AB(α)Γ(α + 2)

n∑
j=2

Ξn, j

[
tβ−1

j−1U1(t j−1,T j−1,I j−1,V j−1,L j−1)

−tβ−1
j−2U1(t j−2,T j−2,I j−2,V j−2,L j−2)

]
+

(∆t)ααβ
2AB(α)Γ(α + 3)

n∑
j=2

Ωn, j

[
tβ−1

j U1(t j,T j,I j,V j,L j)

−2tβ−1
j−1U1(t j−1,T j−1,I j−1,V j−1,L j−1) + tβ−1

j−2U1(t j−2,T j−2,I j−2,V j−2,L j−2)
]
. (6.19)
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Clearly, we also have that

In+1 = I0 +
(1 − α)β
AB(α)

tβ−1
n U2(tn,Tn,In,Vn,Ln)

+
(∆t)ααβ

AB(α)Γ(α + 1)

n∑
j=2

Λn, j tβ−1
j−2U2(t j−2,T j−2,I j−2,V j−2,L j−2)

+
(∆t)ααβ

AB(α)Γ(α + 2)

n∑
j=2

Ξn, j

[
tβ−1

j−1U2(t j−1,T j−1,I j−1,V j−1,L j−1)

−tβ−1
j−2U2(t j−2,T j−2,I j−2,V j−2,L j−2)

]
+

(∆t)ααβ
2AB(α)Γ(α + 3)

n∑
j=2

Ωn, j

[
tβ−1

j U2(t j,T j,I j,V j,L j)

−2tβ−1
j−1U2(t j−1,T j−1,I j−1,V j−1,L j−1) + tβ−1

j−2U2(t j−2,T j−2,I j−2,V j−2,L j−2)
]
, (6.20)

Vn+1 = V0 +
(1 − α)β
AB(α)

tβ−1
n U3(tn,Tn,In,Vn,Ln)

+
(∆t)ααβ

AB(α)Γ(α + 1)

n∑
j=2

Λn, j tβ−1
j−2U3(t j−2,T j−2,I j−2,V j−2,L j−2)

+
(∆t)ααβ

AB(α)Γ(α + 2)

n∑
j=2

Ξn, j

[
tβ−1

j−1U3(t j−1,T j−1,I j−1,V j−1,L j−1)

−tβ−1
j−2U3(t j−2,T j−2,I j−2,V j−2,L j−2)

]
+

(∆t)ααβ
2AB(α)Γ(α + 3)

n∑
j=2

Ωn, j

[
tβ−1

j U3(t j,T j,I j,V j,L j)

−2tβ−1
j−1U3(t j−1,T j−1,I j−1,V j−1,L j−1) + tβ−1

j−2U3(t j−2,T j−2,I j−2,V j−2,L j−2)
]
, (6.21)

Ln+1 = L0 +
(1 − α)β
AB(α)

tβ−1
n U4(tn,Tn,In,Vn,Ln)

+
(∆t)ααβ

AB(α)Γ(α + 1)

n∑
j=2

Λn, j tβ−1
j−2U4(t j−2,T j−2,I j−2,V j−2,L j−2)

+
(∆t)ααβ

AB(α)Γ(α + 2)

n∑
j=2

Ξn, j

[
tβ−1

j−1U4(t j−1,T j−1,I j−1,V j−1,L j−1)

−tβ−1
j−2U4(t j−2,T j−2,I j−2,V j−2,L j−2)

]
+

(∆t)ααβ
2AB(α)Γ(α + 3)

n∑
j=2

Ωn, j

[
tβ−1

j U4(t j,T j,I j,V j,L j)

−2tβ−1
j−1U4(t j−1,T j−1,I j−1,V j−1,L j−1) + tβ−1

j−2U4(t j−2,T j−2,I j−2,V j−2,L j−2)
]
, (6.22)

where Λn, j, Ξn, j and Ωn, j are provided by (6.16)-(6.18), respectively.

6.2. Numerical method for the Adams-Bashforth technique

This subsection shows the numerical algorithm for the FF-HIV model (2.5), which was developed
by applying the Adams-Bashforth method, which is a well-known technique based on two-step La-
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grange polynomials. By using (6.6)–(6.9); then, the approximation of (6.6)–(6.9) are formulated in the
form of

Tn+1 = T0 +
1 − α
AB(α)

βtβ−1
n U1(tn,Tn,In,Vn,Ln)

+
αβ

AB(α)Γ(α)

n∑
j=1

∫ t j+1

t j

(tn+1 − s)α−1sβ−1U1(s,T ,I,V,L)ds, (6.23)

In+1 = I0 +
1 − α
AB(α)

βtβ−1
n U2(tn,Tn,In,Vn,Ln)

+
αβ

AB(α)Γ(α)

n∑
j=1

∫ t j+1

t j

(tn+1 − s)α−1sβ−1U2(s,T ,I,V,L)ds, (6.24)

Vn+1 = V0 +
1 − α
AB(α)

βtβ−1
n U3(tn,Tn,In,Vn,Ln)

+
αβ

AB(α)Γ(α)

n∑
j=1

∫ t j+1

t j

(tn+1 − s)α−1sβ−1U3(s,T ,I,V,L)ds, (6.25)

Ln+1 = L0 +
1 − α
AB(α)

βtβ−1
n U4(tn,Tn,In,Vn,Ln)

+
αβ

AB(α)Γ(α)

n∑
j=1

∫ t j+1

t j

(tn+1 − s)α−1sβ−1U4(s,T ,I,V,L)ds. (6.26)

Now, we estimate the three functions sβ−1Ui(s,T ,I,V,L), i = 1, 2, 3, on [t j, t j+1] by using two-step
Lagrange interpolation polynomials with the step size h = t j+1− t j. By direct computations, we develop
the algorithms that yield the numerical simulations for the model FF-HIV (2.5) as follows:

Tn+1 = T0 +
1 − α
AB(α)

βtβ−1
n U1(tn,Tn,In,Vn,Ln) +

β(4t)α

AB(α)Γ(α + 2)

×

n∑
j=1

[
tβ−1

j U1(t j,T j,I j,V j,L j)Υ1(n, j) − tβ−1
j U1(t j,T j,I j,V j,L j)Υ2(n, j)

]
.

Repeating all steps for I(t),V(t) and L(t), we also have that

In+1 = I0 +
1 − α
AB(α)

βtβ−1
n U2(tn,Tn,In,Vn,Ln) +

β(4t)α

AB(α)Γ(α + 2)

×

n∑
j=1

[
tβ−1

j U2(t j,T j,I j,V j,L j)Υ1(n, j) − tβ−1
j−1U2(t j−1,T j−1,I j−1,V j−1,L j−1)Υ2(n, j)

]
,

Vn+1 = V0 +
1 − α
AB(α)

βtβ−1
n U3(tn,Tn,In,Vn,Ln) +

β(4t)α

AB(α)Γ(α + 2)

×

n∑
j=1

[
tβ−1

j U3(t j,T j,I j,V j,L j)Υ1(n, j) − tβ−1
j−1U3(t j−1,T j−1,I j−1,V j−1,L j−1)Υ2(n, j)

]
,

Ln+1 = L0 +
1 − α
AB(α)

βtβ−1
n U4(tn,Tn,In,Vn,Ln) +

β(4t)α

AB(α)Γ(α + 2)
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×

n∑
j=1

[
tβ−1

j U4(t j,T j,I j,V j,L j)Υ1(n, j) − tβ−1
j−1U4(t j−1,T j−1,I j−1,V j−1,L j−1)Υ2(n, j)

]
,

where

Υ1(n, j) = (n + 1 − j)α(n − j + 2 + α) − (n − j)α(n − j + 2 + 2α)

and

Υ2(n, j) = (n + 1 − j)α+1 − (n − j)α(n − j + 1 + α).

6.3. Numerical method for the predictor-corrector technique

This subsection shows the numerical algorithm for the FF-HIV model (2.5), which was developed
by applying the predictor-corrector method. By using the approximation of the integrals as in (6.6)–
(6.9), we have that

Tn+1 = T0 +
1 − α
AB(α)

βtβ−1
n U1(tn,Tn,In,Vn,Ln)

+
αβ

AB(α)Γ(α)

n∑
j=0

∫ t j+1

t j

(tn+1 − s)α−1sβ−1U1(s,T ,I,V,L)ds, (6.27)

In+1 = I0 +
1 − α
AB(α)

βtβ−1
n U2(tn,Tn,In,Vn,Ln)

+
αβ

AB(α)Γ(α)

n∑
j=0

∫ t j+1

t j

(tn+1 − s)α−1sβ−1U2(s,T ,I,V,L)ds, (6.28)

Vn+1 = V0 +
1 − α
AB(α)

βtβ−1
n U3(tn,Tn,In,Vn,Ln)

+
αβ

AB(α)Γ(α)

n∑
j=0

∫ t j+1

t j

(tn+1 − s)α−1sβ−1U3(s,T ,I,V,L)ds, (6.29)

Ln+1 = L0 +
1 − α
AB(α)

βtβ−1
n U4(tn,Tn,In,Vn,Ln)

+
αβ

AB(α)Γ(α)

n∑
j=0

∫ t j+1

t j

(tn+1 − s)α−1sβ−1U4(s,T ,I,V,L)ds. (6.30)

Now, we apply the Adams-type predictor-corrector tool to obtain the numerical approximation of
the right-hand sides of (6.27)–(6.30). Assume that the solution belongs to [0,T ]; then, we set ∆t =

T/N, tk = k∆t for k = 0, 1, 2, . . . ,N. So, the corrector scheme for the FF-HIV model (2.5) are given as
follows:

Tn+1 = T0 +
(1 − α)(4t)α

AB(α)Γ(α + 2)
βtβ−1

n+1U1(tn+1,T
P

n+1,I
P
n+1,V

P
n+1,L

P
n+1) +

αβ(4t)α

AB(α)Γ(α + 2)

×

n∑
j=0

Ξ j,n+1tβ−1
j U1(t j,T j,I j,V j,L j).
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Repeating all steps for I(t),V(t) and L(t), we also have that

In+1 = I0 +
(1 − α)(4t)α

AB(α)Γ(α + 2)
βtβ−1

n+1U2(tn+1,T
P

n+1,I
P
n+1,V

P
n+1,L

P
n+1) +

αβ(4t)α

AB(α)Γ(α + 2)

×

n∑
j=0

Ξ j,n+1tβ−1
j U2(t j,T j,I j,V j,L j),

Vn+1 = V0 +
(1 − α)(4t)α

AB(α)Γ(α + 2)
βtβ−1

n+1U3(tn+1,T
P

n+1,I
P
n+1,V

P
n+1,L

P
n+1) +

αβ(4t)α

AB(α)Γ(α + 2)

×

n∑
j=0

Ξ j,n+1tβ−1
j U3(t j,T j,I j,V j,L j),

Ln+1 = L0 +
(1 − α)(4t)α

AB(α)Γ(α + 2)
βtβ−1

n+1U4(tn+1,T
P

n+1,I
P
n+1,V

P
n+1,L

P
n+1) +

αβ(4t)α

AB(α)Γ(α + 2)

×

n∑
j=0

Ξ j,n+1tβ−1
j U4(t j,T j,I j,V j,L j),

where

Ξ j,n+1 =

 nα+1 − (n − α)(n + 1)α, i f j = 0,

(n − j + 2)α+1 + (n − j)α+1 − 2(n − j + 1)α+1, i f 1 ≤ j ≤ n.

Further, the predictor terms T P
n+1, IP

n+1,VP
n+1 and LP

n+1 are described as

T P
n+1 = T0 +

1 − α
AB(α)

βtβ−1
n U1(tn,Tn,In,Vn,Ln) +

αβ

AB(α)Γ2(α)

×

n∑
j=0

ω j,n+1tβ−1
j U1(t j,T j,I j,V j,L j),

IP
n+1 = I0 +

1 − α
AB(α)

βtβ−1
n U2(tn,Tn,In,Vn,Ln) +

αβ

AB(α)Γ2(α)

×

n∑
j=0

ω j,n+1tβ−1
j U2(t j,T j,I j,V j,L j),

VP
n+1 = V0 +

1 − α
AB(α)

βtβ−1
n U3(tn,Tn,In,Vn,Ln) +

αβ

AB(α)Γ2(α)

×

n∑
j=0

ω j,n+1tβ−1
j U3(t j,T j,I j,V j,L j),

LP
n+1 = L0 +

1 − α
AB(α)

βtβ−1
n U4(tn,Tn,In,Vn,Ln) +

αβ

AB(α)Γ2(α)

×

n∑
j=0

ω j,n+1tβ−1
j U4(t j,T j,I j,V j,L j),

and

ω j,n+1 =
(4t)α

α
((n + 1 − j)α − (n − j)α) 0 ≤ j ≤ n.
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6.4. Numerical simulations and discussion

Employing the numerical schemes in the subsections 6.1–6.3, we conducted the numerical simula-
tions for the FF-HIV model (2.5) by using the real data for the parameter values as assumed in [13],
as shown in Table 3. Here, the approximate solutions of the model (2.5) have been verified for various
fractional-order values of α = {1.000, 0.995, 0.985, 0.975, 0.965, 0.955, 0.945, 0.935} and the fractal di-
mensions β = {1.000, 0.995, 0.985, 0.975, 0.965, 0.955, 0.945, 0.935}, which have been separated into
three cases.

Table 3. Values of the parameters of the FF-HIV model(2.5).

Parameter Value Unit Source
λ 10 mm−3day−1 [19]
k 0.000024 mm3day−1 [19]
δ 0.26 day−1 [19]
c 2.4 day−1 [19]
σ 0.015 day−1 [50, 51]
N 1000 dimensionless [50, 51]
ξ 0.4 day−1 [52]
b 0.05 day−1 [52]
η 0.6 dimensionless [52]
µ 0.01 day−1 [53]

Note that we present the pairs of numerical simulations as a comparison of the Newton polynomial,
the Adams-Bashforth and the predictor-corrector techniques. The quantity of time t in these graphs
denotes the number of days.

Case (i): If we set the fractal dimension β and the fractional-order α values as 1.000, 0.995, 0.985,
0.975, 0.965, 0.955, 0.945 and 0.935 with (T (0),I(0),V(0),L(0)) = (200, 25, 25, 25). Figure 2 shows
the dynamics of the density of the susceptible group of CD4+ T-cells (T (t)), the group of infected CD4+

T-cells before (I(t)) and after the completion of the reverse transcription (V(t)), and the group of the
virus as time passes (L(t)), respectively, under the conditions of the Newton polynomial technique
in Subsection 6.1 (Figure 2a), the Adams-Bashforth technique in Subsection 6.2 (Figure 2b) and the
predictor-corrector technique in Subsection 6.3 (Figure 2c). Figure 3a–c represent that, when the
fractional-order α values increase to integer order and the fractal dimension β = 1.000, the behavior of
the susceptible group of CD4+ T-cells rapidly increases from the start day, and then steadily decreases.
After that, it increases again and finally converges to T ∗1 ≈ 290.6250 at the end of the simulation
period. Figures 4 and 5 show that, when the fractional-order α values increase from 0.935 to the
integer order and the fractal dimension β = 0.987, the behavior of the group of infected CD4+ T-cells
before and after the completion of the reverse transcription rapidly increases to the peak values and
steadily decreases, respectively, and also converges to I∗1 ≈ 40.5357 and V∗1 ≈ 24.9451 according to
their asymptotic stabilities at the end. Figure 6 shows that, when the fractional-order α values increase
from 0.935 to the integer order and the fractal dimension β = 1.000, the behavior of the group of
the virus as time passes rapidly increases and decreases. After that, it rapidly increases to the peak
point and steadily decreases to converge to L∗1 ≈ 2702.3810 at the end. As shown in Figures 3–6, by
using three numerical algorithms, the dynamic behavior of each of the four variables varies in sightly
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different ways when the fractional order is slightly changed. Their behaviors oscillate decreasing and
increasing until, tending toward stabilization.
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Figure 2. Dynamics of T (t), I(t), V(t) and L(t) for the three numerical algorithms in Case
(i).

.
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Figure 3. Dynamics of T (t) for the three numerical algorithms in Case (i).
.
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Figure 4. Dynamics of I(t) for the three numerical algorithms in Case (i).
.
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Figure 5. Dynamics ofV(t) for the three numerical algorithms in Case (i).
.
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Figure 6. Dynamics of L(t) for the three numerical algorithms in Case (i).
.

Case (ii): In this case, we fix α and vary β as 1.000, 0.995, 0.985, 0.975, 0.965, 0.955, 0.945 and
0.935 with (T (0),I(0),V(0),L(0)) = (200, 25, 25, 25). Figure 7 shows the dynamics of the densities
of T (t), I(t), V(t) and L(t) under the conditions of the Newton polynomial technique (Figure 7a),
the Adams-Bashforth technique (Figure 7b) and the predictor-corrector technique in Subsection 6.3
(Figure 7c). Figure 8a-c show that, when the fractional-order α = 0.987 and the fractal dimension β
increases to integer order, the behavior of T (t) rapidly increases from the start day, and then steadily
decreases tending to T ∗1 ≈ 290.6250. Figures 9 and 10 show, that when the fractional-order α = 0.987
and the fractal dimension β increases from 0.935 to the integer order, I(t) and V(t) rapidly decrease
and increase to the peak values, respectively. Further, they steadily decrease again from the peak values
to I∗1 ≈ 40.5357 and V∗1 ≈ 24.9451 according to their asymptotic stabilities. Figure 11 indicates that,
when the fractional-order α = 0.987 and the fractal dimension β increases from 0.935 to the integer

Mathematical Biosciences and Engineering Volume 19, Issue 11, 10762–10808.



10792

order, L(t) quickly increases and then decreases. After that, it increases again to the peak point and
oscillates as it decreases toL∗1 ≈ 2702.3810. The dynamics of the four variables, as illustrated in Figure
8 to Figure 11, exhibit behavior that is similar to Case (i). Additionally, after using the three numerical
techniques, we discovered that, when the fractional order has tiny variation, the system behaves in a
somewhat different manner.
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Figure 7. Dynamics of T (t), I(t), V(t) and L(t) for the three numerical algorithms in Case
(ii).
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Figure 8. Dynamics of T (t) for the three numerical algorithms in Case (ii).
.

Mathematical Biosciences and Engineering Volume 19, Issue 11, 10762–10808.



10794

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

40

45

50

55

(a) Newton polynomial technique

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

40

45

50

55

(b) Adams-Bashforth technique

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

40

45

50

55

(c) Predictor-corrector technique

Figure 9. Dynamics of I(t) for the three numerical algorithms in Case (ii).
.
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Figure 10. Dynamics ofV(t) for the three numerical algorithms in Case (ii).
.
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Figure 11. Dynamics of L(t) for the three numerical algorithms in Case (ii).
.

Case (iii). If we vary both the fractional-order α and fractal dimension β, each as 1.000, 0.995,
0.985, 0.975, 0.965, 0.955, 0.945 and 0.935 with (T (0),I(0),V(0),L(0)) = (1000, 50, 70, 80), which
differ from the other two cases. Observing Figures 12–16, one of the noticeable aspects of the behavior
of the system is that, even if we start with the other initial condition, the system will converge to the
steady state.
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(a) Newton polynomial technique
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(b) Adams-Bashforth technique
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(c) Predictor-corrector technique

Figure 12. Dynamics of T (t), I(t),V(t) and L(t) for the three numerical algorithms in Case
(iii).

.
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Figure 13. Dynamics of T (t) for the three numerical algorithms in Case (iii).
.
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Figure 14. Dynamics of I(t) for the three numerical algorithms in Case (iii).
.

Mathematical Biosciences and Engineering Volume 19, Issue 11, 10762–10808.



10800

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

140

160

180

200

(a) Newton polynomial technique

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

140

160

180

200

(b) Adams-Bashforth technique

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

140

160

180

200

(c) Predictor-corrector technique

Figure 15. Dynamics ofV(t) for the three numerical algorithms in Case (iii).
.
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(a) Newton polynomial technique

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

10
4

(b) Adams-Bashforth technique
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Figure 16. Dynamics of L(t) for the three numerical algorithms in Case (iii).
.

In order to compare the results of the three numerical algorithms, i.e., the Newton polynomial, the
Adams-Bashforth and the predictor-corrector techniques for all four state functions T (t), I(t), V(t)
and L(t), we illustrate the extra case with the step size ∆t = 0.1 and α = β = 0.945, as seen in Figures
17a–d. They display the results of the numerical simulations, which compare the numerical solutions
of the three algorithms for the concentration of susceptible CD4+ T-cells, infected CD4+ T-cells before
and after reverse transcription completion and the virus density. We show some numerical results for
the population in four states given α = β = 0.945 and ∆t = 0.1, which can be seen in Tables 4–7.
These graphical simulation and numerical results reveal that these three numerical algorithms produce
similar outcomes with minor differences.

Moreover, given that α and β varies in each case, we observe that the fractional dimension β is
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Table 4. Values of the parameters for the susceptible CD4+ T-cells given α = β = 0.945 and
∆t = 0.1.

Method (day) 1 100 200 300 400 500
Newton polynomial 938.6916 275.2107 288.7890 288.7875 289.5849 289.7662
Adams-Bashforth 912.5990 282.8655 286.6146 289.5646 289.4987 289.8788
Predictor-corrector 929.7821 276.2814 288.4990 288.8699 289.5681 289.7720

Table 5. Values of the parameters for the infected CD4+ T-cells before reverse transcription
give α = β = 0.945 and ∆t = 0.1.

Method (day) 1 100 200 300 400 500
Newton polynomial 101.0045 34.1573 45.1725 41.7537 41.9218 41.5712
Adams-Bashforth 122.3127 34.5061 44.6850 41.7749 41.8191 41.5188
Predictor-corrector 109.6054 33.9682 45.2524 41.7283 41.9280 41.5682

Table 6. Values of the parameters for the infected CD4+ T-cells in which reverse transcription
is completed under the condition α = β = 0.945 and ∆t = 0.1.

Method (day) 1 100 200 300 400 500
Newton polynomial 65.8090 21.9418 27.9168 25.8263 25.8736 25.6452
Adams-Bashforth 66.0844 21.7740 27.7478 25.7936 25.8142 25.6058
Predictor-corrector 64.5360 21.7688 27.9824 25.8063 25.8782 25.6431

Table 7. Values of the parameters for the virus density given α = β = 0.945 and ∆t = 0.1.

Method (day) 1 100 200 300 400 500
Newton polynomial ×103 5.7237 2.3852 3.0239 2.7982 2.8029 2.7782
Adams-Bashforth ×103 6.2425 2.3626 3.0072 2.7942 2.7966 2.7739
Predictor-corrector ×103 6.3114 2.3658 3.0312 2.7960 2.8034 2.7780

independent of the EPs. Therefore, we obtained the values of the parameters R0 ≈ 3.4409, ω0 ≈

0.0071, ω1 ≈ 0.0893, ω2 ≈ 2.0760 and ω3 ≈ 3.6649 and detected that all of these parameters satisfy
the conditions of Theorem 3.3 i.e., that R0 > 1 and ω1ω2ω3 > ω2

1 + ω2
3ω0. This guarantees locally

asymptotic stability at the endemic EP E∗1 ≈ (290.6250, 40.5357, 24.9451, 2702.3810).
For our discussion, it is clearly visible from all of the images for Case (i)–(iii) that the approximate

solutions for the different fractional orders converge to their solution for an integer-order model. The
T (t), I(t), V(t) and L(t) densities oscillate initially before tending to stabilize at their EPs. Further-
more, the three numerical algorithms gave similar numerical results with a very tiny difference.

7. Conclusions

As we know, differential equations with a fractional order can be used to help overcome some
of the flaws in biological systems that are connected to the idea of memory additionally, the use of
differential equations in mathematical modeling helps us to better comprehend the behavior of dynamic
biological systems. These are good reasons for employing the FF derivative in the AB sense for the

Mathematical Biosciences and Engineering Volume 19, Issue 11, 10762–10808.



10803

0 50 100 150 200 250 300 350 400 450 500
0

100

200

300

400

500

600

700

800

900

1000
Newton polynomials method

Adams-Bashforth method

Predictor Corrector method

(a)

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350
Newton polynomials method

Adams-Bashforth method

Predictor Corrector method

(b)

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

140

160

180

200
Newton polynomials method

Adams-Bashforth method

Predictor Corrector method

(c)

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
10

4

Newton polynomials method

Adams-Bashforth method

Predictor Corrector method

(d)

Figure 17. Comparison of the results of the Newton polynomial, the Adams-Bashforth and
the predictor-correstor techniques for T (t), I(t), V(t) and L(t) given α = β = 0.945 and
∆t = 0.1 in Case (iii).

model of the interaction between HIV infection and CD4+ T-cells in the presence of RTI that has
been taken before the process of producing the virus was initiated. The significant outcomes and the
parade of theoretical results were used to accomplish the requirements of our aim. First, the model
was analyzed by deriving the unique positive solution and finding the sufficient conditions for it to
be LAS at the EPs by using the BRN and the Routh-Hurwitz criteria. Second, the existence and
uniqueness results are proven with the help of famous fixed-point theorems such as Banach’s and
Leray-Schauder’s. Third, in order to emphasize the existence of solutions, various forms of Ulam’s
stability, such as UH, GUH, UHR and GUHR forms were used to achieve the purpose. Finally, a
discussion of the dynamical behavior has been provided to confirm the accuracy of the theoretical
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results. The numerical simulations were distinguished for three different cases by using the Newton
polynomial, the Adams-Basthforth and the predictor-corrector techniques in the numerical scheme.
Overall, the fractional operator utilized in the study according to the findings satisfied all of the required
theoretical conditions for the considered model, and the parameters were shown to have a substantial
influence on the ecological system’s stability. A slight variation in the FF orders was found to cause
a tiny change in the behavior of the considered model. The three numerical algorithms were nearly
identical in terms of the numerical results and system dynamic behavior, with only slight variance
between them.

In summary, we found that the significant advantage of our considered FF-order HIV epidemic
model is that it is more realistic, effective and efficient than the classical model because it improves
the precision of the model by allowing for more flexibility, which helps us to achieve better results.
Regarding the future research direction, the FF derivative in the AB sense can be applied to various
mathematical models for the investigation and analysis of real-world problems. Alternativelt, there are
some interesting fractional-order derivatives, such as CF, AB, Atangana-Koca and Atangana-Gomez
derivatives, which can be applied to the HIV integer-order model and are worthy of further study.
We continue to hope that our efforts may help researchers in various areas of applied sciences and
engineering.
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