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Abstract: In this paper, considering that sometimes signal transmission may be interrupted, or sig-
nal input errors may occur, we establish a novel class of parametric uncertainty hybrid control system
models including the impulsive control signals under saturated inputs, which can reflect the signal
transmission process more realistically. Based on the step-function method, improved polytopic repre-
sentation approach and Schur complement, we find the stability conditions, which are less conservative
than those with the traditional Lyapunov method, of the considered control system. In addition, we in-
vestigate the design of the control gains and the auxiliary control gains for easily finding the suitable
control signals, the auxiliary signals and the estimation of the attraction domain. Moreover, our pro-
posed methods are applied to the fixed time impulse problems of uncertain systems with or without
Zeno behavior. Simulation results for the uncertain neural network systems are presented to show the
feasibility and effectiveness of our stabilization methods using the step-function.
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1. Introduction

Impulsive control can not only greatly save control costs but also efficiently transmit information in
many applications [1–3]. Hybrid control systems including impulsive signals are ubiquitous in many
actual systems, such as robotic control systems, neural control systems and insect population control
systems, since the impulsive effect widely exists in the real world [4–6]. Over the years, Lyapunov-
like function methods have been widely used in the stability analysis of control systems with impulsive
signals [7–12]. Generally speaking, the traditional Lyapunov-like function methods require that there
are constraints on the upper and lower bounds of the impulse interval, and the Lyapunov-like function is

http://http://www.aimspress.com/journal/mbe
http://dx.doi.org/10.3934/mbe.2022503


10742

continuous and monotonic with time in each impulsive interval, which usually leads to the conservative
stability conditions [13]. In order to overcome the above shortcomings, the authors in [14] established
a new method, the step-function method, for the stability analysis of bouncing ball systems, in 2012.
Motivated by [14], the authors in [13] formulated a new stability analysis framework based on step-
functions for general impulsive systems, in 2022. The step-function is an extension of Lyapunov-like
stability theory, which can relax some restrictions of the existing Lyapunov-like function methods.
Also, it can be used to analyze the stability with Zeno behavior, which is not easily addressed by
traditional Lyapunov-like function methods.

Due to measurement error of parameters, model construction and installation error, the parameters
of nonlinear systems might not be accurately measured [15–17]. Generally speaking, the parameters of
the systems will change in a certain interval [18, 19]. The parametric uncertainty in nonlinear systems
has received wide attention because it can be used to describe many practical engineering problems.
The sliding-mode control problems for linear uncertain systems with impulse effects via switching
gains were studied in [20]. Paper [21] investigated the controller design techniques for robust sampled-
data dynamic output-feedback for nonlinear systems in the Takagi-Sugeno fuzzy form with parametric
uncertainties and L2/L∞ disturbances.

Still, most parametric uncertainty systems assume that the actuator can execute unlimited control
signals, i.e., they do not consider the actuator saturation phenomenon in the whole control process. In
actual engineering systems, physical actuators cannot execute infinite signals [22, 23]; or, considering
the safety of the system, it is necessary to limit the effective control signals generated by the actu-
ators. Then, it is very important to consider the saturation phenomenon when designing the control
system. There have been many results about continuous or discrete control systems with actuator satu-
ration. Paper [24] investigated the problem of robust exponential stabilization of dynamic systems with
time-varying delays, external disturbances and control saturation. The discrete time-varying systems
with state-delayed and saturating actuators were studied in [25]. The hybrid impulsive and sampled-
data control framework problems for a class of nonlinear dynamical systems with input constraints
were addressed in [4]. However, due to the difficulties of designing control gains with parametric un-
certainty and the discontinuity caused by the impulsive effect, parametric uncertainty hybrid control
systems including impulsive control signals, subject to input constrains via Lyapunov-like stability
theory, are rarely reported in the existing results, let alone those adopting step-function methods.

Moreover, most of the existing results assume all the control signals are valid and correct. However,
in the real environment, the transmission of a signal may be interrupted for a certain period of time, or
there might be signal input errors due to the interference of an external signal or some influence of the
transmission medium. How to formulate a constrained hybrid control system considering parametric
uncertainty and signal interruption or signal error is a problem of practical significance.

In summary, the applied research on the step-function method has just started, and there is still some
work to be done. To the best of our knowledge, there is not research on the stabilization of nonlinear
systems under actuator saturation via the step-function method. Then, our results in this paper will
enrich the existing research. Motivated by the above analyses, considering parametric uncertainty, sig-
nal interruption, signal error and actuator saturation, we study the stability of hybrid control nonlinear
systems via the step-function method. Moreover, we investigate the design of the control gains and
the auxiliary control gains for easily finding the suitable control signals, the auxiliary signals and the
estimation of the attraction domain.
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The main contributions of the results in this paper are listed as follows:
a) Considering parametric uncertainty, signal interruption, signal error and actuator saturation, we

establish a novel class of parametric uncertainty hybrid control system models including the impulsive
control signals, subject to saturated inputs, which can reflect the signal transmission process more
realistically.

b) An improved polytopic representation approach which is less conservative than the traditional
polytopic representation approach is introduced to deal with the hybrid saturated inputs. The compar-
ative experiments reflect the superiority of the improved polytopic representation approach.

c) The step-function method is first used for the stability analysis of nonlinear systems subject to
saturated inputs.

d) In order to easily find the suitable control signals, the auxiliary signals and the estimation of the
attraction domain, we investigate the design of the control gains and the auxiliary control gains.

Notations: Rn and R+ denote the n-dimensional real column vector space and the non-negative
real numbers, respectively. I denotes the identity matrix of appropriate dimensions. For a vector
(matrix) M, M(l) refers to the l-th component (line) of M. G ∈ Rn×n > 0 means a symmetric positive-
definite matrix. || · || denotes the Euclidean norm. For a positive integer n, I[1, n] refers to the integers
between 1 and n. co{F } means the convex hull of a set F . For matrix F ∈ Rn×n, He(F) refers to
He(F) = F + FT . Set E0 = {x(t) ∈ Rn : xT (t)Gx(t) ≤ 1} with G ∈ Rn×n > 0. For M ∈ Rn×n, set
L(M) = {x(t) ∈ Rn : ||Mx(t)||∞ ≤ 1}, with ||Mx(t)||∞ = max

l
|M(l)x(t)|, for ∀ l ∈ I[1, n].

2. Problem formulation

We formulate the following nonlinear uncertain system (2.1) with hybrid saturated control input
and assume the solutions of system (2.1) are left continuous at t = ts.

ẋ(t) = A(t)x(t) + B(t)h(x(t)) +CSat(Dx(t)), t ∈ (ts−1, θs−1],
ẋ(t) = A(t)x(t) + B(t)h(x(t)), t ∈ (θs−1, ts],
x(t+s ) = x(ts) + EsSat(Jsx(ts)), s = 1, 2, · · · ,
x(t+0 ) = x0,

(2.1)

where x(t) ∈ Rn is the state vector, and x0 is the initial state. For the time sequence, there is
0 = t0 < θ0 < t1 < θ1 · · · < ts−1 < θs−1 < ts < θs · · · < t∞, and lims→∞ ts = t∞. Note
that t∞ could be an infinity, and it could also be a finite number. A(t) and B(t) ∈ Rn×n are time-
varying matrices. C, D, Es and Js ∈ Rn×n are constant matrices. h(·) : Rn → Rn is a contin-
uous nonlinear function with h(0) = 0. There is a diagonal matrix H ∈ Rn×n, H > 0, such that
||h(x(t))||2 ≤ x(t)T Hx(t) for ∀ x(t) ∈ Rn. Sat(Dx(t)) = (Sat(D(1)x(t)),Sat(D(2)x(t)) · · · Sat(D(n)x(t)))T ,
and Sat(Jsx(t)) = (Sat(Js(1)x(t)),Sat(Js(2)x(t)) · · · Sat(Js(n)x(t)))T ∈ Rn. For l ∈ I[1, n], Sat(D(l)x(t)) and
Sat(Js(l)x(t)) are the saturation functions, with

Sat(D(l)x(t)) =


1, D(l)x(t) > 1,
D(l)x(t), − 1 ≤ D(l)x(t) ≤ 1,
−1, D(l)x(t) < −1,

(2.2)
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and

Sat(Js(l)x(t)) =


1, Js(l)x(t) > 1,
Js(l)x(t), − 1 ≤ Js(l)x(t) ≤ 1,
−1, Js(l)x(t) < −1.

(2.3)

A(t) and B(t) are of the following forms: A(t) = A + ∆A(t) and B(t) = B + ∆B(t). A ∈ Rn×n

and B ∈ Rn×n are known constant matrices. ∆A(t) and ∆B(t) are unknown matrices which are of the
following forms: ∆A(t) = C̃ J̃(t)F̃ and ∆B(t) = Ĉ Ĵ(t)F̂, where C̃, Ĉ, F̃ and F̂ ∈ Rn×n are known constant
matrices. J̃(t) and Ĵ(t), which represent time-varying parametric uncertainties, satisfy J̃T (t)J̃(t) ≤ I and
ĴT (t)Ĵ(t) ≤ I.

Remark 1. In system (2.1), when t ∈ (θs−1, ts], there is not any control signal, since the transmission
of a continuous control signal may be interrupted for a certain period of time due to the interference
of an external signal or some influence of the transmission medium.

Remark 2. In the whole time series, there are not additional upper and lower bound constrains of
the time interval between ts−1 and θs−1, or between θs−1 and ts. Then, system (2.1) can approximate
two extreme cases: When t ∈ (ts−1, ts], there are only continuous control signals or are not any control
signals. Note that, Zeno behavior might also occur.

Remark 3. The control gain can be different at each impulse instant, and this model (2.1) dose not
require that all impulses be stabilizing impulses or can occur as the impulse perturbation.

Definition 1. [26] Define the following functions:
a) ϵ ∈ K , if ϵ ∈ C([0, a), [0,∞)) is strictly increasing, and ϵ(0) = 0 .
b) ϵ ∈ KL, if ϵ : [0, a) × [0,∞) → [0,∞) is continuous, and for every fixed ℑ, ϵ(β,ℑ) ∈ K . For

every fixed β, ϵ(β,ℑ) is decreasing, and moreover, ϵ(β,ℑ)→ 0 as ℑ → ∞.

Definition 2. [13, 14] The origin of system (2.1) is referred to as Uniformly Attractively Stable if there
is aKL function γ such that every solution x(t, t0, x0) starting from the admissible initial set S satisfies
||x(t, t0, x0)|| ≤ γ(||x0||, t − t0) for almost all t ≥ t0. S is a set which contains the open region of the
origin. If S = Rn, it can be said to be Globally Uniformly Attractively Stable .

Lemma 1. [27] Given a scalar δ > 0 and any real matrices A1,A2,A3 of appropriate dimensions,
such that 0 < A3 = A

T
3 , the following inequality then holds:

AT
1A2 +A

T
2A1 ≤ δA

T
1A3A1 + δ

−1AT
2A

−1
3 A2.

Lemma 2. [28, 29] For given matrices D, J and F with JTJ ≤ I and scalar δ > 0, the following
inequality holds:

DJF + F TJTDT ≤ δDDT + δ−1F TF .

Lemma 3. [30, 31] Let J,Mq ∈ Rn×n with q ∈ I[1, 2n]. Assume that x(t) ∈ L(Mq) for ∀q ∈ I[1, 2n].
Then, Sat(Jx(t)) ∈ co{EqJx(t)+E −q Mqx(t) : q ∈ I[1, 2n]},where E ∈ Rn×n is the set of diagonal matrices
with diagonal elements that are either 1 or 0, and Eq is the q-th element in set E . Also, E −q = I − Eq.

From (2.1)–(2.3) and Lemma 3, if there exist some constant matrices M̃q and Msq ∈ Rn×n, assume
that |M̃q(l)x(t)| ≤ 1 and |Msq(l)x(ts)| ≤ 1 for ∀ q ∈ I[1, 2n], l ∈ I[1, n] and s = 1, 2, · · · . Then,
Sat(Dx(t)) ∈ co{EqDx(t)+ E −q M̃qx(t) : q ∈ I[1, 2n]}, and Sat(Jsx(ts)) ∈ co{EqJsx(ts)+ E −q Msqx(ts) : q ∈
I[1, 2n]}.
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Remark 4. Some auxiliary matrices M̃q and Msq are introduced to deal with the actuator saturation
problem of the continuous control signals and the impulsive signals, respectively. While most of the
existing saturated control methods use the traditional polytopic representation approach to deal with
the actuator saturation problem, the improved polytopic representation approach, which is less conser-
vative than the traditional polytopic representation approach, is used in our method. In the improved
polytopic representation approach, at each impulse instant or the continuous control interval, 2n aux-
iliary matrices are introduced to deal with the constrained control input problem instead of just one
auxiliary matrix being introduced.

Lemma 4. [13, 14] Let x(t, t0, x0) be the solution of system (2.1) starting from the admissible initial set
S. Assume that there are an integer j ≥ 1 and a positive definite functionV: Rn → R+, R+ = [0,+∞),
such that the step-function

S e(t) =


sup

t∈[t0,t j]
V(x(t)), t ∈ [t0, t j],

sup
t∈(t j(ℓ−1),t jℓ]

V(x(t)), t ∈ (t j(ℓ−1), t jℓ],

0, t > t∞,

(2.4)

with ℓ = 2, 3, · · · , satisfies the following:
a) S e(t j) ≤ ϵ(V(x0)), in which ϵ is a class K function.
b) S e(t) decreases with time t, and lim

t→t∞
S e(t) = 0.

Then, the origin of system (2.1) is Uniformly Attractively Stable, and if t∞ = ∞, the origin of system
(2.1) is Asymptotically Stable.

3. Main results

The sufficient conditions which can guarantee the stability of this control system (2.1) for every
initial state in the estimation of the attraction domain via the step-function method are given in this
section.

Theorem 1. Given an integer j ≥ 1, assume that there exist some scalars βs > 0, τ > 0, δ1 > 0, δ2 > 0,
α, h and some n × n matrices G > 0, M̃q, Msq such that for any q ∈ I[1, 2n], l ∈ I[1, n], s = 1, 2, · · ·
and ℓ = 2, 3, · · · , the following conditions hold:[

G M̃T
q(l)

∗ Q−1

]
≥ 0, (3.1)

[
G MT

sq(l)

∗ Q−1

]
≥ 0, (3.2)

Γq =[
He(GA) + H − αG + He(GC(EqD + E −q M̃q)) + δ1GC̃C̃TG + δ1GĈĈTG + δ−1

1 F̃T F̃ GB
∗ −I + δ−1

1 F̂T F̂

]
≤ 0,

(3.3)
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Γ̃ =

[
He(GA) + H − hG + δ2GC̃C̃TG + δ2GĈĈTG + δ−1

2 F̃T F̃ GB
∗ −I + δ−1

2 F̂T F̂

]
≤ 0, (3.4)[

−βsG (I + Es(EqJs + E −q Msq))T

∗ −G−1

]
≤ 0, (3.5)

Q = max
i=1,2,··· , j

{ sup
t∈(ti−1,ti]

[(
i−1∏
k=0

βk) exp(max(α, h)(t − t0))]} < ∞,with β0 = 1, (3.6)

max
i= j(ℓ−1)+1,··· , jℓ

{ sup
t∈(ti−1,ti]

[(
i−1∏

k= j(ℓ−1)

βk) exp(max(α, h)(t − t j(ℓ−1)))]} ≤ τ < 1. (3.7)

Then, for any initial condition x(t0) ∈ E0, the origin of the nonlinear uncertain system (2.1) is Uni-
formly Attractively Stable, and if t∞ = ∞, the origin of system (2.1) is Asymptotically Stable. E0 can
be regarded as the estimation of the attraction domain.

Proof. The step-function S e(t), (2.4), and the following functionV(t) are constructed:

V(x(t)) = xT (t)Gx(t). (3.8)

When s = 1, t ∈ [t0, θ0], the trajectory of system (2.1) starts from E0. Due to the satisfaction of
inequality (3.1), it is easy to find that x0 ∈ E0 ⊆ EQ ⊂ L(M̃q) with EQ = {x(t) ∈ Rn : xT (t)Gx(t) ≤ Q}.
Then, Lemma 3 can be applied. DifferentiatingV(x(t)) with respect to t along system (2.1), one has

V̇(x(t)) = 2xT (t)G(A(t)x(t) + B(t)h(x(t)) +CSat(Dx(t)))
≤ max

q∈I[1,2n]
(2xT (t)GA(t)x(t) + 2xT (t)GB(t)h(x(t))

+2xT (t)GC(EqD + E −q M̃q)x(t)).
(3.9)

According to Lemma 1, there is

2xT (t)GB(t)h(x(t)) ≤ xT (t)GB(t)BT (t)Gx(t) + xT (t)Hx(t). (3.10)

Then, one obtains

V̇(x(t)) ≤ max
q∈I[1,2n]

(xT (t)(He(GA(t)) +GB(t)BT (t)G + H

+He(GC(EqD + E −q M̃q)) − αG)x(t)) + αV(x(t)).
(3.11)

Let

Ξq(t) =
[
He(GA(t)) + H + He(GC(EqD + E −q M̃q)) − αG GB(t)

∗ −I

]
,

Ξ̃q =

[
He(GA) + H + He(GC(EqD + E −q M̃q)) − αG GB

∗ −I

]
,

and

Ξ̂(t) =
[
He(GC̃J̃(t)F̃) GĈĴ(t)F̂

∗ 0

]
.
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Obviously, there is Ξq(t) = Ξ̃q + Ξ̂(t). Moreover, according to Lemma 2, one obtains that

Ξ̂(t) =
[

F̃T 0
∗ F̂T

] [
J̃T (t) 0
∗ ĴT (t)

] [
C̃TG 0
ĈTG 0

]
+

[
GC̃ GĈ
0 0

] [
J̃(t) 0
∗ Ĵ(t)

] [
F̃ 0
∗ F̂

]
≤ Ξ́,

(3.12)

with

Ξ́ = δ1

[
GC̃C̃TG +GĈĈTG 0

∗ 0

]
+ δ−1

1

[
F̃T F̃ 0
∗ F̂T F̂

]
.

Because Ξ̃q + Ξ́ = Γq and according to the satisfaction of condition (3.3), Ξq(t) ≤ 0 will be feasible.
Thus, when t ∈ [t0, θ0], one obtains

V̇(x(t)) ≤ αV(x(t)). (3.13)

V(x(t)) ≤ V(x0) exp(α(t − t0)),

and
V(x(θ0)) ≤ V(x0) exp(α(θ0 − t0)).

When t ∈ (θ0, t1], according to (3.10), one has

V̇(x(t)) = 2xT (t)G(A(t)x(t) + B(t)h(x(t)))
≤ xT (t)(He(GA(t)) +GB(t)BT (t)G + H − hG)x(t) + hV(x(t)).

Let

ℵ(t) =
[
He(GA(t)) + H − hG GB(t)

∗ −I

]
,

and

ℵ̃ =

[
He(GA) + H − hG GB

∗ −I

]
.

There is also ℵ(t) = ℵ̃ + Ξ̂(t). Similar to (3.12), Ξ̂(t) ≤ Ξ̀, and ℵ̃ + Ξ̀ = Γ̃, with

Ξ̀ = δ2

[
GC̃C̃TG +GĈĈTG 0

∗ 0

]
+ δ−1

2

[
F̃T F̃ 0
∗ F̂T F̂

]
.

From the satisfaction of condition (3.4), ℵ(t) ≤ 0 will also be feasible. Thus, when t ∈ (θ0, t1], one
obtains

V̇(x(t)) ≤ hV(x(t)),

V(x(t)) ≤ V(x0) exp(α(θ0 − t0) + h(t − θ0)),

and
V(x(t1)) ≤ V(x0) exp(α(θ0 − t0) + h(t1 − θ0)).
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It is easy to find that

V(x(t1)) ≤ V(x0) exp(max(α, h)(t1 − t0)).

According to (3.2), there is x(t1) ∈ EQ ⊂ L(M1q). Then, Lemma 3 can be applied. When t = t1, due
to the satisfaction of (3.5), it follows that

V(x(t+1 )) = (x(t1) + E1Sat(J1x(t1)))TG(x(t1) + E1Sat(J1x(t1)))
≤ max

q∈I[1,2n]
(xT (t1)((I + E1(EqJ1 + E −q M1q))TG(I

+E1(EqJ1 + E −q M1q)) − β1G)x(t1)) + β1V(x(t1))
≤ β1V(x(t1)).

(3.14)

According to mathematical deduction, when s = j − 1, t ∈ (t j−2, θ j−2], we suppose that

V(x(t)) ≤ β j−2β j−3 · · · β1V(x0) exp(α(t − t j−2 + θ j−3 − t j−3 · · · θ0 − t0) + h(t j−2 − θ j−3+

t j−3 − θ j−4 + · · · + t1 − θ0)).

Then, we have

V(x(θ j−2)) ≤ β j−2β j−3 · · · β1V(x0) exp(α(θ j−2 − t j−2 + θ j−3 − t j−3 · · · θ0 − t0)+
h(t j−2 − θ j−3 + · · · + t1 − θ0)).

When t ∈ (θ j−2, t j−1],

V(x(t)) ≤ β j−2β j−3 · · · β1V(x0) exp(α(θ j−2 − t j−2 + θ j−3 − t j−3 · · · θ0 − t0) + h(t − θ j−2+

t j−2 − θ j−3 + · · · + t1 − θ0)),

and
V(x(t j−1)) ≤ β j−2β j−3 · · · β1V(x0) exp(α(θ j−2 − t j−2 + θ j−3 − t j−3 · · · θ0 − t0)+

h(t j−1 − θ j−2 + t j−2 − θ j−3 + · · · + t1 − θ0))
≤ β j−2β j−1 · · · β1V(x0) exp(max(α, h)(t j−1 − t0)).

According to (3.2), there is also x(t j−1) ∈ EQ ⊂ L(M( j−1)q). Then, Lemma 3 can be applied. When
t = t j−1, similar to (3.14), one obtains

V(x(t+j−1)) ≤ β j−1V(x(t j−1))
≤ β j−1β j−2 · · · β1V(x0) exp(max(α, h)(t j−1 − t0)).

When s = j, t ∈ (t j−1, θ j−1] from (3.1), there is x(t+j−1) ∈ EQ ⊂ L(M̃q). Then, Lemma 3 can be
applied. Similar to (3.9)-(3.13), when t ∈ (t j−1, θ j−1], one has

V(x(t)) ≤ β j−1β j−2 · · · β1V(x0) exp(α(t − t j−1 + θ j−2 − t j−2 + · · · + θ0 − t0) + h(t j−1−

θ j−2 + t j−2 − θ j−3 + · · · + t1 − θ0)).

When t ∈ (θ j−1, t j], one obtains

V(x(t)) ≤ β j−1β j−2 · · · β1V(x0) exp(α(θ j−1 − t j−1 + θ j−2 − t j−2 + · · · + θ0 − t0) + h(t − θ j−1+

t j−1 − θ j−2 + · · · + t1 − θ0)).
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Obviously, it is easy to find that when t ∈ (t j−1, t j],

V(x(t)) ≤ β j−1β j−2 · · · β1V(x0) exp(max(α, h)(t − t0)).

Then, according to (3.6), we have, when t ∈ [t0, t j],

S e(t) = sup
t∈[t0,t j]

V(x(t))

≤ V(x0) max
i=1,2,··· , j

{ sup
t∈(ti−1,ti]

[(
i−1∏
k=0
βk) exp(max(α, h)(t − t0))]} < ∞.

Thus, when t ∈ [t0, t j],
S e(t) ≤ QV(x0).

Then, the condition a) in Lemma 4 is satisfied. Similarly, from (3.7), when t ∈ (t j(ℓ−1), t jℓ],

V(x(t)) ≤ V(x(t j(ℓ−1))) max
i= j(ℓ−1)+1,··· , jℓ

{ sup
t∈(ti−1,ti]

[(
i−1∏

k= j(ℓ−1)
βk) exp(max(α, h)(t − t j(ℓ−1)))]}.

Thus, when t ∈ (t j(ℓ−1), t jℓ],
V(x(t)) ≤ τV(x(t j(ℓ−1))),

and
S e(t) = sup

t∈(t j(ℓ−1),t jℓ]
V(x(t)) ≤ τV(x(t j(ℓ−1))).

Then, we have

S e(t jℓ) − S e(t j(ℓ−1)) ≤ τV(x(t j(ℓ−1))) − sup
t∈(t j(ℓ−2),t j(ℓ−1)]

V(x(t))

≤ τV(x(t j(ℓ−1))) −V(x(t j(ℓ−1)))
= (τ − 1)V(x(t j(ℓ−1))).

Since τ < 1,
S e(t jℓ) ≤ S e(t j(ℓ−1)).

Then, there is
lim
t→t∞

S e(t) ≤ lim
ℓ→∞
τV(x(t j(ℓ−1)))

≤ lim
ℓ→∞
τℓ−1QV(x0)

= 0.

Thus, the condition b) in Lemma 4 is also satisfied.
According to Lemma 4, for any initial condition x(t0) ∈ E0, the origin of system (2.1) is Uniformly

Attractively Stable, and if t∞ = ∞, the origin of system (2.1) is Asymptotically Stable. E0 can be
regarded as the estimation of the attraction domain. □

Remark 5. When j = 1, the step-function (2.4) is a one-span step-function, and when j > 1, the
step-function (2.4) is a multi-span step-function.
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Remark 6. In Theorem 1, there is no constraint on scalar α and scalar h, since the control signals are
not necessarily efficient, and the system itself may be stable or unstable. For impulsive control signals,
there is also no additional constraint on scalar βs. For example, we do not need to limit the value of
βs to be between 0 and 1 or be greater than 1. Because control signal error or control signal failure is
allowed in our theoretical research, our results are less conservative than many existing results.

Remark 7. Every trajectory starting from E0 will not go out of EQ. Because EQ ⊂ L(M̃q), and
EQ ⊂ L(Msq), for t ≥ t0 and t → t∞, there are always x(t) ∈ L(M̃q) and x(t) ∈ L(Msq). Also, the
trajectory will eventually converge to the origin.

If the traditional polytopic representation approach is used to deal with the actuator saturation, one
can obtain Corollary 1.

Corollary 1. Given an integer j ≥ 1, assume that there exist some scalars βs > 0, τ > 0, δ1 > 0, δ2 > 0,
α, h and some n× n matrices G > 0, M̃, Ms such that for any q ∈ I[1, 2n], l ∈ I[1, n], s = 1, 2, · · · and
ℓ = 2, 3, · · · , (3.4), (3.6), (3.7) and the following conditions hold:[

G M̃T
(l)

∗ Q−1

]
≥ 0, (3.15)

[
G MT

s(l)
∗ Q−1

]
≥ 0, (3.16)

Γq =[
He(GA) + H − αG + He(GC(EqD + E −q M̃)) + δ1GC̃C̃TG + δ1GĈĈTG + δ−1

1 F̃T F̃ GB
∗ −I + δ−1

1 F̂T F̂

]
≤ 0,

(3.17)[
−βsG (I + Es(EqJs + E −q Ms))T

∗ −G−1

]
≤ 0. (3.18)

Then, for any initial condition x(t0) ∈ E0, the origin of system (2.1) is Uniformly Attractively Stable,
and if t∞ = ∞, the origin of system (2.1) is Asymptotically Stable. E0 can be regarded as the estimation
of the attraction domain.

Proof. Similar to the proof of Theorem 1, it is easy to get Corollary 1. □

4. Design of the control gains and the auxiliary control gains

In order to make the conditions in Theorem 1 and Corollary 1 easily solved by some software, we
will try to transform these associated inequalities and try to find the design of the control gains and the
auxiliary control gains, which can ensure the stabilization of (2.1).

Theorem 2. Given an integer j ≥ 1, βs > 0, τ > 0, α and h, assume that there exist some scalars
δ1 > 0, δ2 > 0 and some n × n matrices G > 0, M̃q, Msq, D and Js such that for any q ∈ I[1, 2n],
l ∈ I[1, n], s = 1, 2, · · · and ℓ = 2, 3, · · · , (3.6), (3.7) and the following conditions hold:[

G M̃ T
q(l)

∗ Q−1

]
≥ 0, (4.1)
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G M T

sq(l)

∗ Q−1

]
≥ 0, (4.2)


He(AG ) − αG + He(C(EqD + E −q M̃q)) + δ1C̃C̃T + δ1ĈĈT B 0 G G F̃T

∗ −I F̂T 0 0
∗ ∗ −δ1I 0 0
∗ ∗ ∗ −H−1 0
∗ ∗ ∗ ∗ −δ1I


≤ 0, (4.3)


He(AG ) − hG + δ2C̃C̃T + δ2ĈĈT B 0 G G F̃T

∗ −I F̂T 0 0
∗ ∗ −δ2I 0 0
∗ ∗ ∗ −H−1 0
∗ ∗ ∗ ∗ −δ2I


≤ 0, (4.4)

[
−βsG (G + Es(EqJs + E −q Msq))T

∗ −G

]
≤ 0. (4.5)

Then, for any initial condition x(t0) ∈ E0, with the design of the control gains D = DG −1 and Js =

JsG −1 and the auxiliary control gains M̃q = M̃qG −1 and Msq = MsqG −1, the origin of system (2.1)
is Uniformly Attractively Stable, and if t∞ = ∞, the origin of system (2.1) is Asymptotically Stable. E0

can be regarded as the estimation of the attraction domain.

Proof. Let us pre- and post-multiply (3.1)–(3.5) by diag(G , I) with G = G−1. According to the Schur
complement and letting DG = D , M̃qG = M̃q, JsG = Js and MsqG = Msq, in which q ∈ I[1, 2n],
l ∈ I[1, n] and s = 1, 2, · · · , one obtains conditions (4.1)–(4.5). □

Similar to Theorem 2, it is easy to get Corollary 2.

Corollary 2. Given an integer j ≥ 1, βs > 0, τ > 0, α and h, assume that there exist some scalars
δ1 > 0, δ2 > 0 and some n × n matrices G > 0, M̃ , Ms, D and Js such that for any q ∈ I[1, 2n],
l ∈ I[1, n], s = 1, 2, · · · and ℓ = 2, 3, · · · , (3.6), (3.7), (4.4) and the following conditions hold:[

G M̃ T
(l)

∗ Q−1

]
≥ 0, (4.6)

[
G M T

s(l)
∗ Q−1

]
≥ 0, (4.7)


He(AG ) − αG + He(C(EqD + E −q M̃ )) + δ1C̃C̃T + δ1ĈĈT B 0 G G F̃T

∗ −I F̂T 0 0
∗ ∗ −δ1I 0 0
∗ ∗ ∗ −H−1 0
∗ ∗ ∗ ∗ −δ1I


≤ 0, (4.8)

[
−βsG (G + Es(EqJs + E −q Ms))T

∗ −G

]
≤ 0. (4.9)
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Then, for any initial condition x(t0) ∈ E0, with the design of the control gains D = DG −1 and Js =

JsG −1 and the auxiliary control gains M̃ = M̃G −1 and Ms = MsG −1, the origin of system (2.1) is
Uniformly Attractively Stable, and if t∞ = ∞, the origin of system (2.1) is Asymptotically Stable. E0

can be regarded as the estimation of the attraction domain.

Proof. Similar to (4.1)–(4.3) and (4.5), pre- and post-multiply (3.15)–(3.18) by diag(G , I) with G =
G−1. Letting DG = D , M̃G = M̃ , JsG = Js and MsG =Ms, in which q ∈ I[1, 2n], l ∈ I[1, n] and
s = 1, 2, · · · , one obtains (4.6)–(4.9). □

5. Application to the fixed time impulse problems of uncertain systems subject to actuator
saturation with or without Zeno behavior

Theorem 2 and Corollary 2 are appropriate to deal with fixed time impulse problems of uncertain
systems subject to actuator saturation with or without Zeno behavior.

5.1. System (2.1) with upper and lower bounds on the impulse interval via two-span step-function

Corollary 3. Given some scalars βs > 0, max(α, h) > 0 and τ > 0, when j = 2, T̃ ≤ ts+1 − ts ≤ T
with positive constants T̃ and T , assume that there exist some scalars δ1 > 0, δ2 > 0 and some n × n
matrices G > 0, M̃q, Msq, D and Js such that for any q ∈ I[1, 2n], l ∈ I[1, n], s = 1, 2, · · · and
ℓ = 2, 3, · · · , (4.1)-(4.5) and the following condition hold:

max{β2ℓ−2 exp(max(α, h)T ), β2ℓ−2β2ℓ−1 exp(2 max(α, h)T )} ≤ τ < 1. (5.1)

Then, for any initial condition x(t0) ∈ E0, with the design of the control gains D = DG −1 and
Js = JsG −1, the design of the auxiliary control gains M̃q = M̃qG −1 and Msq = MsqG −1 and
Q = max{exp(max(α, h)T ), β1 exp(2 max(α, h)T )}, the origin of the nonlinear uncertain system (2.1) is
Asymptotically Stable. E0 can be regarded as the estimation of the attraction domain.

Corollary 4. Given some scalars βs > 0, max(α, h) > 0 and τ > 0, when j = 2, T̃ ≤ ts+1 − ts ≤ T
with positive constants T̃ and T , assume that there exist some scalars δ1 > 0, δ2 > 0 and some n × n
matrices G > 0, M̃ , Ms, D and Js such that for any q ∈ I[1, 2n], l ∈ I[1, n], s = 1, 2, · · · and
ℓ = 2, 3, · · · , (4.4), (4.6)-(4.9) and (5.1) hold. Then, for any initial condition x(t0) ∈ E0, with the design
of the control gains D = DG −1 and Js =JsG −1, the design of the auxiliary control gains M̃ = M̃G −1

and Ms = MsG −1 and Q = max{exp(max(α, h)T ), β1 exp(2 max(α, h)T )}, the origin of the nonlinear
uncertain system (2.1) is Asymptotically Stable. E0 can be regarded as the estimation of the attraction
domain.

5.2. System (2.1) with Zeno behavior via one-span step-function

Inspired by [13], if we set ts = ℘ −
1
s with ℘ > 1 and s = 1, 2, · · · , there will be Zeno behavior.

Then, one has Corollary 5, 6.

Corollary 5. Given an integer j = 1 and given some scalars βs > 0, max(α, h) > 0 and τ > 0, assume
that there exist some scalars δ1 > 0, δ2 > 0 and some n × n matrices G > 0, M̃q, Msq, D and Js

such that for any q ∈ I[1, 2n], l ∈ I[1, n], s = 1, 2, · · · and ℓ = 2, 3, · · · , (4.1)-(4.5) and the following
condition hold:

βℓ−1 exp(max(α, h) 1
ℓ(ℓ−1) ) ≤ τ < 1. (5.2)
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Figure 1. The state trajectories of (6.1) with parametric uncertainty.

Then, for any initial condition x(t0) ∈ E0, with the design of the control gains D = DG −1 and
Js = JsG −1, the design of the auxiliary control gains M̃q = M̃qG −1 and Msq = MsqG −1 and
Q = exp(max(α, h)(℘ − 1)), the origin of system (2.1) is Uniformly Attractively Stable with Zeno
behavior. E0 can be regarded as the estimation of the attraction domain.

Corollary 6. Given an integer j = 1 and given some scalars βs > 0, max(α, h) > 0 and τ > 0, assume
that there exist some scalars δ1 > 0, δ2 > 0 and some n×n matrices G > 0, M̃ , Ms, D and Js such that
for any q ∈ I[1, 2n], l ∈ I[1, n], s = 1, 2, · · · and ℓ = 2, 3, · · · , (4.4), (4.6)-(4.9) and (5.2) hold. Then,
for any initial condition x(t0) ∈ E0, with the design of the control gains D = DG −1 and Js = JsG −1,
the design of the auxiliary control gains M̃ = M̃G −1 and Ms =MsG −1 and Q = exp(max(α, h)(℘−1)),
the origin of system (2.1) is Uniformly Attractively Stable with Zeno behavior. E0 can be regarded as
the estimation of the attraction domain.

6. Simulation results

Let us consider the following two-dimensional dynamic neural network system:

ẋ(t) = A(t)x(t) + B(t)h(x(t)), (6.1)

with x(t) = (x1(t), x2(t))T , h(x(t)) = ( |x1(t)+1|−|x1(t)−1|
2 , |x2(t)+1|−|x2(t)−1|

2 )T ,

A =
[
−0.19 0

0 −0.19

]
, B =

[
0.22 0.15
−0.15 0.23

]
,

C̃ = diag(0.1, 0.1), F̃ = diag(−0.2,−0.2), Ĉ = diag(0.5, 0.5), F̂ = diag(−0.2,−0.2), J̃(t) =
diag(exp(−t), exp(−t)), and Ĵ(t) = diag(sin(t), sin(t)). We can also find H = diag(1, 1). When
x0 = (−0.6912, 0.06667)T , the result of the time response of (6.1) is shown in Figure 1.

One continuous control signal and two kinds of impulsive signals with different control gains are
inputted into system (6.1).
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Case 1. The stabilization of system (6.1) without Zeno behavior via two-span step-function

Let j = 2 (the two-span step-function is introduced here), α = 0.4, h = 0.6, 0.5 ≤ ts+1 − ts ≤ 0.6,
β1 = 0.4, β2 = 1.1, τ = 0.99,

C =
[
0.2 0.1
0.1 0.2

]
, E1 =

[
0.4 0.2
0.2 0.8

]
and E2 =

[
0.2 0.2
0.2 0.8

]
.

If we assume Ms1 = Ms2 = Ms3 = Ms4, M̃1 = M̃3, M̃2 = M̃4, M1q = M3q = M5q = · · · ,
M2q = M4q = M6q = · · · , J1 = J3 = J5 = · · · , and J2 = J4 = J6 = · · · , according to
Corollary 3, we can easily find the following results by Matlab.

G =

[
0.4939 0.0480
0.0480 0.5529

]
,D =

[
−10.9052 −4.8438
−4.9108 −11.0068

]
,J1 =

[
−1.1261 0.0630
0.0323 −0.6859

]
,

J2 =

[
−1.5464 −0.2449
0.0462 −0.6348

]
, M̃1 =

[
−0.4632 0.0931
0.1308 −0.5242

]
, M̃2 =

[
−0.4230 0.2003

0 0

]
,

M1q =

[
−0.5538 0.0969
0.0762 −0.4857

]
,M2q =

[
−0.3985 0.0169
0.0718 −0.3671

]
,

δ1 = 0.5420, δ2 = 0.3375, and Q = 1.4333. Then, we have

G = G −1 =

[
2.0420 −0.1771
−0.1771 1.8240

]
.

According to the design of the control gains and the auxiliary control gains in Corollary 3, one
obtains

D = DG −1 =

[
−21.4109 −6.9036
−8.0786 −19.2066

]
, J1 =J1G

−1 =

[
−2.3107 0.3144
0.1874 −1.2569

]
,

J2 =J2G
−1 =

[
−3.1145 −0.1729
0.2067 −1.1661

]
, M̃1 = M̃1G

−1 =

[
−0.9624 0.2519
0.3598 −0.9793

]
,

M̃2 = M̃2G
−1 =

[
−0.8992 0.4402

0 0

]
, M1q =M1qG

−1 =

[
−1.1480 0.2748
0.2416 −0.8993

]
,

and

M2q =M2qG
−1 =

[
−0.8168 0.1015
0.2116 −0.6823

]
.

Thus, the estimation of the attraction domain E0 and the other domain EQ can be listed as

E0 =

{
x(t) ∈ R2 : x(t)T

[
2.0420 −0.1771
−0.1771 1.8240

]
x(t) ≤ 1

}
and

EQ =

{
x(t) ∈ R2 : x(t)T

[
2.0420 −0.1771
−0.1771 1.8240

]
x(t) ≤ 1.4333

}
.

The control gains D, J1 and J2 are used to realize the stabilization of system (6.1), and the results
and the control signal saturation functions are shown in Figures 2 and 3 with p = 1, 2.
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Figure 2. The stabilization of (6.1) with constrained hybrid control input.
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Figure 3. The input signal saturation functions.
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Figure 4. V(t) and the two-span step-function Se(t).
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Figure 5. E0 and EQ.

On the other hand,V(t) and Se(t) are depicted in Figure 4
The estimation of the attraction domain E0 and the other domain EQ are depicted in Figure 5. The

smaller ellipsoid is E0, which can be taken as the estimation of the attraction domain. The bigger
ellipsoid is EQ. The regions bounded by the green, blue, yellow and black dotted lines are L(M̃1),
L(M̃2), L(M1q) and L(M2q), respectively.

If we assume M1q = M3q = M5q = · · · , M2q = M4q = M6q = · · · , J1 = J3 = J5 = · · · , and
J2 = J4 = J6 = · · · , according to Corollary 3, we can easily find the following estimation of the
attraction domain Ẽ0 by Matlab.

Ẽ0 =

{
x(t) ∈ R2 : x(t)T

[
1.9391 −0.1619
−0.1619 1.7377

]
x(t) ≤ 1

}
.

Under the same assumptions, if we use the traditional polytopic representation approach, according
to Corollary 4 and fixing the other parameters, we can find a different estimation of the attraction
domain Ê0.

Ê0 =

{
x(t) ∈ R2 : x(t)T

[
2.0944 −0.1814
−0.1814 1.8651

]
x(t) ≤ 1

}
.

Ẽ0 and Ê0 are shown in Figure 6. Obviously, in this situation, Ẽ0, using the improved polytopic
representation approach, is bigger than Ê0, using the traditional polytopic representation approach.

Case 2. The stabilization of system (6.1) with Zeno behavior via one-span step-function

We assume ts = 1.4 − 1
s with s = 1, 2, · · · , and then there will be Zeno behavior. Here, we simulate

the stabilization of (6.1) with actuator saturation and Zeno behavior.
If we fix other parameters, let j = 1 (one-span step-function is introduced here), α = 0.5, β1 = 0.5,

and β2 = 0.7. Using the traditional polytopic representation approach, we assume M1q = M3q =

M5q = · · · , M2q =M4q =M6q = · · · , J1 =J3 =J5 = · · · and J2 =J4 =J6 = · · · . According
to Corollary 6, we can easily find the following results by Matlab.

G =

[
0.5338 0.0349
0.0349 0.5888

]
,D =

[
−12.5324 −5.4959
−5.4571 −12.5889

]
,
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Figure 6. Ẽ0 and Ê0.

J1 =

[
−1.2170 0.0864
0.0673 −0.7270

]
,J2 =

[
−1.6105 − 0.0801
0.0327 − 0.7027

]
,

and Q = 1.2712. Then, we have

G = G −1 =

[
1.8806 −0.1115
−0.1115 1.7050

]
.
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Figure 7. The stabilization of (6.1) with Zeno behavior.

According to the design of the control gains and the auxiliary control gains in Corollary 6, one
obtains

D = DG −1 =

[
−22.9548 −7.9727
−8.8582 −20.8554

]
, J1 =J1G

−1 =

[
−2.2983 0.2831
0.2077 −1.2470

]
,

and

J2 =J2G
−1 =

[
−3.0197 0.0431
0.1399 −1.2017

]
.
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Thus, the estimation of the attraction domain E0 and the other domain EQ can be listed as

E0 =

{
x(t) ∈ R2 : x(t)T

[
1.8806 −0.1115
−0.1115 1.7050

]
x(t) ≤ 1

}
and

EQ =

{
x(t) ∈ R2 : x(t)T

[
1.8806 −0.1115
−0.1115 1.7050

]
x(t) ≤ 1.2712

}
.

When x0 = (0.7295,−0.02667)T , the control gains D, J1 and J2 are used to realize the stabilization of
system (6.1), and the results are shown in Figures 7 and 8.
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lt

V(x(t))
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Figure 8. V(t) and the one-span step-function Se(t) with Zeno behavior.

7. Conclusions

The step-function is an extension of Lyapunov-like stability theory, which can relax some restric-
tions of the existing Lyapunov-like function methods. Also, it can be used to analyze the stability of
a nonlinear system with Zeno behavior, which is not easily addressed by traditional Lyapunov-like
function methods. Then, in this paper, considering signal interruption or signal error, we formulated
a novel class of parametric uncertainty hybrid control system models including the impulsive control
signals under saturated inputs. Based on the step-function method, an improved polytopic representa-
tion approach and Schur complement, the problem of stability of parametric uncertainty systems under
actuator saturation was investigated by us. In order to easily find the suitable control signals, the auxil-
iary signals and the estimation of the attraction domain, we investigated the design of the control gains
and the auxiliary control gains. Our main results were applied to the fixed time impulse problems of
uncertain systems with or without Zeno behavior. Simulation results for the uncertain neural network
systems were presented to show the feasibility and effectiveness of our stabilization methods using the
step-function. The results in this paper can better reflect the signal transmission process in the real
environment, and the conditions here are less conservative than those with traditional Lyapunov-like
function methods or with the traditional polytopic representation approach, so it will enrich the exist-
ing research. The stabilization of time-delay nonlinear systems with saturated impulsive inputs via the
step-function method is another interesting topic, which is worthy of our future research.
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