Mathematical Biosciences
and Engineering

Research article

The existence and nonexistence of positive solutions for a singular Kirchhoff equation with convection term

Xiaohui Qiu and Baoqiang Yan*

School of Mathematical Sciences, Shandong Normal University, Jinan 250000, China

* Correspondence: Email: yanbqcn@aliyun.com.

Abstract

This paper considers a singular Kirchhoff equation with convection and a parameter. By defining new sub-supersolutions, we prove a new sub-supersolution theorem. Combining method of sub-supersolution with the comparison principle, for Kirchhoff equation with convection, we get the conclusion about positive solutions when nonlinear term is singular and sign-changing.

Keywords: a singular Kirchhoff equation; nonlinear term; positive solution; sub-supersolution; the comparison principle

1. Introduction

In this work, we study

$$
\left\{\begin{array}{rrr}
-a\left(\int_{\Omega}|\nabla u(x)|^{2} d x\right) \Delta u(x) & \tag{1.1}\\
& =\lambda f(x, u)+K(x) g(u)-|\nabla u|^{\eta}, & \\
u>0, & \text { in } \Omega, \\
u & =0, & \text { in } \Omega, \\
u & \text { on } \partial \Omega .
\end{array}\right.
$$

where Ω is a smooth and bounded domain in $\mathbb{R}^{N}(N \geq 2), a:[0 .+\infty) \rightarrow(0,+\infty)$ is continuous and increasing with

$$
\inf _{t \in[0,+\infty)} a(t)=a(0)=a_{0}>0, \text { and } \lim _{t \rightarrow+\infty} a(t)=+\infty,
$$

$K \in C^{0, \gamma}(\bar{\Omega}), \lambda>0,0 \leq \eta<2$.

This work is motivated by [1] where Ghergu and Rădulescu considered

$$
\left\{\begin{aligned}
-\Delta u(x) & =K(x) g(u)+\lambda f(x, u)-|\nabla u|^{a}, & & \text { in } \Omega, \\
u & >0, & & \text { in } \Omega, \\
u & =0, & & \text { on } \partial \Omega .
\end{aligned}\right.
$$

They obtained the existence or nonexistence of solutions. Many other works on the solutions for equations can be found in [2-8] also.

For the case that the nonlinearity is independent on ∇u, many researchers made extensively research in equations of this type, see [9-21] and their references.

But since $h(x, u, \nabla u)=\lambda f(x, u)+K(x) g(u)-|\nabla u|^{\eta}$ in problem (1.1) depends on gradient, variational methods can not be used to study problem (1.1) in a direct way. According to the works in [1], it is natural to try to use the sub-supersolution approach to study the problem (1.1).

A difficulty is that there is no ready-made sub-supersolution approach for (1.1) although there are some results on the methods of sub-supersolutions for problem (1.1) when nonlinearity h is independent of ∇u or is continuous on $u=0$, see [22-24].

Our paper will prove the sub-supersolutions theorem for a generalized (2.1) and use the obtained theorem to consider (1.1).

Suppose that the function $f: \bar{\Omega} \times[0, \infty) \rightarrow[0, \infty)$ is Hölder continuous, and $f>0$ on $\bar{\Omega} \times(0, \infty)$. And f satisfies:
$(f 1)$ the mapping $s \mapsto \frac{f(x, s)}{s}$ with $s \in(0, \infty)$ is decreasing, $\forall x \in \bar{\Omega}$;
(f2) $\lim _{s \rightarrow 0} \frac{f(x, s)}{s}=+\infty$ and $\lim _{s \rightarrow+\infty} \frac{f(x, s)}{s}=0$, uniformly for $x \in \bar{\Omega}$.
$g \in C^{0, \gamma}(0, \infty), g \geq 0$, and decreasing function satisfying
(g1) $\lim _{s \rightarrow 0} g(s)=+\infty$;
(g2) $\int_{0}^{1} g(s) d s<+\infty$;
(g3) there are $\alpha \in(0,1)$ and $\theta_{0}>0, C>0$ making $g(s) \leq C s^{-\alpha}, \forall s \in\left(0, \theta_{0}\right)$.

Theorem 1.1. If $K(x)>0$ in $\bar{\Omega}$, f meets $(f 1)-(f 2)$, g meets $(g 1)-(g 2)-(g 3),(1.1)$ has at least one solution for all $\lambda>0$.

Theorem 1.2. If $K(x)<0$ in $\bar{\Omega}, f$ meets $(f 1)-(f 2)$, g meets $(g 1)-(g 2)-(g 3)$, there exists $\lambda^{*}>0$ making (1.1) has at least one solution when $\lambda \geq \lambda^{*}$, and there exist $\lambda_{0}>0$ enough small such that (1.1) has no solution.
Theorem 1.3. If $K(x)<0$ in $\bar{\Omega}$, f meets $(f 1)-(f 2)$, (1.1) has no solution, if $\int_{0}^{1} g(s) d s=+\infty$.
This work is organised as follows. In section 2, we give some lemmas and obtain a sub-supersolution theorem for some singular Kirchhoff equation with convection (2.1). In Section 3, we proof the results. Some ideas like [1,22,25-29].

2. The sub-supersolutions approach for problem (2.1)

This section, we discuss

$$
\left\{\begin{align*}
-\Delta u(x) & =\frac{1}{a\left(\|u\|^{2}\right)} f(x, u(x), \nabla u(x)), \quad x \in \Omega, \tag{2.1}\\
\left.u\right|_{\partial \Omega} & =0,
\end{align*}\right.
$$

where $f(x, u, \xi)$ satisfies two conditions:
$\left(F_{1}\right) f(x, u, \xi)$ is continuously differentiable relative to the variables u and ξ and locally Hölder continuous in $\Omega \times(0,+\infty) \times \mathbb{R}^{n}$;
$\left(F_{2}\right)$ there are $\theta \in(0,1)$ and $\eta \in[0,2)$ making there is a corresponding constant $C=C(\Omega ; b)>0$, $\forall b>0$, such that

$$
|f(x ; u ; \xi)| \leq C u^{-\theta}\left[1+|\xi|^{\eta}\right], \forall(x, u, \xi) \in \Omega \times(0, b] \times \mathbb{R}^{N} .
$$

Now consider

$$
\left\{\begin{array}{l}
|\Delta u| \leq \frac{1}{a(0)}|f(x, u, \nabla u)|, x \in \Omega, \tag{2.2}\\
\left.u\right|_{\partial \Omega}=0 .
\end{array}\right.
$$

Set

$$
\Sigma_{R}=\left\{u \in C^{2}(\Omega) \cap C_{0}^{1}(\bar{\Omega}) \text { satisfies problem (2.2), } u>0\left|\max _{x \in \bar{\Omega}}\right| u(x) \mid \leq R\right\}
$$

Obviously, $0 \in \Sigma_{R}$ and then Σ_{R} is not empty for any $R>0$. For the functions in Σ_{R}, we have following lemma.

Lemma 2.1. $\forall R>0$, there is $k_{0}>0$ making

$$
\left(\int_{\Omega}|\nabla u(x)|^{2} d x\right)^{1 / 2} \leq k_{0}
$$

for all $u \in \Sigma_{R}$.
Proof. Suppose $u \in \Sigma_{R}$. Multiplying u in both side in (2.2) and integrating on Ω, using Young inequality,

$$
\begin{aligned}
a(0) \int_{\Omega}|\nabla u(x)|^{2} d x & \leq \int_{\Omega}|f(y, u(y), \nabla u(y))| u(y) d y \\
& \leq C \int_{\Omega}\left(u^{1-\theta}(y)\right)\left[1+|\nabla u(y)|^{\eta}\right] d y \\
& \leq C R^{1-\theta}\left[|\Omega|+\int_{\Omega}|\nabla u(y)|^{\eta} d y\right] \\
& \leq C R^{1-\theta}\left[|\Omega|+C_{1}+\varepsilon \int_{\Omega}|\nabla u(y)|^{2} d y\right] .
\end{aligned}
$$

Therefore, there is a $k_{0}>0$ such that

$$
\|u\| \leq k_{0} .
$$

The proof is completed.
Let

$$
f^{+}(x, u, \xi)=\max \{f(x, u, \xi), 0\}
$$

and

$$
f^{-}(x, u, \xi)=\max \{-f(x, u, \xi), 0\} .
$$

Then

$$
f(x, u, \xi)=f^{+}(x, u, \xi)-f^{-}(x, u, \xi)
$$

In the following, we define the supersolution of (2.1) and the corresponding sub-solution.
Definition 2.2. If the positive function \bar{u} with $\bar{u} \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$ satisfies

$$
\left\{\begin{aligned}
-\Delta \bar{u}(x) & \geq \frac{1}{a(0)} f^{+}(x, \bar{u}(x), \nabla \bar{u}(x)), \quad x \text { in } \Omega, \\
\left.\bar{u}\right|_{\partial \Omega} & =0,
\end{aligned}\right.
$$

$\bar{u}(x)$ is a upper solution of (2.1).
Suppose \bar{u} is a positive supersolution of (2.1). Since the condition (F2) hold, form Lemma 2.1, for $R=\sup _{x \in \Omega} \bar{u}(x)$, there is $k_{0}>0$ making

$$
\|u\|=\sqrt{\left(\int_{\Omega}|\nabla u(x)|^{2} d x\right)} \leq k_{0}
$$

for all $u \in \Sigma_{R}$.
Definition 2.3. If the positive function \underline{u} with $\underline{u} \in C^{2+\alpha}(\Omega) \cap C^{1}(\bar{\Omega})$ satisfies $\underline{u}(x) \leq \bar{u}(x), \forall x \in \Omega$ and

$$
\left\{\begin{aligned}
-\Delta \underline{u}(x) \leq & \frac{1}{a\left(k_{0}^{2}\right)} f^{+}(x, \underline{u}(x), \nabla \underline{u}(x)) \\
& -\frac{1}{a(0)} f^{-}(x, \underline{u}(x), \nabla \underline{u}(x)), x \text { in } \Omega, \\
\left.\underline{u}\right|_{\partial \Omega}= & 0
\end{aligned}\right.
$$

$\underline{u}(x)>0$ is a subsolution of (2.1) corresponding with the supersolution $\bar{u}(x)$.
Let

$$
C^{1}(\bar{\Omega})=\{u: \bar{\Omega} \rightarrow \mathbb{R}: u(x) \text { is continuously differentiable on } \bar{\Omega}\}
$$

with norm

$$
\|u\|_{1}=\max \left\{\max _{x \in \bar{\Omega}}|u(x)|, \max _{x \in \bar{\Omega}}|\nabla u(x)|\right\} .
$$

Note that $C^{1}(\bar{\Omega})$ is a Banach space.
We list lemma which will be used later.
Lemma 2.4. (see [30]) Let $u \in W^{2, p}(\Omega)$ satisfy

$$
|\Delta u(x)| \leq f_{0}+K|\nabla u|^{2}
$$

with $\left.u\right|_{\partial \Omega}=0,|u|_{\infty, \Omega} \leq M \in(0,+\infty)$ and $f_{0} \in L^{p}(\Omega)$. Then there is $k^{\prime}>0$, depending u only through M such that

$$
|u|_{W^{2, p}(\Omega)} \leq k^{\prime} .
$$

Remark 2.5. In the above lemma, if $\left.u\right|_{\partial \Omega}=\phi(x)$ with $\phi \in C^{2+\alpha}(\partial \Omega)$, we get same conclusion.
Theorem 2.6. Set $\Omega \subseteq \mathbb{R}^{N}(N \geq 1)$ be a smooth bounded domain. If $\left(F_{1}\right)$ and $\left(F_{2}\right)$ hold. Assume $\bar{u}>0$ is a upper solution of (2.1) and $\underline{u}>0$ is a lower solution of (2.1) corresponding with the supersolution \bar{u}. Moreover, if there is $\delta_{0}>0$ making $\underline{u}(x) \geq \delta_{0} d(x, \partial \Omega)^{\gamma}$ with $0<\gamma \theta<1$. Then (2.1) has at least one solution $u \in C^{2}(\Omega) \cap C^{1,1-\gamma \theta}(\bar{\Omega})$,

$$
\underline{u}(x) \leq u(x) \leq \bar{u}(x),
$$

$\forall x \in \bar{\Omega}$.
In order to obtain Theorem 2.6, make a sequence of subdomains of Ω with $C^{2+\alpha}$-boundaries, named $\left\{\Omega_{k}\right\}_{k=1}^{\infty}$ such that

$$
\Omega_{1} \subset \subset \Omega_{2} \subset \subset \cdots \subset \subset \Omega_{k} \subset \subset \Omega_{k+1} \subset \subset \cdots
$$

with $\cup_{k=1}^{\infty} \Omega_{k}=\Omega$. For each k, consider

$$
\left\{\begin{align*}
-\Delta u(x)= & \frac{1}{a\left(\min \left\{k_{0}^{2}, \int_{\Omega_{2}}|\nabla u(x)|^{2} d x\right\}\right)} \tag{2.3}\\
& f(x, u(x), \nabla u(x)), \quad x \in \Omega_{k} \\
\left.u\right|_{\partial \Omega_{k}}= & \underline{u}(x)>0
\end{align*}\right.
$$

Lemma 2.7. For each $k>0$, (2.3) has a solution $u_{k} \in C^{1}\left(\bar{\Omega}_{k}\right)$ making

$$
\underline{u}(x) \leq u_{k}(x) \leq \bar{u}(x), \quad x \in \bar{\Omega}_{k} .
$$

Proof. If u is a solution of problem (2.3) with $\underline{u}(x) \leq u(x) \leq \bar{u}(x)$ on $\bar{\Omega}_{k}$, we have

$$
|\Delta u| \leq C \underline{u}^{-\theta \gamma}(x)\left[1+|\nabla u|^{\eta}\right],
$$

which together Lemma 5.10 in [30] and the interpolation inequality lemma in [30] infers there is $R_{k}>0$ such that

$$
\|u\|_{1}<R_{k} .
$$

Define $\bar{f}: \bar{\Omega} \times(0,+\infty) \times \mathbb{R}$ as

$$
\bar{f}(x, u, \xi)= \begin{cases}f(x, u, \xi), & \text { if } \underline{u}(x) \leq u \leq \bar{u}(x) \\ f(x, \bar{u}(x), \xi)+h_{1}(x), & \text { if } u<u(x) \\ f(x, \overline{\bar{u}}, \xi)-h_{2}(x), & \text { if } u>\overline{\bar{u}}(x)\end{cases}
$$

where

$$
\left\{\begin{array}{l}
h_{1}(x)=\frac{1}{u(x)}[|f(x, \underline{u}(x), 0)|+1] \min \{\underline{u}(x), \underline{u}(x)-u\}, \tag{2.4}\\
h_{2}(x)=\frac{1}{\bar{u}(x)}[|f(x, \bar{u}(x), 0)|+1] \min \{\bar{u}(x), u-\bar{u}(x)\}
\end{array}\right.
$$

Now consider

$$
\left\{\begin{align*}
-\Delta u(x) & =\frac{\bar{f}(x, u(x), \nabla u(x))}{a\left(\min \left\{k_{0}^{2}, \int_{\Omega_{k}}|\nabla u(x)|^{2} d x\right\}\right)}, x \in \Omega_{k}, \tag{2.5}\\
\left.u\right|_{\partial \Omega_{k}} & =\underline{u}(x)
\end{align*}\right.
$$

First, we prove that the solution of (2.5) is the solution of (2.3).
If u is a solution of (2.5), we will prove that $\underline{u}(x) \leq u(x) \leq \bar{u}(x), x \in \Omega_{k}$.
In fact, if there is a $x_{0} \in \Omega_{k}$ with $u\left(x_{0}\right)<\underline{u}\left(x_{0}\right)$, let $A=\left\{x \in \Omega_{k} \mid u(x)<\underline{u}(x)\right.$, there exists a continuous line $\phi:[0,1] \rightarrow \Omega_{k}, \phi(0)=x_{0}, \phi(1)=x$ and $u(\phi(t))<\underline{u}(\phi(t))$ for all $\left.t \in[0,1]\right\}$. Obviously, $u(x)<\underline{u}(x)$ for all $x \in A$ and $u(x)=\underline{u}(x), \forall x \in \partial A\left(\right.$ note $u(x)=\underline{u}(x)$ for all $\left.x \in \partial \Omega_{k}\right)$. Now there exists a $x_{1} \in A$ such that $u\left(x_{1}\right)-\underline{u}\left(x_{1}\right)=\overline{\min }_{x \in \bar{A}}(u(x)-\underline{u}(x))$ making $\nabla u\left(x_{1}\right)=\nabla \underline{u}\left(x_{1}\right)$ and

$$
\begin{aligned}
& 0 \geq-\Delta\left(u\left(x_{1}\right)-\underline{u}\left(x_{1}\right)\right) \\
& \geq \frac{1}{\left.a\left(\min \left\{k_{0}^{2}, \int_{\Omega_{2}} \mid \nabla u(x)\right)^{2} d x\right\}\right)} \bar{f}\left(x_{1}, u\left(x_{1}\right), \nabla u\left(x_{1}\right)\right) \\
&= \frac{-\frac{1}{a\left(k_{0}^{2}\right)} f^{+}\left(x_{1}, \underline{u}\left(x_{1}\right), \nabla \underline{u}\left(x_{1}\right)\right)+\frac{1}{a(0)} f^{-}\left(x_{1}, \underline{u}\left(x_{1}\right), \nabla \underline{u}\left(x_{1}\right)\right)}{\left.a\left(\min \left\{k_{0}^{2}, \int_{\Omega_{k}} \mid \nabla u(x)\right)^{2} d x\right\}\right)} f\left(x_{1}, \underline{u}\left(x_{1}\right), \nabla u\left(x_{1}\right)\right) \\
&-\frac{1}{a\left(k_{0}^{2}\right)} f^{+}\left(x_{1}, \underline{u}\left(x_{1}\right), \nabla \underline{u}\left(x_{1}\right)\right)+\frac{1}{a(0)} f^{-}\left(x_{1}, \underline{u}\left(x_{1}\right), \nabla \underline{u}\left(x_{1}\right)\right) \\
&+\frac{1}{\left.a\left(\min \left\{k_{0}^{2}, \int_{\Omega_{k}} \mid \nabla u(x)\right)^{2} d x\right\}\right)} h_{1}\left(x_{1}\right) \\
& \geq \frac{1}{a\left(k_{0}^{2}\right)} \bar{f}^{+}\left(x_{1}, \underline{u}\left(x_{1}\right), \nabla \underline{u}\left(x_{1}\right)\right)-\frac{1}{a(0)} \bar{f}\left(x_{1}, \underline{u}\left(x_{1}\right), \nabla \underline{u}\left(x_{1}\right)\right) \\
& \frac{1}{a\left(k_{0}^{2}\right)} f^{+}\left(x_{1}, \underline{u}\left(x_{1}\right), \nabla \underline{u}\left(x_{1}\right)\right)+\frac{1}{a(0)} f^{-}\left(x_{1}, \underline{u}\left(x_{1}\right), \nabla \underline{u}\left(x_{1}\right)\right) \\
&+\frac{1}{a\left(\min \left\{k_{0}^{2}, S_{\Omega_{k}}|\nabla u(x)|^{2} d x\right\}\right.} h_{1}\left(x_{1}\right) \\
&= \frac{1}{a\left(\min \left\{k_{0}^{2}, \int_{\Omega_{k}}|\nabla u(x)|^{2} d x\right\}\right)} h_{1}\left(x_{1}\right) \\
&>0,
\end{aligned}
$$

where h_{1} is defined in (2.4). This is contradictory. Thus, $0<\underline{u}(x) \leq u(x), \forall x \in \Omega_{k}$.
On the other hand, if there is a $x_{0} \in \Omega_{k}$ with $u\left(x_{0}\right)>\bar{u}\left(x_{0}\right)$, let $B=\left\{x \in \Omega_{k} \mid u(x)>\bar{u}(x)\right.$, there is a continuous line $\psi:[0,1] \rightarrow \Omega_{k}$ such that $\psi(0)=x_{0}, \psi(1)=x$ and $\left.u(\psi(t))>\bar{u}(\psi(t)), \forall t \in[0,1]\right\}$. Obviously, $u(x)>\bar{u}(x), \forall x \in B$ and $u(x)=\bar{u}(x), \forall x \in \partial B\left(\right.$ note $\left.u(x)=\underline{u}(x) \leq \bar{\Omega}_{k}, \forall x \in \partial \Omega_{k}\right)$. Then there is $x_{2} \in B$ making $u\left(x_{2}\right)-\bar{u}\left(x_{2}\right)=\max _{x \in \bar{B}}(u(x)-\bar{u}(x))$ such that $\nabla u\left(x_{2}\right)=\nabla \bar{u}\left(x_{2}\right)$ and

$$
\begin{aligned}
0 & \leq-\Delta\left(u\left(x_{2}\right)-\bar{u}\left(x_{2}\right)\right) \\
& \leq \frac{1}{a\left(\min \left\{k_{0}^{2}, \int_{\Omega_{k}} \mid \nabla u(x)\right)^{d} d x\right\}} \bar{f}\left(x_{2}, u\left(x_{2}\right), \nabla u\left(x_{2}\right)\right) \\
& -\frac{1}{a(0)} f^{+}\left(x_{2}, \underline{u}\left(x_{2}\right), \nabla \underline{u}\left(x_{2}\right)\right) \\
& =\frac{1}{\left.a\left(\min \left\{k_{0}^{2}, \int_{\Omega_{k}} \mid \nabla u(x)\right)^{2} d x\right\}\right)} f\left(x_{2}, \bar{u}\left(x_{2}\right), \nabla \bar{u}\left(x_{2}\right)\right) \\
& -\frac{1}{a(0)} f^{+}\left(x_{2}, \bar{u}\left(x_{2}\right), \nabla \bar{u}\left(x_{2}\right)\right) \\
& -\frac{1}{a\left(\min \left\{k_{0}^{2}, \int_{\Omega_{2}}|\nabla u(x)|^{2} d x\right\}\right.} h_{2}\left(x_{2}\right) \\
& \leq \frac{1}{a(0)} f^{+}\left(x_{2}, \bar{u}\left(x_{2}\right), \nabla \bar{u}\left(x_{2}\right)\right)-\frac{1}{a\left(k_{0}^{2}\right)} f^{-}\left(x_{2}, \bar{u}\left(x_{2}\right), \nabla \bar{u}\left(x_{2}\right)\right) \\
& -\frac{1}{a(0)} f^{+}(x, \bar{u}(x), \nabla \bar{u}(x))-\frac{1}{a\left(\min \left\{k_{0}^{2}, \Omega_{2}|\nabla u(x)|^{2} d x\right\}\right)} h_{2}\left(x_{2}\right) \\
& \leq-\frac{1}{a\left(\min \left\{k_{0}^{2}, \int_{\Omega_{k}} \mid \nabla u(x)\right)^{2} d x\right)} h_{2}\left(x_{2}\right) \\
& <0,
\end{aligned}
$$

where h_{2} is defined in (2.4). This is contradictory.

Therefore, $0<\underline{u}(x) \leq u(x) \leq \bar{u}(x)$ for all $x \in \Omega_{k}$, which implies that u satisfies problem (2.3).
Second, we show that (2.5) has at least one positive solution.
For $u \in C^{1}\left(\bar{\Omega}_{k}\right)$, define

$$
\begin{aligned}
\left(A_{k} u\right)(x)= & \frac{1}{a\left(\min \left\{k_{0}^{2} \int_{\Omega_{k}}|\nabla u(x)|^{2} d x\right\}\right)} . \\
& \int_{\Omega_{k}} G_{k}(x, y) \bar{f}(y, u(y), \nabla u(y)) d y, \quad x \in \bar{\Omega}_{k},
\end{aligned}
$$

where $G_{k}(x, y)$ is the Green's function of $-\Delta u(x)=h(x), u_{\partial \Omega_{k}}=\underline{u}(x)$.
Let

$$
E=\left\{u \in C^{1}\left(\bar{\Omega}_{k}\right) \mid u=\lambda A_{k} u, \lambda \in[0,1]\right\} .
$$

By condition $\left(F_{2}\right)$ and (2.4),

$$
|\Delta u(x)| \leq \frac{C}{a(0)} \underline{u}^{-\gamma \theta}\left(1+|\nabla u(x)|^{2}\right)+h_{1}(x)+h_{2}(x),
$$

which together with the remark of Lemma 2.4 and the embedding theorem guarantees there is a $C_{1}>0$ such that

$$
\|u\|_{1} \leq C_{1} .
$$

By Leray-Schauder's fixed point theorem, we have A_{k} has at least one fixed point u_{k} in $C^{1}\left(\bar{\Omega}_{k}\right)$.
Consequently, (2.3) has a solution $u_{k}>0$ on Ω_{k} with $\underline{u}(x) \leq u_{k}(x) \leq \bar{u}(x)$.

Now by the definitions of \bar{f}, for each $k \geq 1$, from Theorem 6.2 in [15], we conclude that there is a solution $u_{k}(x)$ to (2.3) such that
(a) $u_{k}(x) \in C^{2+\alpha}\left(\Omega_{k}\right) \cap C^{2}\left(\bar{\Omega}_{k}\right)$;
(b) $\underline{u}(x) \leq u_{k}(x) \leq \bar{u}(x), x \in \bar{\Omega}_{k}$.

We extend $u_{k}(x)$ to the whole domain such that $u_{k}(x)=\underline{u}(x), \forall x \in \bar{\Omega} \backslash \bar{\Omega}_{k}$. Then $u_{k}(x) \in C(\bar{\Omega})$. In this way, we get a sequence of continuous functions $\left\{u_{k}(x)\right\}_{k=1}^{\infty}$ possessing obviously the following properties:
(a) $\underline{u}(x) \leq u_{k}(x) \leq \bar{u}(x), x \in \bar{\Omega} ;$
(b) $-\Delta u_{k}(x)=\frac{1}{a\left(\min \left\{k^{2}, \int_{\Omega_{k}}\left|\nabla u_{k}(x)\right|^{2}\right\}\right)} f\left(x, u_{k}(x), \nabla u_{k}(x)\right), x \in \Omega_{k}$ for every $k=1,2, \cdots$.

Now we prove the following lemma.
Lemma 2.8. For each $k=1,2, \cdots$, there exists a corresponding constant $C_{k}>0$ such that

$$
\begin{equation*}
\left\|u_{j}\right\|_{C^{2+\alpha}\left(\bar{\Omega}_{k}\right)} \leq C_{k}, \text { for all } j \geq k+1 . \tag{2.6}
\end{equation*}
$$

Proof. Let k be fixed and take two domains Q_{1} and Q_{2} such that

$$
\Omega_{k} \subset \subset Q_{1} \subset \subset Q_{2} \subset \subset \Omega_{k+1} .
$$

Then for any $j \geq k+1$ we have

$$
\begin{equation*}
-\Delta u_{j}=\frac{1}{a\left(\min \left\{k_{0}^{2}, \int_{\Omega_{j}}\left|\nabla u_{j}\right|^{2} d x\right\}\right)} f\left(x, u_{j}(x), \nabla u_{j}(x)\right), \quad \text { on } \Omega_{k+1} . \tag{2.7}
\end{equation*}
$$

Denote

$$
\bar{f}_{j}(x)=\frac{1}{a\left(\min \left\{k_{0}^{2}, \int_{\Omega_{j}}\left|\nabla u_{j}\right|^{2} d x\right\}\right)} \bar{f}\left(x, u_{j}(x), \nabla u_{j}(x)\right)
$$

$(j=k+1, k+2, \cdots)$. Now (2.7) can be rewritten as

$$
\begin{equation*}
-\Delta u_{j}(x)=f_{j}(x), \text { on } \Omega_{k+1} . \tag{2.8}
\end{equation*}
$$

First, since $\underline{u}(x) \leq u_{j}(x) \leq \bar{u}(x)$ on Ω_{k+1} for all $j \geq k+1$, we see that $u_{j}(x)(j=k+1, k+2, \cdots)$ are uniformly bounded on Ω_{k+1}.

Second, using gradient estimate theorem of Ladyzenskaya and Uraltreva (see [[31], Theorem 3.1]), we know from (2.7) a constant C_{1} independent of j such that for any $j \geq k+1$,

$$
\max _{x \in Q_{2}}\left|\nabla u_{j}(x)\right| \leq C_{1} \max _{x \in \Omega_{k+1}} u_{j}(x) \leq C_{1} \max _{x \in \bar{\Omega}} \bar{u}(x),
$$

which implies that $\nabla u_{j}(x)(j=k+1, k+2, \cdots)$ are uniformly bounded on Q_{2}. Therefore, the functions $\bar{f}_{j}(x)(j=k+1, k+2, \cdots)$ are uniformly bounded on Q_{2}.

Third, by the interior L^{p} estimate theorem, we conclude from (2.8) that for any $p>\max \{1, N\}$, there is a corresponding constant C_{2} independent of j making for any $j \geq k+1$,

$$
\begin{aligned}
& \left\|u_{j}\right\|_{W^{2, p}\left(Q_{1}\right)} \\
& \leq C_{2}\left(\left\|\bar{f}_{j}\right\|_{L^{p}\left(Q_{2}\right)}+\left\|u_{j}\right\|_{L^{p}\left(Q_{2}\right)}\right) \\
& \leq C_{2}\left|Q_{2}\right|^{\frac{1}{p}}\left(\max _{x \in \bar{Q}_{2}}\left|\bar{f}_{j}(x)\right|+\max _{x \in \bar{Q}_{2}}\left|u_{j}(x)\right|\right) .
\end{aligned}
$$

Since the last inequality is bounded by a constant independent of j as we have proved, we see that $\left\|u_{j}\right\|_{W^{2, p}\left(Q_{1}\right)}$ is bounded by a constant independent of j. Now take $p=\frac{N}{1-\alpha}$. Then by applying SobolevMorrey embedding inequatlity we conclude that $\left\|u_{j}\right\|_{C^{1+\alpha}\left(Q_{1}\right)}$ is bounded by a constant independent of j, which furthermore implies that $\left\|f_{j}\right\|_{C^{\alpha}\left(Q_{1}\right)}$ is bounded by a similar constant.

Finally, we use the interior Hölder estimate theorem (see [[15], Theorem 6.2] to (2.8) and get another constant C_{3} independent of j such that for every $j \geq k+1$

$$
\left\|u_{j}\right\|_{C^{2+\alpha}\left(\bar{\Omega}_{k}\right)} \leq C_{3}\left(\left\|\bar{f}_{j}\right\|_{C^{\alpha}\left(\bar{Q}_{1}\right)}+\max _{x \overline{\bar{Q}_{1}}}\left|u_{j}(x)\right|\right) .
$$

From this and the conclusion we have just proved, we get inequality (2.6).

The proof of Theorem 2.6.
Lemma 2.8 infers there exists a subseuqnece $\left\{u_{j_{l}}(x)\right\}$ of $\left\{u_{j}\right\}$ and $u \in C^{2}(\Omega)$ such that

$$
\begin{aligned}
\left\|u_{j_{l}}-u\right\|_{k}= & \max \left\{\sum_{1 \leq s, t \leq N} \max _{x \in \bar{\Omega}_{k}}\left|\frac{\partial^{2} u_{j_{l}}(x)}{\partial x_{s} \partial x_{t}}(x)-\frac{\partial^{2} u(x)}{\partial x_{s} \partial x_{t}}(x)\right|,\right. \\
& \left.\max _{x \in \bar{\Omega}_{k}}\left|\nabla u_{j_{l}}(x)-\nabla u(x)\right|, \max _{x \in \bar{\Omega}_{k}}\left|u_{j_{l}}(x)-u(x)\right|\right\}
\end{aligned}
$$

to 0 as $j_{l} \rightarrow+\infty$ and the corresponding subsequence of $\min \left\{k_{0}^{2}, \int_{\Omega_{j_{l}}}\left|\nabla u_{j_{l}}(x)\right|^{2} d x\right\}$ converging to s_{0}. This implies that $u(x) \in C^{2}(\Omega)$ and satisfies that

$$
\left\{\begin{aligned}
-\Delta u(x) & =\frac{f(x, u(x), \nabla u(x))}{a\left(s_{0}\right)}, x \in \Omega, \\
\left.u\right|_{\partial \Omega} & =0,
\end{aligned}\right.
$$

which implies that

$$
u(x)=\frac{\int_{\Omega} G(x, y) f(y, u(y), \nabla u(y)) d y}{a\left(s_{0}\right)}, x \in \bar{\Omega}
$$

Then

$$
\begin{aligned}
& \left|u\left(x_{1}\right)-u\left(x_{2}\right)\right| \\
& \leq \frac{1}{a\left(s_{0}\right)} \int_{\Omega}\left|G\left(x_{1}, y\right)-G\left(x_{2}, y\right)\right| C d^{-\gamma \theta}(y, \partial \Omega)\left[1+|\nabla u(x)|^{2}\right] d y
\end{aligned}
$$

and

$$
\begin{aligned}
& \left|\nabla u\left(x_{1}\right)-\nabla u\left(x_{2}\right)\right| \\
\leq & \frac{1}{a\left(s_{0}\right)} \\
& \int_{\Omega}\left|G_{x}\left(x_{1}, y\right)-G_{x}\left(x_{2}, y\right)\right| C d^{-\gamma \theta}(y, \partial \Omega)\left[1+|\nabla u(x)|^{2}\right] d y
\end{aligned}
$$

By the standard regularity theory, $u \in C^{1,1-\gamma \theta}(\bar{\Omega})$. Moreover, since $u \in \Sigma_{R}$, from Lemma 2.1, we know

$$
\left(\int_{\Omega}|\nabla u(x)|^{2} d x\right)^{\frac{1}{2}}<k_{0}
$$

And since

$$
\left(\int_{\Omega}|\nabla u(x)|^{2} d x\right)^{\frac{1}{2}}=\lim _{j_{l} \rightarrow+\infty}\left[\int_{\Omega_{j_{l}}}\left|\nabla u_{j_{l}}(x)\right|^{2} d x\right]^{\frac{1}{2}}
$$

we have

$$
\int_{\Omega_{j_{l}}}\left|\nabla u_{j_{l}}(x)\right|^{2} d x<k_{0}^{2}
$$

for j_{l} large enough. And so

$$
\min \left\{k_{0}^{2}, \int_{\Omega_{j_{l}}}\left|\nabla u_{j_{l}}(x)\right|^{2} d x\right\}=\int_{\Omega_{j_{l}}}\left|\nabla u_{j_{l}}(x)\right|^{2} d x
$$

for j_{l} large enough, which implies that

$$
a\left(\min \left\{k_{0}^{2}, \int_{\Omega_{j_{l}}}\left|\nabla u_{j_{l}}(x)\right|^{2} d x\right\}\right)=a\left(\int_{\Omega_{j_{l}}}\left|\nabla u_{j_{l}}(x)\right|^{2} d x\right)
$$

for j_{l} large enough.
Consequently,

$$
s_{0}=\int_{\Omega}|\nabla u(x)|^{2} d x
$$

Then

$$
\left\{\begin{aligned}
-\Delta u(x) & =\frac{f(x, u(x), \nabla u(x))}{a\left(\int_{\Omega}|\nabla u(x)|^{2} d x\right)}, \quad x \in \Omega, \\
\left.u\right|_{\partial \Omega} & =0 . \square
\end{aligned}\right.
$$

φ_{1} is the normalized positive eigenfunction corresponding to the first eigenvalue λ_{1} of

$$
\left\{\begin{array}{rlrl}
-\Delta u(x) & =\lambda u, & \quad \text { in } \Omega, \\
u & =0, & & \text { on } \partial \Omega .
\end{array}\right.
$$

Lemma 2.9. (see [1]) Let $F: \bar{\Omega} \times(0, \infty) \rightarrow \mathbb{R}$ be a continuous function, and the mapping $s \mapsto \frac{F(x, s)}{s}$ is strictly decreasing at each $x \in \Omega$, with $s \in(0, \infty)$. If there are $v, w \in C^{2}(\Omega) \cap C(\bar{\Omega})$ such that
(a) $\Delta \omega+F(x, w) \leq 0 \leq \Delta v+F(x, v)$ in Ω;
(b) $w, v>0$ in Ω and $v \leq w$ on $\partial \Omega$;
(c) $\Delta w \in L^{1}(\Omega)$ or $\Delta v \in L^{1}(\Omega)$.

Then $v \leq \omega$ in Ω.
Lemma 2.10. (see [32]) $\int_{\Omega} \varphi_{1}^{-s}<\infty$ if and only if $s<1$.
Lemma 2.11. (see [33]) The conditions of this lemma are the conditions of the lemma 2.4 in [33]. Then

$$
\left\{\begin{aligned}
-\Delta u(x) & =F(x, u), & & \text { in } \Omega, \\
u & >0, & & \text { on } \Omega, \\
u & =0, & & \text { on } \partial \Omega,
\end{aligned}\right.
$$

has at least one positive solution $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$.

3. Proofs of main theorems

3.1. Proof of Theorem 1.1.

Fix $\lambda>0$.

$$
\left\{\begin{align*}
-\Delta u(x) & =\frac{1}{a_{0}}(\lambda f(x, u)+K(x) g(u)), & & \text { in } \Omega, \tag{3.1}\\
u & >0, & & \text { in } \Omega, \\
u & =0, & & \text { on } \partial \Omega,
\end{align*}\right.
$$

has a solution \bar{u}_{λ}.
Let $R=\max _{x \in \bar{\Omega}} \bar{u}(x)$ and define Σ_{R} as in (2.4). Lemma 2.1 infers there exists a $k_{0}>0$ making

$$
\begin{equation*}
\int_{\Omega}|\nabla u|^{2} d x<k_{0}^{2} \tag{3.2}
\end{equation*}
$$

for all $u \in \Sigma_{R}$.
Let $H:[0, \infty) \rightarrow[0, \infty)$ satisfying

$$
\left\{\begin{array}{l}
H^{\prime \prime}(t)=g(H(t)), \quad \forall t>0 \tag{3.3}\\
H^{\prime}(0)=H(0)=0
\end{array}\right.
$$

Equation (3.3) infers $H^{\prime \prime}$ is decreasing, while H and H^{\prime} are nondecreasing on $(0, \infty)$. Then there exist $\xi_{t}^{1}, \xi_{t}^{2} \in(0, t)$ such that

$$
\frac{H(t)}{t}=\frac{H(t)-H(0)}{t-0}=H^{\prime}\left(\xi_{t}^{1}\right) \leq H^{\prime}(t)
$$

and

$$
\frac{H^{\prime}(t)}{t}=\frac{H^{\prime}(t)-H^{\prime}(0)}{t-0}=H^{\prime \prime}\left(\xi_{t}^{2}\right) \geq H^{\prime \prime}(t)
$$

$\forall t>0$.
Then

$$
H(t) \leq t H^{\prime}(t) \leq 2 H(t), \quad \forall t>0
$$

Let

$$
\underline{u}_{\lambda_{\delta}}=\delta H\left(\varphi_{1}\right)
$$

where $0<\delta<1$. For $a\left(k_{0}^{2}\right)>0\left(k_{0}\right.$ is defined in (3.2)), using the fact that g is monotonic, we can conclude

$$
\begin{align*}
& -\Delta \underline{u}_{\lambda_{\delta}}-\frac{1}{a\left(k_{0}^{2}\right)} K(x) g\left(\underline{u}_{\lambda_{\delta}}\right)+\frac{1}{a_{0}}\left|\nabla \underline{u}_{\lambda_{\delta}}\right|^{\eta} \\
\leq & -\delta g\left(H\left(\varphi_{1}\right)\right)\left|\nabla \varphi_{1}\right|^{2}+\lambda_{1} \delta H^{\prime}\left(\varphi_{1}\right) \varphi_{1}-\frac{1}{a\left(k_{0}^{2}\right)} K_{*} g\left(H\left(\varphi_{1}\right)\right) \\
& +\frac{1}{a_{0}} \delta^{\eta}\left(H^{\prime}\right)^{\eta}\left(\varphi_{1}\right)\left|\nabla \varphi_{1}\right|^{\eta} \tag{3.4}\\
\leq & -\delta g\left(H\left(\varphi_{1}\right)\right)\left|\nabla \varphi_{1}\right|^{2}+2 \lambda_{1} \delta H\left(\varphi_{1}\right)-\frac{1}{a\left(k_{0}^{2}\right)} K_{*} g\left(H\left(\varphi_{1}\right)\right) \\
& +\frac{1}{a_{0}} \delta^{\eta}\left(H^{\prime}\right)^{\eta}\left(\varphi_{1}\right)\left|\nabla \varphi_{1}\right|^{\eta}, \quad \text { in } \Omega .
\end{align*}
$$

Let

$$
0<\delta \leq \delta_{1}^{*}=\min \left\{1,\left(\frac{a_{0} K_{*} g\left(H\left(\left\|\varphi_{1}\right\|_{\infty}\right)\right)}{a\left(k_{0}^{2}\right)\left(H^{\prime}\right)^{\eta}\left(\left\|\varphi_{1}\right\|_{\infty}\right)\| \| \varphi_{1} \|_{\infty}^{\eta}}\right)^{\frac{1}{\eta}}\right\}
$$

such that

$$
-\frac{K_{*} g\left(H\left(\left\|\varphi_{1}\right\|_{\infty}\right)\right)}{a\left(k_{0}^{2}\right)}+\frac{\delta^{\eta}\left(H^{\prime}\right)^{\eta}\left(\left\|\varphi_{1}\right\|_{\infty}\right)\| \| \varphi_{1} \|_{\infty}^{\eta}}{a_{0}} \leq 0, \quad \text { in } \Omega
$$

which together with (3.4) yields

$$
\begin{align*}
& -\Delta \underline{u}_{\lambda_{\delta}}-\frac{1}{a\left(k_{0}^{2}\right)} K(x) g\left(\underline{u}_{\lambda_{\delta}}\right)+\frac{1}{a_{0}}\left|\nabla_{\chi_{\lambda_{\delta}}}\right|^{\eta} \\
& \leq 2 \lambda_{1} \delta H\left(\varphi_{1}\right) \tag{3.5}\\
& \leq 2 \lambda_{1} \underline{u}_{\lambda_{\delta}}, \quad \text { in } \Omega .
\end{align*}
$$

Let $0<\delta \leq \delta_{2}^{*}$ small enough such that

$$
\begin{equation*}
\frac{1}{a\left(k_{0}^{2}\right)} \frac{\lambda f\left(x, \delta H\left(\left\|\varphi_{1}\right\|_{\infty}\right)\right)}{\delta H\left(\left\|\varphi_{1}\right\|_{\infty}\right)} \geq 2 \lambda_{1} . \tag{3.6}
\end{equation*}
$$

($f 1$) and (3.6) infer

$$
\frac{1}{a\left(k_{0}^{2}\right)} \frac{\lambda f\left(x, \underline{u}_{\lambda_{\delta}}\right)}{\underline{u}_{\lambda_{\delta}}} \geq \frac{\lambda f\left(x, \delta H\left(\left\|\varphi_{1}\right\|_{\infty}\right)\right)}{a\left(k_{0}^{2}\right) \delta H\left(\left\|\varphi_{1}\right\|_{\infty}\right)} \geq 2 \lambda_{1}, \quad \text { in } \Omega .
$$

Let us choose $\delta^{*}=\min \left\{\delta_{1}^{*}, \delta_{2}^{*}\right\}, \forall \delta \in\left(0, \delta^{*}\right]$. The inequality (3.6)combined (3.5) yields

$$
\begin{align*}
& -\Delta \underline{u}_{\lambda_{\delta}}-\frac{1}{a\left(k_{0}^{2}\right)} K(x) g\left(\underline{u}_{\lambda_{\delta}}\right)+\frac{1}{a_{0}}\left|\nabla \underline{u}_{\lambda_{\delta}}\right|^{\eta} \\
& \leq 2 \lambda_{1} \bar{u}_{\lambda_{\delta}} \tag{3.7}\\
& \leq \frac{1}{a\left(k_{0}^{2}\right)} \lambda f\left(x, \underline{u}_{\lambda_{\delta}}\right), \quad \text { in } \Omega .
\end{align*}
$$

Equations (3.1) and (3.7) infer $\forall \lambda \geq 0$

$$
\left\{\begin{aligned}
-\Delta \bar{u}_{\lambda} & \geq \frac{\left(\lambda f\left(x, \bar{u}_{\lambda}\right)+K(x) g\left(\bar{u}_{\lambda}\right)\right)}{a_{0}}, & & \text { in } \Omega, \\
\bar{u}_{\lambda} & =0, & & \text { on } \partial \Omega
\end{aligned}\right.
$$

and

Then we have

$$
\left\{\begin{array}{rlrl}
\Delta \bar{u}_{\lambda}+\frac{\left[\lambda f\left(x, \bar{u}_{\lambda}\right)+K(x) g\left(\bar{u}_{\lambda}\right)\right]}{a_{0}} \leq 0, & & \text { in } \Omega, \\
\Delta \underline{u}_{\lambda_{\delta}}+\frac{\left[\lambda f\left(x, \underline{u}_{\lambda_{\delta}}\right)+K(x) g\left(\underline{u}_{\lambda_{\delta}}\right)\right]}{a_{0}} & \geq 0, & \text { in } \Omega, \\
\bar{u}_{\lambda}, \underline{u}_{\lambda_{\delta}} & >0, & \text { in } \Omega, \\
\bar{u}_{\lambda}, \underline{u}_{\lambda_{\delta}} & =0, & \text { on } \partial \Omega, \\
\Delta \bar{u}_{\lambda} \in L^{1}(\Omega) . &
\end{array}\right.
$$

From Lemma 2.9 we know $\underline{u}_{\lambda_{\delta}} \leq \bar{u}_{\lambda}$ in Ω for all $\delta \in\left(0, \delta^{*}\right.$].

Furthermore, from (g3) and the definition of H, we can conclude that

$$
\lim _{t \rightarrow 0} \frac{H(t)}{t^{\frac{2}{x+1}}}=1
$$

Then we get

$$
\lim _{t \rightarrow 0} \frac{H(t)}{t^{\gamma}}=+\infty
$$

when $\gamma>\frac{2}{\alpha+1}$. It follows that

$$
\lim _{x \rightarrow \partial \Omega} \frac{H\left(\varphi_{1}(x)\right)}{d(x, \partial \Omega)^{\gamma}}=+\infty .
$$

Hence, there is a $\delta_{0}>0$ making

$$
\underline{u}_{\lambda_{\delta}} \geq \delta_{0} d(x, \partial \Omega)^{\gamma}
$$

with $0<\gamma \theta<1$.
The Theorem 2.6 guarantees that

$$
\left\{\begin{aligned}
-a\left(\int_{\Omega}|\nabla u|^{2} d x\right) \Delta u & =K(x) g(u)+\lambda f(x, u)-|\nabla u|^{\eta}, & & \text { in } \Omega, \\
u & >0, & & \text { in } \Omega \\
u & =0, & & \text { on } \partial \Omega
\end{aligned}\right.
$$

has a solution $u \in H_{0}^{1}(\Omega)$ with

$$
\underline{u}_{\lambda_{\delta}}(x) \leq u(x) \leq \bar{u}_{\lambda}(x), \quad \text { in } \Omega .
$$

Therefore, (1.1) has at least one positive solution, $\forall \lambda>0$.

3.2. Proof of Theorem 1.2.

$(f 1),(f 2)$ and Lemma 2.11 deduce that there is $\bar{u}_{\lambda} \in C^{2}(\bar{\Omega})$ making

$$
\left\{\begin{array}{rrr}
-\Delta \bar{u}_{\lambda}=\frac{\lambda f\left(x, \bar{u}_{\lambda}\right)}{a_{0}}, & & \text { in } \Omega, \tag{3.8}\\
\bar{u}_{\lambda}>0, & & \text { in } \Omega, \\
\bar{u}_{\lambda}=0, & & \text { on } \partial \Omega,
\end{array}\right.
$$

$\forall \lambda>0$.
Let $R=\max _{x \in \bar{\Omega}} \bar{u}(x)$ and define Σ_{R} as in (2.4). Lemma 2.1 infers there is a $k_{0}>0$ making

$$
\begin{equation*}
\int_{\Omega}|\nabla u|^{2} d x<k_{0}^{2} \tag{3.9}
\end{equation*}
$$

for all $u \in \Sigma_{R}$.

Let $\underline{u}_{\lambda}=M H\left(\varphi_{1}\right)$, with $M \geq 1>0$ is a constant. Because g is monotonic,

$$
\begin{align*}
& -\Delta \underline{u}_{\lambda}-\frac{K(x) g\left(\underline{u}_{\lambda}\right)}{a_{0}}+\frac{\left|\nabla \underline{u}_{\lambda}\right|^{\eta}}{a_{0}} \\
\leq & \lambda_{1} M H^{\prime}\left(\varphi_{1}\right) \varphi_{1}-M g\left(H\left(\varphi_{1}\right)\right)\left|\nabla \varphi_{1}\right|^{2}-\frac{K_{*} g\left(H\left(\varphi_{1}\right)\right)}{a_{0}} \\
& +\frac{1}{a_{0}} M^{\eta}\left(H^{\prime}\right)^{\eta}\left(\varphi_{1}\right)\left|\nabla \varphi_{1}\right|^{\eta} \tag{3.10}\\
\leq & \left(-\frac{1}{a_{0}} K_{*}-M|\nabla \varphi|^{2}\right) g\left(H\left(\varphi_{1}\right)\right)\left|\nabla \varphi_{1}\right|^{2}+2 \lambda_{1} M H\left(\varphi_{1}\right) \\
& +\frac{1}{a_{0}} M^{\eta}\left(H^{\prime}\right)^{\eta}\left(\varphi_{1}\right)\left|\nabla \varphi_{1}\right|^{\eta} \quad \text { in } \Omega .
\end{align*}
$$

Hopf's maximum principle deduce that there exist δ_{0} and $\Sigma \subset \Omega$ making

$$
\left\{\begin{aligned}
\left|\nabla \varphi_{1}\right| \geq \delta_{0}, & & \text { in } \Omega \backslash \Sigma, \\
\left|\varphi_{1}\right| \geq \delta_{0}, & & \text { in } \Sigma .
\end{aligned}\right.
$$

On one hand, we consider the case $x \in \Omega \backslash \Sigma$.
Let

$$
M \geq M_{1}=\max \left\{1, \frac{-K_{*}}{a_{0} \delta_{0}^{2}}\right\} .
$$

Since

$$
\lim _{\operatorname{dist}(x, \partial \Omega) \rightarrow 0^{+}}\left(M\left|\nabla \varphi_{1}\right|^{\eta}+\frac{K_{*}}{a_{0}}\right) g\left(H\left(\varphi_{1}\right)\right)=+\infty,
$$

if

$$
\begin{equation*}
\frac{1}{a_{0}} M^{\eta}\left(H^{\prime}\right)^{\eta}\left(\varphi_{1}\right)\left|\nabla \varphi_{1}\right|^{\eta}-\left(M\left|\nabla \varphi_{1}\right|^{\eta}+\frac{K_{*}}{a_{0}}\right) g\left(H\left(\varphi_{1}\right)\right) \leq 0 \tag{3.11}
\end{equation*}
$$

in $\Omega \backslash \Sigma$, by letting Σ close enough to the boundary of Ω. The above inequality combined (3.10) yields

$$
\begin{equation*}
-\Delta \underline{u}_{\lambda}-\frac{K(x) g\left(\underline{u}_{\lambda}\right)}{a_{0}}+\frac{\left|\nabla \underline{u}_{\lambda}\right|^{\eta}}{a_{0}} \leq 2 \lambda_{1} \underline{u}_{\lambda} \quad \text { in } \Omega \backslash \Sigma . \tag{3.12}
\end{equation*}
$$

For $a\left(k_{0}^{2}\right)>0\left(k_{0}\right.$ is defined in (3.9)) and

$$
f\left(x, M H\left(\left\|\varphi_{1}\right\|_{\infty}\right)\right)>0,
$$

we can choose

$$
\lambda>\lambda_{0}=\max \left\{1, \frac{2 \lambda_{1} M a\left(k_{0}^{2}\right) H\left(\left\|\varphi_{1}\right\|_{\infty}\right)}{\min _{x \in \Omega \backslash \Sigma} f\left(x, M H\left(\left\|\varphi_{1}\right\|_{\infty}\right)\right)}\right\}
$$

making

$$
\begin{equation*}
\lambda \frac{1}{a\left(k_{0}^{2}\right)} \frac{\min _{x \in \Omega \backslash \Sigma} f\left(x, M H\left(\left\|\varphi_{1}\right\|_{\infty}\right)\right)}{\left.M H\left(\left\|\varphi_{1}\right\|_{\infty}\right)\right)} \geq 2 \lambda_{1} . \tag{3.13}
\end{equation*}
$$

($f 1$) and (3.13) decude

$$
\begin{equation*}
\frac{1}{a\left(k_{0}^{2}\right)} \frac{\lambda f\left(x, \underline{u}_{1}\right)}{\underline{u}_{i}} \geq \frac{1}{a\left(k_{0}^{2}\right)} \frac{\lambda f\left(x, M H\left(\| \|_{1} \|_{\infty}\right)\right)}{M H\left(\left\|\varphi_{1}\right\|_{\infty}\right)} \geq 2 \lambda_{1}, \tag{3.14}
\end{equation*}
$$

in $\Omega \backslash \Sigma$. The last inequality combined (3.12) yields

$$
\begin{align*}
& -\Delta \underline{u}_{\lambda}-\frac{1}{a_{0}} K(x) g\left(\underline{u}_{\lambda}\right)+\frac{1}{a_{0}}\left|\underline{u}_{\lambda}\right|^{\eta} \\
& \leq 2 \lambda_{1} \underline{u}_{\lambda} \tag{3.15}\\
& \leq \frac{\lambda f\left(x, \underline{u}_{\lambda}\right)}{a\left(k_{0}^{2}\right)}, \quad \text { in } \Omega \backslash \Sigma .
\end{align*}
$$

If $x \in \Sigma$

$$
\begin{aligned}
& -\Delta \underline{u}_{\lambda}-\frac{1}{a_{0}} K(x) g\left(\underline{u}_{\lambda}\right)+\frac{1}{a_{0}}\left|\nabla \underline{u}_{\lambda}\right|^{\eta} \\
\leq & 2 \lambda_{1} M H\left(\varphi_{1}\right)-\frac{1}{a_{0}} K_{*} g\left(H\left(\varphi_{1}\right)\right) \\
& +\frac{1}{a_{0}} M^{\eta}\left(H^{\prime}\right)^{\eta}\left(\varphi_{1}\right)\left|\nabla \varphi_{1}\right|^{\eta}, \quad \text { in } \Sigma .
\end{aligned}
$$

Because $\varphi_{1}>0$ in $\bar{\Sigma}$ and $f>0$ on $\bar{\Sigma}$, we choose

$$
\lambda \geq \lambda_{2}=\max \left\{\lambda_{0}, a^{\star}\right\}
$$

with

$$
\begin{gathered}
a^{\star}=a\left(k_{0}^{2}\right) \frac{\Phi_{1}^{\star}}{\Phi_{2}^{\star}} \\
\Phi_{1}^{\star}=\max _{x \in \bar{\Sigma}}\left\{2 \lambda_{1} M H\left(\varphi_{1}\right)-\frac{K_{*} g\left(H\left(\varphi_{1}\right)\right)}{a_{0}}+\frac{M^{\eta}\left(H^{\prime}\right)^{\eta}\left(\varphi_{1}\right)\left|\nabla \varphi_{1}\right|^{\eta}}{a_{0}}\right\} \\
\Phi_{2}^{\star}=\min _{x \in \bar{\Sigma}} f\left(x, M H\left(\varphi_{1}\right)\right)
\end{gathered}
$$

such that

$$
\begin{aligned}
& \frac{\lambda}{a\left(k_{0}^{2}\right)} \min _{x \in \bar{\Sigma}} f\left(x, M H\left(\varphi_{1}\right)\right) \\
\geq & \max _{x \in \bar{\Sigma}}\left(2 \lambda_{1} M H\left(\varphi_{1}\right)-\frac{1}{a_{0}} K_{*} g H\left(\varphi_{1}\right)+\frac{1}{a_{0}} M^{\eta}\left(H^{\prime}\right)^{\eta}\left(\varphi_{1}\right)\left|\nabla \varphi_{1}\right|^{\eta}\right) .
\end{aligned}
$$

Then

$$
\begin{align*}
& -\Delta \underline{u}_{\lambda}-\frac{K(x) g\left(\underline{u}_{\lambda}\right)}{a_{0}}+\frac{1}{a_{0}}\left|\nabla \underline{u}_{\lambda}\right|^{\eta} \\
& \leq \frac{\lambda}{a\left(k_{0}^{2}\right)} \min _{x \in \bar{\Sigma}} f\left(x, \underline{u}_{\lambda}\right) \tag{3.16}\\
& \leq \frac{\lambda}{a\left(k_{0}^{2}\right)} f\left(x, \underline{u}_{\lambda}\right) .
\end{align*}
$$

It follows from (3.8), (3.15) and (3.16) that for each $\lambda>\lambda^{*}=\max \left\{\lambda_{1}, \lambda_{2}\right\}$,

$$
\left\{\begin{aligned}
-\Delta \bar{u}_{\lambda} & \geq \frac{\lambda f\left(x, \bar{u}_{\lambda}\right)}{a_{0}}, & & \text { in } \Omega, \\
\bar{u}_{\lambda} & =0, & & \text { on } \partial \Omega
\end{aligned}\right.
$$

and

$$
\left\{\begin{array}{cc}
-\Delta \underline{u}_{\lambda} \leq \frac{\lambda f\left(x, \underline{u}_{\lambda}\right)}{a\left(k_{0}^{2}\right)}+\frac{\left(K(x) g\left(\underline{u}_{\lambda}\right)-\left|\nabla \underline{u}_{\lambda}\right|^{\eta}\right)}{a_{0}}, & \text { in } \Omega, \\
\underline{u}_{\lambda}=0, & \text { on } \partial \Omega .
\end{array}\right.
$$

Furthermore, we obtain

$$
\begin{cases}\frac{\lambda f\left(x, \bar{u}_{\lambda}\right)}{a_{0}}+\Delta \bar{u}_{\lambda} \leq 0 \leq \frac{\lambda f\left(x, \underline{u}_{\lambda}\right)}{a_{0}}+\Delta \underline{u}_{\lambda}, & \text { in } \Omega, \\ \bar{u}_{\lambda}, \underline{\underline{u}}_{\lambda}>0, & \text { in } \Omega, \\ \bar{u}_{\lambda}, \underline{u}_{\lambda}=0, & \text { on } \partial \Omega, \\ \Delta \bar{u}_{\lambda} \in L^{1}(\Omega) . & \end{cases}
$$

Lemma 2.9 infers $\underline{u}_{\lambda} \leq \bar{u}_{\lambda}$ in Ω. Then \underline{u}_{λ} and \bar{u}_{λ} are respectively upper and lower solution of the problem (1.1). Moreover, from (g3) and the definition of H, we can conclude that

$$
\lim _{t \rightarrow 0} \frac{H(t)}{t^{\frac{2}{\alpha+1}}}=1
$$

Then we have

$$
\lim _{t \rightarrow 0} \frac{H(t)}{t^{\gamma}}=+\infty
$$

when $\gamma>\frac{2}{\alpha+1}$. It follows that

$$
\lim _{x \rightarrow \partial \Omega} \frac{H\left(\varphi_{1}(x)\right)}{d(x, \partial \Omega)^{\gamma}}=+\infty
$$

which implies that there is a $\delta_{0}>0$ such that

$$
\underline{u}_{\lambda} \geq \delta_{0} d(x, \partial \Omega)^{\gamma}
$$

with $0<\gamma \theta<1$ and $0<\alpha<1$. By Theorem 2.6, there is a solution $u \in C^{1}(\bar{\Omega})$ for (1.1), and $\underline{u}_{\lambda} \leq u \leq \bar{u}_{\lambda}$ in Ω.

To end the proof, like [1], we have

$$
f(x, s)+K(x) g(s)<m s,
$$

$\forall(x, s) \in \Omega \times(0,+\infty)$, with

$$
m=\max _{x \in \bar{\Omega}} \frac{f(x, c)}{c} .
$$

Let

$$
\lambda_{0}=\min \left\{1, \frac{\lambda_{1} a_{0}}{2 m}\right\} .
$$

We will prove (1.1) ${ }_{\lambda}$ has no positive solution as mentioned above for all $\lambda \leq \lambda_{0}$. Due to

$$
f(x, s)+K(x) g(s)<m s,
$$

u_{0} is a lower solution of

$$
\left\{\begin{array}{rrr}
-\Delta u=\frac{\lambda m}{a_{0}} u, & & \text { in } \Omega, \tag{3.17}\\
u>0, & & \text { in } \Omega, \\
u & =0, & \\
\text { on } \partial \Omega .
\end{array}\right.
$$

if u_{0} is a solution of (1.1) λ_{λ}.
Let k_{0} big enough such that $k_{0} \varphi_{1}$ is a upper solution for (3.17) and $u_{0} \leq k_{0} \varphi_{1}$ in Ω. Thus, (3.17) has a solution $u \in C^{2}(\bar{\Omega})$. (3.17) multiply by φ_{1} and integrat over Ω,

$$
-\int_{\Omega} \varphi_{1} \Delta u d x=\frac{\lambda m}{a_{0}} \int_{\Omega} \varphi_{1} u d x,
$$

that is

$$
\lambda_{1} \int_{\Omega} u \varphi_{1} d x=\frac{\lambda m}{a_{0}} \int_{\Omega} u \varphi_{1} d x \leq \frac{\lambda_{1}}{2} \int_{\Omega} u \varphi_{1} d x .
$$

Then

$$
\int_{\Omega} u \varphi_{1} d x=0 .
$$

This is contradictory. Then $(1.1)_{\lambda}$ has no positive solutions, $\forall \lambda \leq \lambda_{0}$.

3.3. Proof of Theorem 1.3.

Some ideas is similar to [34] and [1].
Assume that there is $\lambda>0$ making (1.1) has a solution u_{λ}. Set

$$
b_{0}=a\left(\int_{\Omega}\left|\nabla u_{\lambda}\right|^{2} d x\right) .
$$

$(f 1),(f 2)$ and Lemma 2.11 deduce that

$$
\left\{\begin{aligned}
-\Delta u(x) & =\frac{\lambda f(x, u)}{a_{0}}, & & \text { in } \Omega, \\
u & >0, & & \text { in } \Omega, \\
u & =0, & & \text { on } \partial \Omega
\end{aligned}\right.
$$

has a positive solution $\bar{u}_{\lambda} \in C^{2}(\bar{\Omega}), \forall \lambda>0$. Additionally, there are $C_{1}, C_{2}>0$ satisfying

$$
\begin{equation*}
C_{1} \operatorname{dist}(x, \partial \Omega) \leq \bar{u}_{\lambda}(x) \leq C_{2} \operatorname{dist}(x, \partial \Omega), \tag{3.18}
\end{equation*}
$$

$\forall x \in \Omega$.
We will consider

$$
\left\{\begin{align*}
-\Delta u-\frac{g(u+\varepsilon)}{b_{0}} K^{*} & =\frac{\lambda f(x, u)}{a_{0}}, & & \text { in } \Omega, \tag{3.19}\\
u & >0, & & \text { in } \Omega, \\
u & =0, & & \text { on } \partial \Omega,
\end{align*}\right.
$$

with $K^{*}=\max _{x \in \bar{\Omega}} K(x)<0$. Furthermore, we have

$$
\left\{\begin{array}{l}
\Delta \bar{u}_{\lambda}+\frac{\lambda f\left(x, \bar{u}_{\lambda}\right)}{a_{0}} \leq 0 \leq \Delta u_{\lambda}+\frac{\lambda f\left(x, u_{\lambda}\right)}{a_{0}}, \quad \text { in } \Omega, \\
\bar{u}_{\lambda}, u_{\lambda}>0, \quad \text { in } \Omega, \\
\bar{u}_{\lambda}=u_{\lambda}=0, \quad \text { on } \partial \Omega, \\
\Delta \bar{u}_{\lambda} \in L^{1}(\Omega), \quad\left(\text { since } \bar{u}_{\lambda} \in C^{2}(\bar{\Omega})\right),
\end{array}\right.
$$

Lemma 2.9 infers $u_{\lambda} \leq \bar{u}_{\lambda}$ in Ω. We know that u_{λ} and \bar{u}_{λ} are respectively lower and upper solution of (3.19). Thus, there is a solution $u_{\varepsilon} \in C^{2}(\bar{\Omega})$ satisfying

$$
u_{\lambda} \leq u_{\varepsilon} \leq \bar{u}_{\lambda}, \quad \text { in } \Omega .
$$

Integrating in the problem (3.19),

$$
-\int_{\Omega} \Delta u_{\varepsilon} d x-K^{*} \int_{\Omega} \frac{g\left(u_{\varepsilon}+\varepsilon\right)}{b_{0}} d x=\lambda \int_{\Omega} \frac{f\left(x, u_{\varepsilon}\right)}{a_{0}} d x
$$

Hence, by the divergence theorem,

$$
\begin{equation*}
-\int_{\partial \Omega} \frac{\partial u_{\varepsilon}}{\partial n} d s-\int_{\Omega} K^{*} \frac{g\left(u_{\varepsilon}+\varepsilon\right)}{b_{0}} d x \leq M \tag{3.20}
\end{equation*}
$$

with $M>0$ is a constant. $\frac{\partial u_{\varepsilon}}{\partial n} \leq 0$ on $\partial \Omega$, and (3.20) infer

$$
\begin{equation*}
-\int_{\Omega} \frac{K^{*} g\left(u_{\varepsilon}+\varepsilon\right)}{b_{0}} d x \leq M \tag{3.21}
\end{equation*}
$$

Because of $u_{\varepsilon} \leq \bar{u}_{\lambda}$ in $\bar{\Omega}$, (3.21) infers

$$
\int_{\Omega} g\left(\bar{u}_{\lambda}+\varepsilon\right) d x \leq C
$$

for some $C>0$. Then, we have $\int_{\omega} g\left(\bar{u}_{\lambda}+\varepsilon\right) d x \leq C$, for any compact subset $\omega \subset \Omega$. When $\varepsilon \rightarrow 0^{+}$, $\int_{\omega} g\left(\bar{u}_{\lambda}\right) d x \leq C$. Then $\int_{\Omega} g\left(\bar{u}_{\lambda}\right) d x \leq C$.

However, (3.18) and $\int_{0}^{1} g(s) d s=+\infty$ can conclude

$$
\int_{\Omega} g\left(\bar{u}_{\lambda}\right) d x \geq \int_{\Omega} g\left(C_{2} d i s t(x, \partial \Omega)\right) d x=+\infty
$$

which contradicts $\int_{\Omega} g\left(\bar{u}_{\lambda}\right) d x \leq C$.

Acknowledgment

This work is supported by National Natural Science Foundation of China (62073203).

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

References

1. M. Ghergu, V. Rădulescu, On a class of sublinear singular elliptic problems with convection term, J. Math. Anal. Appl., 311 (2005), 635-646. https://doi.org/10.1016/j.jmaa.2005.03.012
2. H. Cheng, R. Yuan, Traveling waves of some Holling-Tanner predator-prey system with nonlocal diffusion, Appl. Math. Comput., 338 (2018), 12-24. https://doi.org/10.1016/j.amc.2018.04.049
3. H. Cheng, R. Yuan, Existence and stability of traveling waves for Leslie-Gower predatorprey system with nonlocal diffusion, Discrete Contin. Dyn. Syst., 37 (2017), 5433-5454. https://doi.org/10.3934/dcds. 2017236
4. H. Cheng, R. Yuan, Traveling waves of a nonlocal dispersal Kermack-McKerndrick epidemic model with delayed transmission, J. Evol. Equations, 17 (2017), 979-1002. https://doi.org/10.1007/s00028-016-0362-2
5. Y. Liu, Y. Zheng, H. Li, F. E. Alsaadi, B. Ahmad, Control design for output tracking of delayed Boolean control networks, J. Comput. Appl. Math., 327 (2018), 188-195. https://doi.org/10.1016/j.cam.2017.06.016
6. Y. Liu, Bifurcation techniques for a class of boundary value problemsof fractional impulsive differential equations, J. Nonlinear Sci. Appl., 8 (2015), 340-353. http://dx.doi.org/10.22436/jnsa.008.04.07
7. Y. Liu, D. O'Regan, Controllability of impulsive functional differential systems with nonlocal conditions, Electron. J. Differ. Equations., 194 (2013), 1-10. https://doi.org/10.1016/j.amc.2011.01.107
8. J. Xu, J. Jiang, D. O’Regan, Positive Solutions for a Class of p-Laplacian Hadamard FractionalOrder Three-Point, Boundary Value Probl., 8 (2020), 308. https://doi.org/10.3390/math8030308
9. C. O. Alves, F. J. S. A. Corrêa, T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl., 49 (2005), 85-93. https://doi.org/10.1016/j.camwa.2005.01.008
10. A. Bensedik, M. Bouchekif, On an elliptic equation of Kirchhoff type with a potential asymptotically linear at infinity, Math. Comput. Model., 49 (2009), 1089-1096. https://doi.org/10.1016/j.mcm.2008.07.032
11. B. Cheng, X. Wu, Existence results of positive solutions of Kirchhoff type problems, Nonlinear Anal., 71 (2009), 4883-4892. https://doi.org/10.1016/j.na.2009.03.065
12. G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.
13. T. F. Ma, Remarks on an elliptic equation of Kirchhoff type, Nonlinear Anal., 63 (2005), 19671977. https://doi.org/10.1016/j.na.2005.03.021
14. A. Mao, S. Luan, Sign-changing solutions of a class of nonlocal quasilinear elliptic boundary value problems, J. Math. Anal. Appl., 383 (2011), 239-243. https://doi.org/10.1016/j.jmaa.2011.05.021
15. A. Mao, Z. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition, Nonlinear Anal., 70 (2009), 1275-1287. https://doi.org/10.1016/j.na.2008.02.011
16. K. Perera, Z. T. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differ. Equations, 221, (2006), 246-255. https://doi.org/10.1016/j.jde.2005.03.006
17. J. J. Sun, C. L. Tang, Existence and multiplicity of solutions for Kirchhoff type equations, Nonlinear Anal., 74 (2011), 1212-1222. https://doi.org/10.1016/j.na.2010.09.061
18. Y. Wang, Y. Liu, Y. Cui, Multiple sign-changing solutions for nonlinear fractional Kirchhoff equations, Boundary Value Probl., 193 (2018). https://doi.org/10.1186/s13661-018-1114-8
19. M. H. Yang, Z. Q. Han, Existence and multiplicity results for Kirchhoff type problems with four-superlinear potentials, Appl. Anal, 91 (2012), 2045-2055. https://doi.org/10.1080/00036811.2011.587808
20. Y. Yang, J. Zhang, Nontrivial solutions of a class of nonlocal problems via local linking theory, Appl. Math. Lett., 23 (2010), 377-380. https://doi.org/10.1016/j.aml.2009.11.001
21. Z. Zhang, K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow, J. Math. Anal. Appl., 317 (2006), 456-463. https://doi.org/10.1016/j.jmaa.2005.06.102
22. C. O. Alves, F. J. S. A. Corrêa, A sub-supersolution approach for a quasilinear Kirchhoff equation, J. Math. Phys., 56 (2015), 591-608. https://doi.org/10.1063/1.4919670
23. C. O. Alves, F. J. S. A. Corrêa, On existence of solutions for a class of problem involving a nonlinear operator, Commun. Appl. Nonlinear Anal., 8 (2014), 43-56.
24. B. Yan, D. O'Regen, R. P. Agarwal, The existence of positive solutions for Kirchhoff-type problems via the sub-supersolution method, An. Ş̧. Univ. Ovidius Constanţa, 26 (2018), 5-41. https://doi.org/10.2478/auom-2018-0001
25. C. O. Alves, D. P. Covei, Existence of solution for a class of nonlocal elliptic problem via sub-supersolution method, Nonlinear Anal. Real World Appl., 23 (2015), 1-8. https://doi.org/10.1016/j.nonrwa.2014.11.003
26. C. O. Alves, F. J. S. A. Corrêa, On the existence of positive solution for a class of singular systems involving quasilinear operators, Appl. Math. Comput., 185 (2007), 727-736. https://doi.org/10.1016/j.amc.2006.07.080
27. S. Cui, Existence and nonexistence of positive solutions for singular semilinear elliptic boundary value problems, Nonlinear Anal. 41 (2000), 149-176. https://doi.org/10.1016/S0362-546X(98)00271-5
28. X. Li, S. Song, Stabilization of delay systems: delay-dependent impulsive control, IEEE Trans. Autom. Control, 62 (2017), 406-411. https://doi.org/10.1109/TAC.2016.2530041
29. X. Li, J. Wu, Stability of nonlinear differential systems with state-dependent delayed impulses, Automatica, 64 (2016), 63-69. https://doi.org/10.1016/j.automatica.2015.10.002
30. G. M. Troianiello, Elliptic Differential Equations and Obstacle Problems, Plenum, New York, 1987.
31. O. A. Ladyzenskaya, N. N. Uraltreva, Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968.
32. A. C. Lazer, P. J. McKenna, On a singular nonlinear elliptic boundary value problem, Proceed. Am. Math. Soc., 111 (1991), 721-730.
33. J. Shi, M. Yao, On a singular nonlinear semilinear elliptic problem, Proceed. Royal Soc. Edinburgh, 128 (1998), 1389-1401. https://doi.org/10.1017/S0308210500027384
34. K. Di, B. Yan, The existence of positive solution for singular Kirchhoff equation with two parameters, Boundary Value Probl., 40 (2019), 1-13. https://doi.org/10.1186/s13661-019-11548
35. J. L. Lions, On some questions in boundary value problems of mathematical physics, NorthHolland Math. Stud., 36 (1977), 284-346. https://doi.org/10.1016/S0304-0208(08)70870-3

AIMS Press
© 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

