

MBE, 19(10): 10581–10601. DOI: 10.3934/mbe.2022494 Received: 26 June 2022 Revised: 13 July 2022 Accepted: 18 July 2022 Published: 25 July 2022

http://www.aimspress.com/journal/mbe

Research article

The existence and nonexistence of positive solutions for a singular Kirchhoff equation with convection term

Xiaohui Qiu and Baoqiang Yan*

School of Mathematical Sciences, Shandong Normal University, Jinan 250000, China

* Correspondence: Email: yanbqcn@aliyun.com.

Abstract: This paper considers a singular Kirchhoff equation with convection and a parameter. By defining new sub-supersolutions, we prove a new sub-supersolution theorem. Combining method of sub-supersolution with the comparison principle, for Kirchhoff equation with convection, we get the conclusion about positive solutions when nonlinear term is singular and sign-changing.

Keywords: a singular Kirchhoff equation; nonlinear term; positive solution; sub-supersolution; the comparison principle

1. Introduction

In this work, we study

$$\begin{aligned} &-a\left(\int_{\Omega} |\nabla u(x)|^2 dx\right) \Delta u(x) \\ &= \lambda f(x, u) + K(x)g(u) - |\nabla u|^{\eta}, \quad \text{in } \Omega, \\ &u > 0, \qquad \qquad \text{in } \Omega, \\ &u = 0, \qquad \qquad \text{on } \partial\Omega. \end{aligned}$$
(1.1)

where Ω is a smooth and bounded domain in \mathbb{R}^N ($N \ge 2$), $a : [0, +\infty) \to (0, +\infty)$ is continuous and increasing with

$$\inf_{t \in [0, +\infty)} a(t) = a(0) = a_0 > 0, \text{ and } \lim_{t \to +\infty} a(t) = +\infty,$$

 $K\in C^{0,\gamma}(\overline{\Omega}),\,\lambda>0,\,0\leq\eta<2.$

This work is motivated by [1] where Ghergu and Rădulescu considered

$$\begin{cases} -\Delta u(x) = K(x)g(u) + \lambda f(x, u) - |\nabla u|^a, & \text{in } \Omega, \\ u > 0, & \text{in } \Omega, \\ u = 0, & \text{on } \partial \Omega. \end{cases}$$

They obtained the existence or nonexistence of solutions. Many other works on the solutions for equations can be found in [2-8] also.

For the case that the nonlinearity is independent on ∇u , many researchers made extensively research in equations of this type, see [9–21] and their references.

But since $h(x, u, \nabla u) = \lambda f(x, u) + K(x)g(u) - |\nabla u|^{\eta}$ in problem (1.1) depends on gradient, variational methods can not be used to study problem (1.1) in a direct way. According to the works in [1], it is natural to try to use the sub-supersolution approach to study the problem (1.1).

A difficulty is that there is no ready-made sub-supersolution approach for (1.1) although there are some results on the methods of sub-supersolutions for problem (1.1) when nonlinearity h is independent of ∇u or is continuous on u = 0, see [22–24].

Our paper will prove the sub-supersolutions theorem for a generalized (2.1) and use the obtained theorem to consider (1.1).

Suppose that the function $f : \overline{\Omega} \times [0, \infty) \to [0, \infty)$ is Hölder continuous, and f > 0 on $\overline{\Omega} \times (0, \infty)$. And f satisfies:

(f1) the mapping
$$s \mapsto \frac{f(x,s)}{s}$$
 with $s \in (0,\infty)$ is decreasing, $\forall x \in \overline{\Omega}$;
(f2) $\lim_{s \to 0} \frac{f(x,s)}{s} = +\infty$ and $\lim_{s \to +\infty} \frac{f(x,s)}{s} = 0$, uniformly for $x \in \overline{\Omega}$.

 $g \in C^{0,\gamma}(0,\infty), g \ge 0$, and decreasing function satisfying

$$(g1)\lim_{s\to 0} g(s) = +\infty;$$

(g2)
$$\int_0^1 g(s)ds < +\infty;$$

(g3) there are $\alpha \in (0, 1)$ and $\theta_0 > 0$, C > 0 making $g(s) \le Cs^{-\alpha}$, $\forall s \in (0, \theta_0)$.

Theorem 1.1. If K(x) > 0 in $\overline{\Omega}$, f meets (f1) - (f2), g meets (g1) - (g2) - (g3), (1.1) has at least one solution for all $\lambda > 0$.

Theorem 1.2. If K(x) < 0 in $\overline{\Omega}$, f meets $(f_1) - (f_2)$, g meets $(g_1) - (g_2) - (g_3)$, there exists $\lambda^* > 0$ making (1.1) has at least one solution when $\lambda \ge \lambda^*$, and there exist $\lambda_0 > 0$ enough small such that (1.1) has no solution.

Theorem 1.3. If
$$K(x) < 0$$
 in $\overline{\Omega}$, f meets $(f1) - (f2)$, (1.1) has no solution, if $\int_0^1 g(s)ds = +\infty$

This work is organised as follows. In section 2, we give some lemmas and obtain a sub-supersolution theorem for some singular Kirchhoff equation with convection (2.1). In Section 3, we proof the results. Some ideas like [1, 22, 25-29].

2. The sub-supersolutions approach for problem (2.1)

This section, we discuss

$$\begin{cases} -\Delta u(x) = \frac{1}{a(||u||^2)} f(x, u(x), \nabla u(x)), & x \in \Omega, \\ u|_{\partial\Omega} = 0, \end{cases}$$
(2.1)

where $f(x, u, \xi)$ satisfies two conditions:

 (F_1) $f(x, u, \xi)$ is continuously differentiable relative to the variables u and ξ and locally Hölder continuous in $\Omega \times (0, +\infty) \times \mathbb{R}^n$;

(*F*₂) there are $\theta \in (0, 1)$ and $\eta \in [0, 2)$ making there is a corresponding constant $C = C(\Omega; b) > 0$, $\forall b > 0$, such that

$$|f(x; u; \xi)| \leq C u^{-\theta} \left[1 + |\xi|^{\eta}\right], \forall (x, u, \xi) \in \Omega \times (0, b] \times \mathbb{R}^{N}.$$

Now consider

$$\begin{cases} |\Delta u| \le \frac{1}{a(0)} |f(x, u, \nabla u)|, x \in \Omega, \\ u|_{\partial \Omega} = 0. \end{cases}$$
(2.2)

Set

$$\Sigma_R = \left\{ u \in C^2(\Omega) \cap C_0^1(\overline{\Omega}) \text{ satisfies problem (2.2), } u > 0 | \max_{x \in \overline{\Omega}} |u(x)| \le R \right\}.$$

Obviously, $0 \in \Sigma_R$ and then Σ_R is not empty for any R > 0. For the functions in Σ_R , we have following lemma.

Lemma 2.1. $\forall R > 0$, there is $k_0 > 0$ making

$$\left(\int_{\Omega} |\nabla u(x)|^2 dx\right)^{1/2} \le k_0$$

for all $u \in \Sigma_R$.

Proof. Suppose $u \in \Sigma_R$. Multiplying u in both side in (2.2) and integrating on Ω , using Young inequality,

$$\begin{split} a(0) \int_{\Omega} |\nabla u(x)|^2 dx &\leq \int_{\Omega} |f(y, u(y), \nabla u(y))| \, u(y) dy \\ &\leq C \int_{\Omega} (u^{1-\theta}(y)) \left[1 + |\nabla u(y)|^{\eta}\right] dy \\ &\leq C R^{1-\theta} \left[|\Omega| + \int_{\Omega} |\nabla u(y)|^{\eta} dy \right] \\ &\leq C R^{1-\theta} \left[|\Omega| + C_1 + \varepsilon \int_{\Omega} |\nabla u(y)|^2 dy \right]. \end{split}$$

Therefore, there is a $k_0 > 0$ such that

 $\|u\| \leq k_0.$

The proof is completed.

Let

$$f^{+}(x, u, \xi) = \max\{f(x, u, \xi), 0\}$$

Mathematical Biosciences and Engineering

Volume 19, Issue 10, 10581-10601.

and

$$f^{-}(x, u, \xi) = \max\{-f(x, u, \xi), 0\}$$

Then

$$f(x, u, \xi) = f^{+}(x, u, \xi) - f^{-}(x, u, \xi).$$

In the following, we define the supersolution of (2.1) and the corresponding sub-solution.

Definition 2.2. If the positive function \overline{u} with $\overline{u} \in C^2(\Omega) \cap C^1(\overline{\Omega})$ satisfies

$$\begin{cases} -\Delta \overline{u}(x) \ge \frac{1}{a(0)} f^+(x, \overline{u}(x), \nabla \overline{u}(x)), & x \text{ in } \Omega, \\ \overline{u}|_{\partial \Omega} = 0, \end{cases}$$

 $\overline{u}(x)$ is a upper solution of (2.1).

Suppose \overline{u} is a positive supersolution of (2.1). Since the condition (*F*2) hold, form Lemma 2.1, for $R = \sup_{x \in \Omega} \overline{u}(x)$, there is $k_0 > 0$ making

$$||u|| = \sqrt{\left(\int_{\Omega} |\nabla u(x)|^2 dx\right)} \le k_0$$

for all $u \in \Sigma_R$.

Definition 2.3. If the positive function \underline{u} with $\underline{u} \in C^{2+\alpha}(\Omega) \cap C^1(\overline{\Omega})$ satisfies $\underline{u}(x) \leq \overline{u}(x), \forall x \in \Omega$ and

$$\begin{cases} -\Delta \underline{u}(x) \leq \frac{1}{a(k_0^2)} f^+(x, \underline{u}(x), \nabla \underline{u}(x)) \\ -\frac{1}{a(0)} f^-(x, \underline{u}(x), \nabla \underline{u}(x)), \quad x \text{ in } \Omega, \\ u|_{\partial\Omega} = 0, \end{cases}$$

u(x) > 0 is a subsolution of (2.1) corresponding with the supersolution $\overline{u}(x)$.

Let

$$C^{1}(\overline{\Omega}) = \{u : \overline{\Omega} \to \mathbb{R} : u(x) \text{ is continuously differentiable on } \overline{\Omega}\}$$

with norm

$$||u||_1 = \max\left\{\max_{x\in\overline{\Omega}}|u(x)|, \max_{x\in\overline{\Omega}}|\nabla u(x)|\right\}.$$

Note that $C^1(\overline{\Omega})$ is a Banach space.

We list lemma which will be used later.

Lemma 2.4. (see [30]) Let $u \in W^{2,p}(\Omega)$ satisfy

$$|\Delta u(x)| \le f_0 + K |\nabla u|^2$$

with $u|_{\partial\Omega} = 0$, $|u|_{\infty,\Omega} \leq M \in (0, +\infty)$ and $f_0 \in L^p(\Omega)$. Then there is k' > 0, depending u only through M such that

$$|u|_{W^{2,p}(\Omega)} \leq k'.$$

Mathematical Biosciences and Engineering

Remark 2.5. In the above lemma, if $u|_{\partial\Omega} = \phi(x)$ with $\phi \in C^{2+\alpha}(\partial\Omega)$, we get same conclusion.

Theorem 2.6. Set $\Omega \subseteq \mathbb{R}^N (N \ge 1)$ be a smooth bounded domain. If (F_1) and (F_2) hold. Assume $\overline{u} > 0$ is a upper solution of (2.1) and $\underline{u} > 0$ is a lower solution of (2.1) corresponding with the supersolution \overline{u} . Moreover, if there is $\delta_0 > 0$ making $\underline{u}(x) \ge \delta_0 d(x, \partial \Omega)^{\gamma}$ with $0 < \gamma \theta < 1$. Then (2.1) has at least one solution $u \in C^2(\Omega) \cap C^{1,1-\gamma\theta}(\overline{\Omega})$,

$$\underline{u}(x) \le u(x) \le \overline{u}(x),$$

 $\forall x \in \overline{\Omega}.$

In order to obtain Theorem 2.6, make a sequence of subdomains of Ω with $C^{2+\alpha}$ -boundaries, named $\{\Omega_k\}_{k=1}^{\infty}$ such that

$$\Omega_1 \subset \subset \Omega_2 \subset \subset \cdots \subset \subset \Omega_k \subset \subset \Omega_{k+1} \subset \cdots$$

with $\bigcup_{k=1}^{\infty} \Omega_k = \Omega$. For each *k*, consider

$$\begin{cases} -\Delta u(x) = \frac{1}{a(\min\left\{k_0^2, \int_{\Omega_k} |\nabla u(x)|^2 dx\right\})} \\ f(x, u(x), \nabla u(x)), \quad x \in \Omega_k, \\ u|_{\partial\Omega_k} = \underline{u}(x) > 0. \end{cases}$$
(2.3)

Lemma 2.7. For each k > 0, (2.3) has a solution $u_k \in C^1(\overline{\Omega}_k)$ making

$$\underline{u}(x) \le u_k(x) \le \overline{u}(x), \ x \in \overline{\Omega}_k$$

Proof. If *u* is a solution of problem (2.3) with $\underline{u}(x) \le u(x) \le \overline{u}(x)$ on $\overline{\Omega}_k$, we have

$$|\Delta u| \le C \underline{u}^{-\theta \gamma}(x) \left[1 + |\nabla u|^{\eta}\right],$$

which together Lemma 5.10 in [30] and the interpolation inequality lemma in [30] infers there is $R_k > 0$ such that

$$||u||_1 < R_k$$

Define $\overline{f}: \overline{\Omega} \times (0, +\infty) \times \mathbb{R}$ as

$$\overline{f}(x, u, \xi) = \begin{cases} f(x, u, \xi), & \text{if } \underline{u}(x) \le u \le \overline{u}(x), \\ f(x, \underline{u}(x), \xi) + h_1(x), & \text{if } u < \underline{u}(x), \\ f(x, \overline{u}, \xi) - h_2(x), & \text{if } u > \overline{u}(x), \end{cases}$$

where

$$\begin{cases} h_1(x) = \frac{1}{\underline{u}(x)} \left[|f(x, \underline{u}(x), 0)| + 1 \right] \min \left\{ \underline{u}(x), \underline{u}(x) - u \right\}, \\ h_2(x) = \frac{1}{\overline{u}(x)} \left[|f(x, \overline{u}(x), 0)| + 1 \right] \min \left\{ \overline{u}(x), u - \overline{u}(x) \right\}. \end{cases}$$
(2.4)

Now consider

$$\int_{\alpha} (-\Delta u(x) = \frac{\overline{f}(x, u(x), \nabla u(x))}{a\left(\min\left\{k_0^2, \int_{\Omega_k} |\nabla u(x)|^2 dx\right\}\right)}, x \in \Omega_k,$$

$$u|_{\partial\Omega_k} = \underline{u}(x).$$
(2.5)

Mathematical Biosciences and Engineering

First, we prove that the solution of (2.5) is the solution of (2.3).

If *u* is a solution of (2.5), we will prove that $\underline{u}(x) \le u(x) \le \overline{u}(x), x \in \Omega_k$.

In fact, if there is a $x_0 \in \Omega_k$ with $u(x_0) < \underline{u}(x_0)$, let $A = \{x \in \Omega_k | u(x) < \underline{u}(x)\}$, there exists a continuous line $\phi : [0, 1] \to \Omega_k$, $\phi(0) = x_0$, $\phi(1) = x$ and $u(\phi(t)) < \underline{u}(\phi(t))$ for all $t \in [0, 1]$. Obviously, $u(x) < \underline{u}(x)$ for all $x \in A$ and $u(x) = \underline{u}(x)$, $\forall x \in \partial A$ (note $u(x) = \underline{u}(x)$ for all $x \in \partial \Omega_k$). Now there exists a $x_1 \in A$ such that $u(x_1) - \underline{u}(x_1) = \min_{x \in \overline{A}} (u(x) - \underline{u}(x))$ making $\nabla u(x_1) = \nabla \underline{u}(x_1)$ and

$$\begin{array}{ll} 0 &\geq -\Delta \left(u(x_{1}) - \underline{u}(x_{1}) \right) \\ &\geq \frac{1}{a\left(\min\left\{k_{0}^{2},\int_{\Omega_{k}}|\nabla u(x)|^{2}dx\right\}\right)}\overline{f}\left(x_{1},u(x_{1}),\nabla u(x_{1})\right) \\ &\quad -\frac{1}{a\left(k_{0}^{2}\right)}f^{+}\left(x_{1},\underline{u}(x_{1}),\nabla \underline{u}(x_{1})\right) + \frac{1}{a(0)}f^{-}\left(x_{1},\underline{u}(x_{1}),\nabla \underline{u}(x_{1})\right) \\ &= \frac{1}{a\left(\min\left\{k_{0}^{2},\int_{\Omega_{k}}|\nabla u(x)|^{2}dx\right\}\right)}f\left(x_{1},\underline{u}(x_{1}),\nabla u(x_{1})\right) \\ &\quad -\frac{1}{a\left(k_{0}^{2}\right)}f^{+}\left(x_{1},\underline{u}(x_{1}),\nabla \underline{u}(x_{1})\right) + \frac{1}{a(0)}f^{-}\left(x_{1},\underline{u}(x_{1}),\nabla \underline{u}(x_{1})\right) \\ &\quad +\frac{1}{a\left(\min\left\{k_{0}^{2},\int_{\Omega_{k}}|\nabla u(x)|^{2}dx\right\}\right)}h_{1}(x_{1}) \\ &\geq \frac{1}{a\left(k_{0}^{2}\right)}f^{+}\left(x_{1},\underline{u}(x_{1}),\nabla \underline{u}(x_{1})\right) - \frac{1}{a(0)}\overline{f}^{-}\left(x_{1},\underline{u}(x_{1}),\nabla \underline{u}(x_{1})\right) \\ &\quad -\frac{1}{a(k_{0}^{2})}f^{+}\left(x_{1},\underline{u}(x_{1}),\nabla \underline{u}(x_{1})\right) + \frac{1}{a(0)}f^{-}\left(x_{1},\underline{u}(x_{1}),\nabla \underline{u}(x_{1})\right) \\ &\quad +\frac{1}{a\left(\min\left\{k_{0}^{2},\int_{\Omega_{k}}|\nabla u(x)|^{2}dx\right\}\right)}h_{1}(x_{1}) \\ &= \frac{1}{a\left(\min\left\{k_{0}^{2},\int_{\Omega_{k}}|\nabla u(x)|^{2}dx\right\}\right)}h_{1}(x_{1}) \\ &\geq 0, \end{array}$$

where h_1 is defined in (2.4). This is contradictory. Thus, $0 < \underline{u}(x) \le u(x), \forall x \in \Omega_k$.

On the other hand, if there is a $x_0 \in \Omega_k$ with $u(x_0) > \overline{u}(x_0)$, let $B = \{x \in \Omega_k | u(x) > \overline{u}(x)$, there is a continuous line $\psi : [0, 1] \to \Omega_k$ such that $\psi(0) = x_0$, $\psi(1) = x$ and $u(\psi(t)) > \overline{u}(\psi(t))$, $\forall t \in [0, 1]\}$. Obviously, $u(x) > \overline{u}(x)$, $\forall x \in B$ and $u(x) = \overline{u}(x)$, $\forall x \in \partial B$ (note $u(x) = \underline{u}(x) \le \overline{\Omega}_k$, $\forall x \in \partial \Omega_k$). Then there is $x_2 \in B$ making $u(x_2) - \overline{u}(x_2) = \max_{x \in \overline{B}} (u(x) - \overline{u}(x))$ such that $\nabla u(x_2) = \nabla \overline{u}(x_2)$ and

$$\begin{split} 0 &\leq -\Delta \left(u(x_{2}) - \overline{u}(x_{2}) \right) \\ &\leq \frac{1}{a \left(\min \left\{ k_{0}^{2}, \int_{\Omega_{k}} |\nabla u(x)|^{2} dx \right\} \right)} \overline{f} \left(x_{2}, u(x_{2}), \nabla u(x_{2}) \right) \\ &- \frac{1}{a (0)} f^{+} \left(x_{2}, \underline{u}(x_{2}), \nabla \underline{u}(x_{2}) \right) \\ &= \frac{1}{a (\min \left\{ k_{0}^{2}, \int_{\Omega_{k}} |\nabla u(x)|^{2} dx \right\} \right)} f \left(x_{2}, \overline{u}(x_{2}), \nabla \overline{u}(x_{2}) \right) \\ &- \frac{1}{a (0)} f^{+} \left(x_{2}, \overline{u}(x_{2}), \nabla \overline{u}(x_{2}) \right) \\ &- \frac{1}{a (0)} f^{+} \left(x_{2}, \overline{u}(x_{2}), \nabla \overline{u}(x_{2}) \right) - \frac{1}{a (k_{0}^{2})} f^{-} \left(x_{2}, \overline{u}(x_{2}), \nabla \overline{u}(x_{2}) \right) \\ &\leq \frac{1}{a (0)} f^{+} \left(x, \overline{u}(x), \nabla \overline{u}(x) \right) - \frac{1}{a (\min \left\{ k_{0}^{2}, \int_{\Omega_{k}} |\nabla u(x)|^{2} dx \right\} \right)} h_{2}(x_{2}) \\ &\leq - \frac{1}{a (\min \left\{ k_{0}^{2}, \int_{\Omega_{k}} |\nabla u(x)|^{2} dx \right\} \right)} h_{2}(x_{2}) \\ &\leq 0. \end{split}$$

where h_2 is defined in (2.4). This is contradictory.

Mathematical Biosciences and Engineering

Therefore, $0 < \underline{u}(x) \le u(x) \le \overline{u}(x)$ for all $x \in \Omega_k$, which implies that *u* satisfies problem (2.3). Second, we show that (2.5) has at least one positive solution. For $u \in C^1(\overline{\Omega}_k)$, define

$$\begin{aligned} (A_k u)(x) &= \frac{1}{a\left(\min\left\{k_0^2, \int_{\Omega_k} |\nabla u(x)|^2 dx\right\}\right)} \cdot \\ &\int_{\Omega_k} G_k(x, y) \overline{f}(y, u(y), \nabla u(y)) dy, \ x \in \overline{\Omega}_k, \end{aligned}$$

where $G_k(x, y)$ is the Green's function of $-\Delta u(x) = h(x)$, $u_{\partial \Omega_k} = \underline{u}(x)$.

Let

$$E = \left\{ u \in C^1(\overline{\Omega}_k) | u = \lambda A_k u, \lambda \in [0, 1] \right\}.$$

By condition (F_2) and (2.4),

$$|\Delta u(x)| \leq \frac{C}{a(0)} \underline{u}^{-\gamma \theta} \left(1 + |\nabla u(x)|^2 \right) + h_1(x) + h_2(x),$$

which together with the remark of Lemma 2.4 and the embedding theorem guarantees there is a $C_1 > 0$ such that

$$\|u\|_1 \leq C_1.$$

By Leray-Schauder's fixed point theorem, we have A_k has at least one fixed point u_k in $C^1(\overline{\Omega}_k)$.

Consequently, (2.3) has a solution $u_k > 0$ on Ω_k with $\underline{u}(x) \le u_k(x) \le \overline{u}(x)$.

Now by the definitions of \overline{f} , for each $k \ge 1$, from Theorem 6.2 in [15], we conclude that there is a solution $u_k(x)$ to (2.3) such that

(a) $u_k(x) \in C^{2+\alpha}(\Omega_k) \cap C^2(\overline{\Omega}_k);$

(b) $\underline{u}(x) \leq u_k(x) \leq \overline{u}(x), x \in \Omega_k$.

We extend $u_k(x)$ to the whole domain such that $u_k(x) = \underline{u}(x)$, $\forall x \in \overline{\Omega} \setminus \overline{\Omega}_k$. Then $u_k(x) \in C(\overline{\Omega})$. In this way, we get a sequence of continuous functions $\{u_k(x)\}_{k=1}^{\infty}$ possessing obviously the following properties:

(a)
$$\underline{u}(x) \leq u_k(x) \leq \overline{u}(x), x \in \overline{\Omega};$$

(b)
$$-\Delta u_k(x) = \frac{1}{a\left(\min\left\{k^2, \int_{\Omega_k} |\nabla u_k(x)|^2\right\}\right)} f(x, u_k(x), \nabla u_k(x)), x \in \Omega_k \text{ for every } k = 1, 2, \cdots$$

Now we prove the following lemma.

Lemma 2.8. For each $k = 1, 2, \dots$, there exists a corresponding constant $C_k > 0$ such that

$$\|u_j\|_{C^{2+\alpha}(\overline{\Omega}_k)} \le C_k, \text{ for all } j \ge k+1.$$
(2.6)

Mathematical Biosciences and Engineering

Proof. Let k be fixed and take two domains Q_1 and Q_2 such that

$$\Omega_k \subset \subset Q_1 \subset \subset Q_2 \subset \subset \Omega_{k+1}.$$

Then for any $j \ge k + 1$ we have

$$-\Delta u_j = \frac{1}{a\left(\min\left\{k_0^2, \int_{\Omega_j} |\nabla u_j|^2 dx\right\}\right)} f(x, u_j(x), \nabla u_j(x)), \quad \text{on } \Omega_{k+1}.$$
(2.7)

Denote

$$\overline{f}_{j}(x) = \frac{1}{a\left(\min\left\{k_{0}^{2}, \int_{\Omega_{j}} |\nabla u_{j}|^{2} dx\right\}\right)} \overline{f}(x, u_{j}(x), \nabla u_{j}(x))$$

 $(j = k + 1, k + 2, \dots)$. Now (2.7) can be rewritten as

$$-\Delta u_j(x) = f_j(x), \text{ on } \Omega_{k+1}.$$
(2.8)

First, since $\underline{u}(x) \le u_j(x) \le \overline{u}(x)$ on Ω_{k+1} for all $j \ge k+1$, we see that $u_j(x)$ $(j = k+1, k+2, \cdots)$ are uniformly bounded on Ω_{k+1} .

Second, using gradient estimate theorem of Ladyzenskaya and Uraltreva (see [[31], Theorem 3.1]), we know from (2.7) a constant C_1 independent of j such that for any $j \ge k + 1$,

$$\max_{x \in Q_2} |\nabla u_j(x)| \le C_1 \max_{x \in \Omega_{k+1}} u_j(x) \le C_1 \max_{x \in \overline{\Omega}} \overline{u}(x).$$

which implies that $\nabla u_j(x)$ $(j = k + 1, k + 2, \dots)$ are uniformly bounded on Q_2 . Therefore, the functions $\overline{f}_j(x)$ $(j = k + 1, k + 2, \dots)$ are uniformly bounded on Q_2 .

Third, by the interior L^p estimate theorem, we conclude from (2.8) that for any $p > \max\{1, N\}$, there is a corresponding constant C_2 independent of j making for any $j \ge k + 1$,

$$\begin{aligned} \|u_j\|_{W^{2,p}(\underline{Q}_1)} &\leq C_2\left(\|\overline{f}_j\|_{L^p(Q_2)} + \|u_j\|_{L^p(Q_2)}\right) \\ &\leq C_2|Q_2|^{\frac{1}{p}}\left(\max_{x\in\overline{Q}_2}\left|\overline{f}_j(x)\right| + \max_{x\in\overline{Q}_2}\left|u_j(x)\right|\right). \end{aligned}$$

Since the last inequality is bounded by a constant independent of *j* as we have proved, we see that $||u_j||_{W^{2,p}(Q_1)}$ is bounded by a constant independent of *j*. Now take $p = \frac{N}{1-\alpha}$. Then by applying Sobolev-Morrey embedding inequality we conclude that $||u_j||_{C^{1+\alpha}(Q_1)}$ is bounded by a constant independent of *j*, which furthermore implies that $||f_j||_{C^{\alpha}(Q_1)}$ is bounded by a similar constant.

Finally, we use the interior Hölder estimate theorem (see [[15], Theorem 6.2] to (2.8) and get another constant C_3 independent of j such that for every $j \ge k + 1$

$$||u_j||_{C^{2+\alpha}(\overline{\Omega}_k)} \le C_3 \left(||\overline{f}_j||_{C^{\alpha}(\overline{Q}_1)} + \max_{x \in \overline{Q}_1} |u_j(x)| \right).$$

From this and the conclusion we have just proved, we get inequality (2.6).

The proof of Theorem 2.6.

Lemma 2.8 infers there exists a subsequence $\{u_{j_i}(x)\}$ of $\{u_j\}$ and $u \in C^2(\Omega)$ such that

$$||u_{j_l} - u||_k = \max\left\{\sum_{1 \le s,t \le N} \max_{x \in \overline{\Omega}_k} \left| \frac{\partial^2 u_{j_l}(x)}{\partial x_s \partial x_t}(x) - \frac{\partial^2 u(x)}{\partial x_s \partial x_t}(x) \right|, \\ \max_{x \in \overline{\Omega}_k} |\nabla u_{j_l}(x) - \nabla u(x)|, \max_{x \in \overline{\Omega}_k} |u_{j_l}(x) - u(x)| \right\}$$

to 0 as $j_l \to +\infty$ and the corresponding subsequence of $\min\left\{k_0^2, \int_{\Omega_{j_l}} |\nabla u_{j_l}(x)|^2 dx\right\}$ converging to s_0 . This implies that $u(x) \in C^2(\Omega)$ and satisfies that

$$\begin{cases} -\Delta u(x) = \frac{f(x, u(x), \nabla u(x))}{a(s_0)}, & x \in \Omega, \\ u|_{\partial \Omega} = 0, \end{cases}$$

which implies that

$$u(x) = \frac{\int_{\Omega} G(x, y) f(y, u(y), \nabla u(y)) dy}{a(s_0)}, \quad x \in \overline{\Omega}.$$

Then

$$|u(x_1) - u(x_2)| \le \frac{1}{a(s_0)} \int_{\Omega} |G(x_1, y) - G(x_2, y)| C d^{-\gamma \theta}(y, \partial \Omega) \left[1 + |\nabla u(x)|^2\right] dy$$

and

$$\begin{aligned} |\nabla u(x_1) - \nabla u(x_2)| \\ \leq & \frac{1}{a(s_0)} \\ & \int_{\Omega} |G_x(x_1, y) - G_x(x_2, y)| C d^{-\gamma \theta}(y, \partial \Omega) \left[1 + |\nabla u(x)|^2 \right] dy \end{aligned}$$

By the standard regularity theory, $u \in C^{1,1-\gamma\theta}(\overline{\Omega})$. Moreover, since $u \in \Sigma_R$, from Lemma 2.1, we know

$$\left(\int_{\Omega} |\nabla u(x)|^2 dx\right)^{\frac{1}{2}} < k_0.$$

And since

$$\left(\int_{\Omega} |\nabla u(x)|^2 dx\right)^{\frac{1}{2}} = \lim_{j_l \to +\infty} \left[\int_{\Omega_{j_l}} |\nabla u_{j_l}(x)|^2 dx\right]^{\frac{1}{2}},$$

we have

$$\int_{\Omega_{j_l}} |\nabla u_{j_l}(x)|^2 dx < k_0^2$$

for j_l large enough. And so

$$\min\left\{k_0^2, \int_{\Omega_{j_l}} |\nabla u_{j_l}(x)|^2 dx\right\} = \int_{\Omega_{j_l}} |\nabla u_{j_l}(x)|^2 dx$$

Mathematical Biosciences and Engineering

for j_l large enough, which implies that

$$a\left(\min\left\{k_0^2, \int_{\Omega_{j_l}} |\nabla u_{j_l}(x)|^2 dx\right\}\right) = a\left(\int_{\Omega_{j_l}} |\nabla u_{j_l}(x)|^2 dx\right)$$

for j_l large enough.

Consequently,

$$s_0 = \int_{\Omega} |\nabla u(x)|^2 dx$$

Then

$$\begin{cases} -\Delta u(x) = \frac{f(x, u(x), \nabla u(x))}{a\left(\int_{\Omega} |\nabla u(x)|^2 dx\right)}, & x \in \Omega, \\ u|_{\partial \Omega} = 0.\Box \end{cases}$$

 φ_1 is the normalized positive eigenfunction corresponding to the first eigenvalue λ_1 of

$$\begin{cases} -\Delta u(x) = \lambda u, & \text{in } \Omega, \\ u = 0, & \text{on } \partial \Omega. \end{cases}$$

Lemma 2.9. (see [1]) Let $F : \overline{\Omega} \times (0, \infty) \to \mathbb{R}$ be a continuous function, and the mapping $s \mapsto \frac{F(x, s)}{s}$ is strictly decreasing at each $x \in \Omega$, with $s \in (0, \infty)$. If there are $v, w \in C^2(\Omega) \cap C(\overline{\Omega})$ such that

(a) $\Delta \omega + F(x, w) \leq 0 \leq \Delta v + F(x, v)$ in Ω ; (b) w, v > 0 in Ω and $v \leq w$ on $\partial \Omega$; (c) $\Delta w \in L^1(\Omega)$ or $\Delta v \in L^1(\Omega)$. Then $v \leq \omega$ in Ω .

Lemma 2.10. (see [32]) $\int_{\Omega} \varphi_1^{-s} < \infty$ if and only if s < 1.

Lemma 2.11. (see [33]) *The conditions of this lemma are the conditions of the lemma 2.4 in [33]. Then*

$$\begin{cases} -\Delta u(x) = F(x, u), & \text{in } \Omega, \\ u > 0, & \text{on } \Omega, \\ u = 0, & \text{on } \partial \Omega, \end{cases}$$

has at least one positive solution $u \in C^2(\Omega) \cap C(\overline{\Omega})$.

3. Proofs of main theorems

3.1. Proof of Theorem 1.1.

Fix $\lambda > 0$.

$$\begin{cases} -\Delta u(x) = \frac{1}{a_0} (\lambda f(x, u) + K(x)g(u)), & \text{in } \Omega, \\ u > 0, & \text{in } \Omega, \\ u = 0, & \text{on } \partial\Omega, \end{cases}$$
(3.1)

Mathematical Biosciences and Engineering

has a solution \overline{u}_{λ} .

Let $R = \max_{x \in \overline{\Omega}} \overline{u}(x)$ and define Σ_R as in (2.4). Lemma 2.1 infers there exists a $k_0 > 0$ making

$$\int_{\Omega} |\nabla u|^2 dx < k_0^2 \tag{3.2}$$

for all $u \in \Sigma_R$.

Let $H : [0, \infty) \to [0, \infty)$ satisfying

$$\begin{cases} H''(t) = g(H(t)), & \forall t > 0, \\ H'(0) = H(0) = 0. \end{cases}$$
(3.3)

Equation (3.3) infers H'' is decreasing, while H and H' are nondecreasing on $(0, \infty)$. Then there exist $\xi_t^1, \xi_t^2 \in (0, t)$ such that

$$\frac{H(t)}{t} = \frac{H(t) - H(0)}{t - 0} = H'(\xi_t^1) \le H'(t)$$

and

$$\frac{H'(t)}{t} = \frac{H'(t) - H'(0)}{t - 0} = H''(\xi_t^2) \ge H''(t),$$

 $\forall t > 0.$

Then

$$H(t) \le tH'(t) \le 2H(t), \quad \forall t > 0.$$

Let

$$\underline{u}_{\lambda_{\delta}} = \delta H(\varphi_1)$$

where $0 < \delta < 1$. For $a(k_0^2) > 0$ (k_0 is defined in (3.2)), using the fact that g is monotonic, we can conclude

$$-\Delta \underline{u}_{\lambda_{\delta}} - \frac{1}{a(k_{0}^{2})} K(x) g(\underline{u}_{\lambda_{\delta}}) + \frac{1}{a_{0}} |\nabla \underline{u}_{\lambda_{\delta}}|^{\eta}$$

$$\leq -\delta g(H(\varphi_{1})) |\nabla \varphi_{1}|^{2} + \lambda_{1} \delta H'(\varphi_{1}) \varphi_{1} - \frac{1}{a(k_{0}^{2})} K_{*} g(H(\varphi_{1}))$$

$$+ \frac{1}{a_{0}} \delta^{\eta}(H')^{\eta}(\varphi_{1}) |\nabla \varphi_{1}|^{\eta}$$

$$\leq -\delta g(H(\varphi_{1})) |\nabla \varphi_{1}|^{2} + 2\lambda_{1} \delta H(\varphi_{1}) - \frac{1}{a(k_{0}^{2})} K_{*} g(H(\varphi_{1}))$$

$$+ \frac{1}{a_{0}} \delta^{\eta}(H')^{\eta}(\varphi_{1}) |\nabla \varphi_{1}|^{\eta}, \quad \text{in } \Omega.$$

$$(3.4)$$

Let

$$0 < \delta \le \delta_1^* = \min\left\{1, \left(\frac{a_0 K_* g(H(\|\varphi_1\|_{\infty}))}{a(k_0^2)(H')^{\eta}(\|\varphi_1\|_{\infty})\||\nabla\varphi_1\||_{\infty}^{\eta}}\right)^{\frac{1}{\eta}}\right\}$$

such that

$$-\frac{K_*g(H(\|\varphi_1\|_{\infty}))}{a(k_0^2)} + \frac{\delta^{\eta}(H')^{\eta}(\|\varphi_1\|_{\infty})\||\nabla\varphi_1\||_{\infty}^{\eta}}{a_0} \le 0, \quad \text{in } \Omega.$$

Mathematical Biosciences and Engineering

which together with (3.4) yields

$$\begin{aligned} &- \Delta \underline{u}_{\lambda_{\delta}} - \frac{1}{a(k_{0}^{2})} K(x) g(\underline{u}_{\lambda_{\delta}}) + \frac{1}{a_{0}} |\nabla \underline{u}_{\lambda_{\delta}}|^{\eta} \\ &\leq 2\lambda_{1} \delta H(\varphi_{1}) \\ &\leq 2\lambda_{1} \underline{u}_{\lambda_{\delta}}, \quad \text{in } \Omega. \end{aligned}$$

$$(3.5)$$

Let $0 < \delta \leq \delta_2^*$ small enough such that

$$\frac{1}{a(k_0^2)} \frac{\lambda f(x, \delta H(\|\varphi_1\|_{\infty}))}{\delta H(\|\varphi_1\|_{\infty})} \ge 2\lambda_1.$$
(3.6)

(f1) and (3.6) infer

$$\frac{1}{a(k_0^2)}\frac{\lambda f(x,\underline{u}_{\lambda_{\delta}})}{\underline{u}_{\lambda_{\delta}}} \geq \frac{\lambda f(x,\delta H(\|\varphi_1\|_{\infty}))}{a(k_0^2)\delta H(\|\varphi_1\|_{\infty})} \geq 2\lambda_1, \quad \text{in } \Omega.$$

Let us choose $\delta^* = \min\{\delta_1^*, \delta_2^*\}, \forall \delta \in (0, \delta^*]$. The inequality (3.6)combined (3.5) yields

$$- \Delta \underline{u}_{\lambda_{\delta}} - \frac{1}{a(k_{0}^{2})} K(x) g(\underline{u}_{\lambda_{\delta}}) + \frac{1}{a_{0}} |\nabla \underline{u}_{\lambda_{\delta}}|^{\eta}$$

$$\leq 2\lambda_{1} \overline{u}_{\lambda_{\delta}}$$

$$\leq \frac{1}{a(k_{0}^{2})} \lambda f(x, \underline{u}_{\lambda_{\delta}}), \quad \text{in } \Omega.$$
(3.7)

Equations (3.1) and (3.7) infer $\forall \lambda \ge 0$

$$\begin{cases} -\triangle \overline{u}_{\lambda} \geq \frac{(\lambda f(x, \overline{u}_{\lambda}) + K(x)g(\overline{u}_{\lambda}))}{a_{0}}, & \text{in } \Omega, \\ \overline{u}_{\lambda} = 0, & \text{on } \partial \Omega \end{cases}$$

and

$$\begin{cases} -\Delta \underline{u}_{\lambda_{\delta}} \leq \frac{1}{a\left(k_{0}^{2}\right)} \left(\lambda f(x, \underline{u}_{\lambda_{\delta}}) + K(x)g\left(\underline{u}_{\lambda_{\delta}}\right)\right) \\ -\frac{1}{a_{0}} \left|\nabla \underline{u}_{\lambda_{\delta}}\right|^{\eta}, & \text{in } \Omega, \\ \underline{u}_{\lambda_{\delta}} = 0, & \text{on } \partial\Omega. \end{cases}$$

Then we have

$$\begin{cases} \Delta \overline{u}_{\lambda} + \frac{\left[\lambda f\left(x, \overline{u}_{\lambda}\right) + K(x)g\left(\overline{u}_{\lambda}\right)\right]}{a_{0}} \leq 0, & \text{in } \Omega, \\ \Delta \underline{u}_{\lambda_{\delta}} + \frac{\left[\lambda f\left(x, \underline{u}_{\lambda_{\delta}}\right) + K(x)g\left(\underline{u}_{\lambda_{\delta}}\right)\right]}{a_{0}} \geq 0, & \text{in } \Omega, \\ \overline{u}_{\lambda}, \underline{u}_{\lambda_{\delta}} > 0, & \text{in } \Omega, \\ \overline{u}_{\lambda}, \underline{u}_{\lambda_{\delta}} = 0, & \text{on } \partial\Omega, \\ \Delta \overline{u}_{\lambda} \in L^{1}(\Omega). \end{cases}$$

From Lemma 2.9 we know $\underline{u}_{\lambda_{\delta}} \leq \overline{u}_{\lambda}$ in Ω for all $\delta \in (0, \delta^*]$.

Mathematical Biosciences and Engineering

Furthermore, from (g3) and the definition of H, we can conclude that

$$\lim_{t\to 0}\frac{H(t)}{t^{\frac{2}{\alpha+1}}}=1.$$

Then we get

$$\lim_{t \to 0} \frac{H(t)}{t^{\gamma}} = +\infty$$

when $\gamma > \frac{2}{\alpha+1}$. It follows that

$$\lim_{x \to \partial \Omega} \frac{H(\varphi_1(x))}{d(x, \partial \Omega)^{\gamma}} = +\infty$$

Hence, there is a $\delta_0 > 0$ making

$$\underline{u}_{\lambda_{\delta}} \geq \delta_0 d(x, \partial \Omega)^{\gamma}$$

with $0 < \gamma \theta < 1$.

The Theorem 2.6 guarantees that

$$\begin{cases} -a\left(\int_{\Omega} |\nabla u|^2 dx\right) \Delta u = K(x)g(u) + \lambda f(x, u) - |\nabla u|^{\eta}, & \text{in } \Omega, \\ u > 0, & \text{in } \Omega, \\ u = 0, & \text{on } \partial\Omega \end{cases}$$

has a solution $u \in H_0^1(\Omega)$ with

$$\underline{u}_{\lambda_{\delta}}(x) \le u(x) \le \overline{u}_{\lambda}(x), \quad \text{in } \Omega.$$

Therefore, (1.1) has at least one positive solution, $\forall \lambda > 0$. \Box

3.2. Proof of Theorem 1.2.

(f1), (f2) and Lemma 2.11 deduce that there is $\overline{u}_{\lambda} \in C^{2}(\overline{\Omega})$ making

$$\begin{cases} -\Delta \overline{u}_{\lambda} = \frac{\lambda f(x, \overline{u}_{\lambda})}{a_{0}}, & \text{in } \Omega, \\ \overline{u}_{\lambda} > 0, & \text{in } \Omega, \\ \overline{u}_{\lambda} = 0, & \text{on } \partial \Omega, \end{cases}$$
(3.8)

 $\forall \lambda > 0.$

Let $R = \max_{x \in \overline{\Omega}} \overline{u}(x)$ and define Σ_R as in (2.4). Lemma 2.1 infers there is a $k_0 > 0$ making

$$\int_{\Omega} |\nabla u|^2 dx < k_0^2 \tag{3.9}$$

for all $u \in \Sigma_R$.

Mathematical Biosciences and Engineering

Let $\underline{u}_{\lambda} = MH(\varphi_1)$, with $M \ge 1 > 0$ is a constant. Because g is monotonic,

$$-\Delta \underline{u}_{\lambda} - \frac{K(x)g\left(\underline{u}_{\lambda}\right)}{a_{0}} + \frac{\left|\nabla \underline{u}_{\lambda}\right|^{\eta}}{a_{0}}$$

$$\leq \lambda_{1}MH'(\varphi_{1})\varphi_{1} - Mg\left(H(\varphi_{1})\right)\left|\nabla \varphi_{1}\right|^{2} - \frac{K_{*}g(H(\varphi_{1}))}{a_{0}}$$

$$+ \frac{1}{a_{0}}M^{\eta}(H')^{\eta}(\varphi_{1})\left|\nabla \varphi_{1}\right|^{\eta}$$

$$\leq \left(-\frac{1}{a_{0}}K_{*} - M\left|\nabla \varphi\right|^{2}\right)g(H(\varphi_{1}))\left|\nabla \varphi_{1}\right|^{2} + 2\lambda_{1}MH(\varphi_{1})$$

$$+ \frac{1}{a_{0}}M^{\eta}(H')^{\eta}(\varphi_{1})\left|\nabla \varphi_{1}\right|^{\eta} \quad \text{in } \Omega.$$

$$(3.10)$$

Hopf's maximum principle deduce that there exist δ_0 and $\Sigma \subset \Omega$ making

$$\left\{ \begin{array}{ll} |\nabla \varphi_1| \geq \delta_0, & \text{ in } \Omega \setminus \Sigma, \\ |\varphi_1| \geq \delta_0, & \text{ in } \Sigma. \end{array} \right.$$

On one hand, we consider the case $x \in \Omega \setminus \Sigma$. Let

$$M \ge M_1 = \max\left\{1, \frac{-K_*}{a_0\delta_0^2}\right\}.$$

Since

$$\lim_{\text{dist}(x,\partial\Omega)\to 0^+} \left(M |\nabla\varphi_1|^{\eta} + \frac{K_*}{a_0} \right) g\left(H(\varphi_1) \right) = +\infty,$$

if

$$\frac{1}{a_0}M^{\eta}\left(H'\right)^{\eta}\left(\varphi_1\right)|\nabla\varphi_1|^{\eta} - \left(M|\nabla\varphi_1|^{\eta} + \frac{K_*}{a_0}\right)g(H(\varphi_1)) \le 0$$
(3.11)

in $\Omega \setminus \Sigma$, by letting Σ close enough to the boundary of Ω . The above inequality combined (3.10) yields

$$-\Delta \underline{u}_{\lambda} - \frac{K(x)g\left(\underline{u}_{\lambda}\right)}{a_{0}} + \frac{\left|\nabla \underline{u}_{\lambda}\right|^{\eta}}{a_{0}} \le 2\lambda_{1}\underline{u}_{\lambda} \quad \text{in } \Omega \setminus \Sigma.$$
(3.12)

For $a(k_0^2) > 0$ (k_0 is defined in (3.9)) and

$$f(x, MH(\|\varphi_1\|_{\infty})) > 0,$$

we can choose

$$\lambda > \lambda_0 = \max\left\{1, \frac{2\lambda_1 Ma\left(k_0^2\right) H(\|\varphi_1\|_{\infty})}{\min_{x \in \Omega \setminus \Sigma} f(x, MH(\|\varphi_1\|_{\infty}))}\right\}$$

making

$$\lambda \frac{1}{a\left(k_0^2\right)} \frac{\min_{x \in \Omega \setminus \Sigma} f(x, MH(\|\varphi_1\|_{\infty}))}{MH(\|\varphi_1\|_{\infty}))} \ge 2\lambda_1.$$
(3.13)

Mathematical Biosciences and Engineering

(f1) and (3.13) decude

$$\frac{1}{a(k_0^2)}\frac{\lambda f(x,\underline{u}_{\lambda})}{\underline{u}_{\lambda}} \ge \frac{1}{a(k_0^2)}\frac{\lambda f(x,MH(\|\varphi_1\|_{\infty}))}{MH(\|\varphi_1\|_{\infty})} \ge 2\lambda_1,$$
(3.14)

in $\Omega \setminus \Sigma$. The last inequality combined (3.12) yields

$$- \Delta \underline{u}_{\lambda} - \frac{1}{a_{0}} K(x) g\left(\underline{u}_{\lambda}\right) + \frac{1}{a_{0}} |\nabla \underline{u}_{\lambda}|^{\eta}$$

$$\leq 2\lambda_{1} \underline{u}_{\lambda} \qquad (3.15)$$

$$\leq \frac{\lambda f\left(x, \underline{u}_{\lambda}\right)}{a(k_{0}^{2})}, \quad \text{in } \Omega \setminus \Sigma.$$

If $x \in \Sigma$

$$-\Delta \underline{u}_{\lambda} - \frac{1}{a_0} K(x) g\left(\underline{u}_{\lambda}\right) + \frac{1}{a_0} \left|\nabla \underline{u}_{\lambda}\right|^{\eta}$$

$$\leq 2\lambda_1 M H\left(\varphi_1\right) - \frac{1}{a_0} K_* g\left(H\left(\varphi_1\right)\right)$$

$$+ \frac{1}{a_0} M^{\eta} \left(H'\right)^{\eta} \left(\varphi_1\right) \left|\nabla \varphi_1\right|^{\eta}, \quad \text{in } \Sigma.$$

Because $\varphi_1 > 0$ in $\overline{\Sigma}$ and f > 0 on $\overline{\Sigma}$, we choose

$$\lambda \ge \lambda_2 = \max{\{\lambda_0, a^{\star}\}}$$

with

$$a^{\star} = a(k_0^2) \frac{\Phi_1^{\star}}{\Phi_2^{\star}}$$
$$\Phi_1^{\star} = \max_{x \in \overline{\Sigma}} \left\{ 2\lambda_1 M H(\varphi_1) - \frac{K_* g(H(\varphi_1))}{a_0} + \frac{M^{\eta}(H')^{\eta}(\varphi_1) |\nabla \varphi_1|^{\eta}}{a_0} \right\}$$
$$\Phi_2^{\star} = \min_{x \in \overline{\Sigma}} f(x, M H(\varphi_1))$$

such that

$$\frac{\lambda}{a\left(k_{0}^{2}\right)}\min_{x\in\overline{\Sigma}}f\left(x,MH\left(\varphi_{1}\right)\right)$$

$$\geq \max_{x\in\overline{\Sigma}}\left(2\lambda_{1}MH(\varphi_{1})-\frac{1}{a_{0}}K_{*}gH\left(\varphi_{1}\right)+\frac{1}{a_{0}}M^{\eta}\left(H'\right)^{\eta}\left(\varphi_{1}\right)|\nabla\varphi_{1}|^{\eta}\right).$$

Then

$$\begin{aligned} -\Delta \underline{u}_{\lambda} &- \frac{K(x)g\left(\underline{u}_{\lambda}\right)}{a_{0}} + \frac{1}{a_{0}} |\nabla \underline{u}_{\lambda}|^{\eta} \\ &\leq \frac{\lambda}{a(k_{0}^{2})} \min_{x \in \overline{\Sigma}} f\left(x, \underline{u}_{\lambda}\right) \\ &\leq \frac{\lambda}{a(k_{0}^{2})} f\left(x, \underline{u}_{\lambda}\right). \end{aligned}$$
(3.16)

It follows from (3.8), (3.15) and (3.16) that for each $\lambda > \lambda^* = \max{\{\lambda_1, \lambda_2\}}$,

$$\begin{cases} -\Delta \overline{u}_{\lambda} \ge \frac{\lambda f(x, \overline{u}_{\lambda})}{a_{0}}, & \text{in } \Omega, \\ \overline{u}_{\lambda} = 0, & \text{on } \partial \Omega \end{cases}$$

Mathematical Biosciences and Engineering

and

$$\begin{split} - & \triangle \underline{u}_{\lambda} \leq \frac{\lambda f\left(x, \underline{u}_{\lambda}\right)}{a\left(k_{0}^{2}\right)} + \frac{\left(K(x)g\left(\underline{u}_{\lambda}\right) - |\nabla \underline{u}_{\lambda}|^{\eta}\right)}{a_{0}}, \quad \text{ in } \Omega, \\ & \underline{u}_{\lambda} = 0, \qquad \qquad \text{ on } \partial\Omega. \end{split}$$

Furthermore, we obtain

$$\begin{cases} \frac{\lambda f(x, \overline{u}_{\lambda})}{a_{0}} + \Delta \overline{u}_{\lambda} \leq 0 \leq \frac{\lambda f(x, \underline{u}_{\lambda})}{a_{0}} + \Delta \underline{u}_{\lambda}, & \text{in } \Omega, \\ \overline{u}_{\lambda}, \underline{u}_{\lambda} > 0, & \text{in } \Omega, \\ \overline{u}_{\lambda}, \underline{u}_{\lambda} = 0, & \text{on } \partial \Omega, \\ \Delta \overline{u}_{\lambda} \in L^{1}(\Omega). \end{cases}$$

Lemma 2.9 infers $\underline{u}_{\lambda} \leq \overline{u}_{\lambda}$ in Ω . Then \underline{u}_{λ} and \overline{u}_{λ} are respectively upper and lower solution of the problem (1.1). Moreover, from (g3) and the definition of *H*, we can conclude that

$$\lim_{t \to 0} \frac{H(t)}{t^{\frac{2}{\alpha+1}}} = 1$$

Then we have

$$\lim_{t\to 0}\frac{H(t)}{t^{\gamma}}=+\infty$$

when $\gamma > \frac{2}{\alpha+1}$. It follows that

$$\lim_{x\to\partial\Omega}\frac{H(\varphi_1(x))}{d(x,\partial\Omega)^{\gamma}}=+\infty,$$

which implies that there is a $\delta_0 > 0$ such that

$$\underline{u}_{\lambda} \geq \delta_0 d(x, \partial \Omega)^{\gamma}$$

with $0 < \gamma \theta < 1$ and $0 < \alpha < 1$. By Theorem 2.6, there is a solution $u \in C^1(\overline{\Omega})$ for (1.1), and $\underline{u}_{\lambda} \leq u \leq \overline{u}_{\lambda}$ in Ω .

To end the proof, like [1], we have

$$f(x,s) + K(x)g(s) < ms,$$

 $\forall (x, s) \in \Omega \times (0, +\infty)$, with

$$m = \max_{x \in \overline{\Omega}} \frac{f(x, c)}{c}.$$

Let

$$\lambda_0 = \min\left\{1, \frac{\lambda_1 a_0}{2m}\right\}.$$

We will prove $(1.1)_{\lambda}$ has no positive solution as mentioned above for all $\lambda \leq \lambda_0$. Due to

$$f(x,s) + K(x)g(s) < ms,$$

Mathematical Biosciences and Engineering

 u_0 is a lower solution of

$$\begin{cases} -\Delta u = \frac{\lambda m}{a_0} u, & \text{in } \Omega, \\ u > 0, & \text{in } \Omega, \\ u = 0, & \text{on } \partial \Omega. \end{cases}$$
(3.17)

if u_0 is a solution of $(1.1)_{\lambda}$.

Let k_0 big enough such that $k_0\varphi_1$ is a upper solution for (3.17) and $u_0 \le k_0\varphi_1$ in Ω . Thus, (3.17) has a solution $u \in C^2(\overline{\Omega})$. (3.17) multiply by φ_1 and integrat over Ω ,

$$-\int_{\Omega}\varphi_{1}\triangle udx=\frac{\lambda m}{a_{0}}\int_{\Omega}\varphi_{1}udx,$$

that is

$$\lambda_1 \int_{\Omega} u\varphi_1 dx = \frac{\lambda m}{a_0} \int_{\Omega} u\varphi_1 dx \le \frac{\lambda_1}{2} \int_{\Omega} u\varphi_1 dx.$$

Then

$$\int_{\Omega} u\varphi_1 dx = 0.$$

This is contradictory. Then $(1.1)_{\lambda}$ has no positive solutions, $\forall \lambda \leq \lambda_0$. \Box

3.3. Proof of Theorem 1.3.

Some ideas is similar to [34] and [1]. Assume that there is $\lambda > 0$ making (1.1) has a solution u_{λ} . Set

$$b_0 = a \left(\int_{\Omega} |\nabla u_{\lambda}|^2 dx \right).$$

(f1), (f2) and Lemma 2.11 deduce that

$$\begin{cases} -\Delta u(x) = \frac{\lambda f(x, u)}{a_0}, & \text{in } \Omega, \\ u > 0, & \text{in } \Omega, \\ u = 0, & \text{on } \partial \Omega \end{cases}$$

has a positive solution $\overline{u}_{\lambda} \in C^2(\overline{\Omega}), \forall \lambda > 0$. Additionally, there are $C_1, C_2 > 0$ satisfying

$$C_1 dist(x, \partial \Omega) \le \overline{u}_{\lambda}(x) \le C_2 dist(x, \partial \Omega), \qquad (3.18)$$

 $\forall x\in\Omega.$

We will consider

$$-\Delta u - \frac{g(u+\varepsilon)}{b_0} K^* = \frac{\lambda f(x,u)}{a_0}, \quad \text{in } \Omega,$$

$$u > 0, \quad \text{in } \Omega,$$

$$u = 0, \quad \text{on } \partial\Omega,$$

(3.19)

Mathematical Biosciences and Engineering

with $K^* = \max_{x \in \overline{\Omega}} K(x) < 0$. Furthermore, we have

$$\begin{array}{l} & \Delta \overline{u}_{\lambda} + \frac{\lambda f(x, \overline{u}_{\lambda})}{a_{0}} \leq 0 \leq \Delta u_{\lambda} + \frac{\lambda f(x, u_{\lambda})}{a_{0}}, \quad \text{in } \Omega, \\ & \overline{u}_{\lambda}, u_{\lambda} > 0, \quad \text{in } \Omega, \\ & \overline{u}_{\lambda} = u_{\lambda} = 0, \quad \text{on } \partial \Omega, \\ & \Delta \overline{u}_{\lambda} \in L^{1}(\Omega), \quad (\text{since } \overline{u}_{\lambda} \in C^{2}(\overline{\Omega})), \end{array}$$

Lemma 2.9 infers $u_{\lambda} \leq \overline{u}_{\lambda}$ in Ω . We know that u_{λ} and \overline{u}_{λ} are respectively lower and upper solution of (3.19). Thus, there is a solution $u_{\varepsilon} \in C^2(\overline{\Omega})$ satisfying

$$u_{\lambda} \leq u_{\varepsilon} \leq \overline{u}_{\lambda}, \quad \text{in } \Omega.$$

Integrating in the problem (3.19),

$$-\int_{\Omega} \Delta u_{\varepsilon} dx - K^* \int_{\Omega} \frac{g\left(u_{\varepsilon} + \varepsilon\right)}{b_0} dx = \lambda \int_{\Omega} \frac{f\left(x, u_{\varepsilon}\right)}{a_0} dx.$$

Hence, by the divergence theorem,

$$-\int_{\partial\Omega} \frac{\partial u_{\varepsilon}}{\partial n} ds - \int_{\Omega} K^* \frac{g(u_{\varepsilon} + \varepsilon)}{b_0} dx \le M,$$
(3.20)

with M > 0 is a constant. $\frac{\partial u_{\varepsilon}}{\partial n} \le 0$ on $\partial \Omega$, and (3.20) infer

$$-\int_{\Omega} \frac{K^* g(u_{\varepsilon} + \varepsilon)}{b_0} dx \le M.$$
(3.21)

Because of $u_{\varepsilon} \leq \overline{u}_{\lambda}$ in $\overline{\Omega}$, (3.21) infers

$$\int_{\Omega} g(\overline{u}_{\lambda} + \varepsilon) dx \le C$$

for some C > 0. Then, we have $\int_{\omega} g(\overline{u}_{\lambda} + \varepsilon) dx \leq C$, for any compact subset $\omega \subset \Omega$. When $\varepsilon \to 0^+$, $\int_{\omega} g(\overline{u}_{\lambda}) dx \leq C$. Then $\int_{\Omega} g(\overline{u}_{\lambda}) dx \leq C$.

However, (3.18) and $\int_0^1 g(s) ds = +\infty$ can conclude

$$\int_{\Omega} g(\overline{u}_{\lambda}) dx \ge \int_{\Omega} g(C_2 dist(x, \partial \Omega)) dx = +\infty$$

which contradicts $\int_{\Omega} g(\overline{u}_{\lambda}) dx \leq C.$

Acknowledgment

This work is supported by National Natural Science Foundation of China (62073203).

Mathematical Biosciences and Engineering

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

References

- 1. M. Ghergu, V. Rădulescu, On a class of sublinear singular elliptic problems with convection term, *J. Math. Anal. Appl.*, **311** (2005), 635–646. https://doi.org/10.1016/j.jmaa.2005.03.012
- 2. H. Cheng, R. Yuan, Traveling waves of some Holling-Tanner predator-prey system with nonlocal diffusion, *Appl. Math. Comput.*, **338** (2018), 12–24. https://doi.org/10.1016/j.amc.2018.04.049
- 3. H. Cheng, R. Yuan, Existence and stability of traveling waves for Leslie-Gower predatorprey system with nonlocal diffusion, *Discrete Contin. Dyn. Syst.*, **37** (2017), 5433–5454. https://doi.org/10.3934/dcds.2017236
- 4. H. Cheng, R. Yuan, Traveling waves of a nonlocal dispersal Kermack-McKerndrick epidemic model with delayed transmission, *J. Evol. Equations*, **17** (2017), 979–1002. https://doi.org/10.1007/s00028-016-0362-2
- 5. Y. Liu, Y. Zheng, H. Li, F. E. Alsaadi, B. Ahmad, Control design for output tracking of delayed Boolean control networks, *J. Comput. Appl. Math.*, **327** (2018), 188–195. https://doi.org/10.1016/j.cam.2017.06.016
- Y. Liu, Bifurcation techniques for a class of boundary value problemsof fractional impulsive differential equations, J. Nonlinear Sci. Appl., 8 (2015), 340–353. http://dx.doi.org/10.22436/jnsa.008.04.07
- Y. Liu, D. O'Regan, Controllability of impulsive functional differential systems with nonlocal conditions, *Electron. J. Differ. Equations.*, **194** (2013), 1–10. https://doi.org/10.1016/j.amc.2011.01.107
- 8. J. Xu, J. Jiang, D. O'Regan, Positive Solutions for a Class of *p*-Laplacian Hadamard Fractional-Order Three-Point, *Boundary Value Probl.*, **8** (2020), 308. https://doi.org/10.3390/math8030308
- 9. C. O. Alves, F. J. S. A. Corrêa, T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, *Comput. Math. Appl.*, **49** (2005), 85–93. https://doi.org/10.1016/j.camwa.2005.01.008
- 10. A. Bensedik, M. Bouchekif, On an elliptic equation of Kirchhoff type with a potential asymptotically linear at infinity, *Math. Comput. Model.*, **49** (2009), 1089–1096. https://doi.org/10.1016/j.mcm.2008.07.032
- 11. B. Cheng, X. Wu, Existence results of positive solutions of Kirchhoff type problems, *Nonlinear Anal.*, **71** (2009), 4883–4892. https://doi.org/10.1016/j.na.2009.03.065
- 12. G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.
- 13. T. F. Ma, Remarks on an elliptic equation of Kirchhoff type, *Nonlinear Anal.*, **63** (2005), 1967–1977. https://doi.org/10.1016/j.na.2005.03.021
- 14. A. Mao, S. Luan, Sign-changing solutions of a class of nonlocal quasilinear elliptic boundary value problems, *J. Math. Anal. Appl.*, **383** (2011), 239–243. https://doi.org/10.1016/j.jmaa.2011.05.021

- 15. A. Mao, Z. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition, *Nonlinear Anal.*, **70** (2009), 1275–1287. https://doi.org/10.1016/j.na.2008.02.011
- 16. K. Perera, Z. T. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index, *J. Differ. Equations*, **221**, (2006), 246–255. https://doi.org/10.1016/j.jde.2005.03.006
- 17. J. J. Sun, C. L. Tang, Existence and multiplicity of solutions for Kirchhoff type equations, *Nonlinear Anal.*, **74** (2011), 1212–1222. https://doi.org/10.1016/j.na.2010.09.061
- 18. Y. Wang, Y. Liu, Y. Cui, Multiple sign-changing solutions for nonlinear fractional Kirchhoff equations, *Boundary Value Probl.*, **193** (2018). https://doi.org/10.1186/s13661-018-1114-8
- 19. M. H. Yang, Z. Q. Han, Existence and multiplicity results for Kirchhoff type problems with four-superlinear potentials, *Appl. Anal*, **91** (2012), 2045–2055. https://doi.org/10.1080/00036811.2011.587808
- 20. Y. Yang, J. Zhang, Nontrivial solutions of a class of nonlocal problems via local linking theory, *Appl. Math. Lett.*, **23** (2010), 377–380. https://doi.org/10.1016/j.aml.2009.11.001
- Z. Zhang, K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow, J. Math. Anal. Appl., 317 (2006), 456–463. https://doi.org/10.1016/j.jmaa.2005.06.102
- C. O. Alves, F. J. S. A. Corrêa, A sub-supersolution approach for a quasilinear Kirchhoff equation, J. Math. Phys., 56 (2015), 591–608. https://doi.org/10.1063/1.4919670
- 23. C. O. Alves, F. J. S. A. Corrêa, On existence of solutions for a class of problem involving a nonlinear operator, *Commun. Appl. Nonlinear Anal.*, **8** (2014), 43–56.
- 24. B. Yan, D. O'Regen, R. P. Agarwal, The existence of positive solutions for Kirchhoff-type problems via the sub-supersolution method, *An. St. Univ. Ovidius Constanța*, **26** (2018), 5–41. https://doi.org/10.2478/auom-2018-0001
- 25. C. O. Alves, D. P. Covei, Existence of solution for a class of nonlocal elliptic problem via sub-supersolution method, *Nonlinear Anal. Real World Appl.*, **23** (2015), 1–8. https://doi.org/10.1016/j.nonrwa.2014.11.003
- C. O. Alves, F. J. S. A. Corrêa, On the existence of positive solution for a class of singular systems involving quasilinear operators, *Appl. Math. Comput.*, 185 (2007), 727–736. https://doi.org/10.1016/j.amc.2006.07.080
- S. Cui, Existence and nonexistence of positive solutions for singular semilinear elliptic boundary value problems, *Nonlinear Anal.* 41 (2000), 149–176. https://doi.org/10.1016/S0362-546X(98)00271-5
- 28. X. Li, S. Song, Stabilization of delay systems: delay-dependent impulsive control, *IEEE Trans. Autom. Control*, **62** (2017), 406–411. https://doi.org/10.1109/TAC.2016.2530041
- 29. X. Li, J. Wu, Stability of nonlinear differential systems with state-dependent delayed impulses, *Automatica*, **64** (2016), 63–69. https://doi.org/10.1016/j.automatica.2015.10.002
- 30. G. M. Troianiello, *Elliptic Differential Equations and Obstacle Problems*, Plenum, New York, 1987.
- 31. O. A. Ladyzenskaya, N. N. Uraltreva, *Linear and Quasilinear Elliptic Equations*, Academic Press, New York, 1968.

- 32. A. C. Lazer, P. J. McKenna, On a singular nonlinear elliptic boundary value problem, *Proceed. Am. Math. Soc.*, **111** (1991), 721–730.
- 33. J. Shi, M. Yao, On a singular nonlinear semilinear elliptic problem, *Proceed. Royal Soc. Edinburgh*, **128** (1998), 1389–1401. https://doi.org/10.1017/S0308210500027384
- K. Di, B. Yan, The existence of positive solution for singular Kirchhoff equation with two parameters, *Boundary Value Probl.*, 40 (2019), 1–13. https://doi.org/10.1186/s13661-019-1154-8
- 35. J. L. Lions, On some questions in boundary value problems of mathematical physics, *North-Holland Math. Stud.*, **36** (1977), 284–346. https://doi.org/10.1016/S0304-0208(08)70870-3

© 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)