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1. Introduction

In this work, we study



− a
(∫
Ω

|∇u(x)|2dx
)
△u(x)

= λ f (x, u) + K(x)g(u) − |∇u|η, in Ω,
u > 0, in Ω,
u = 0, on ∂Ω.

(1.1)

where Ω is a smooth and bounded domain in RN (N ≥ 2), a : [0. +∞) → (0,+∞) is continuous and
increasing with

inf
t∈[0,+∞)

a(t) = a(0) = a0 > 0, and lim
t→+∞

a(t) = +∞,

K ∈ C0,γ(Ω), λ > 0, 0 ≤ η < 2.
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This work is motivated by [1] where Ghergu and Rădulescu considered
−△u(x) = K(x)g(u) + λ f (x, u) − |∇u|a, in Ω,

u > 0, in Ω,
u = 0, on ∂Ω.

They obtained the existence or nonexistence of solutions. Many other works on the solutions for
equations can be found in [2–8] also.

For the case that the nonlinearity is independent on ∇u, many researchers made extensively research
in equations of this type, see [9–21] and their references.

But since h(x, u,∇u) = λ f (x, u)+K(x)g(u)− |∇u|η in problem (1.1) depends on gradient, variational
methods can not be used to study problem (1.1) in a direct way. According to the works in [1], it is
natural to try to use the sub-supersolution approach to study the problem (1.1).

A difficulty is that there is no ready-made sub-supersolution approach for (1.1) although there are
some results on the methods of sub-supersolutions for problem (1.1) when nonlinearity h is
independent of ∇u or is continuous on u = 0, see [22–24].

Our paper will prove the sub-supersolutions theorem for a generalized (2.1) and use the obtained
theorem to consider (1.1).

Suppose that the function f : Ω × [0,∞) → [0,∞) is Hölder continuous, and f > 0 on Ω × (0,∞).
And f satisfies:

( f 1) the mapping s 7→
f (x, s)

s
with s ∈ (0,∞) is decreasing, ∀x ∈ Ω;

( f 2) lim
s→0

f (x, s)
s
= +∞ and lim

s→+∞

f (x, s)
s
= 0, uniformly for x ∈ Ω.

g ∈ C0,γ(0,∞), g ≥ 0, and decreasing function satisfying

(g1) lim
s→0

g(s) = +∞;

(g2)
∫ 1

0
g(s)ds < +∞;

(g3) there are α ∈ (0, 1) and θ0 > 0, C > 0 making g(s) ≤ Cs−α, ∀s ∈ (0, θ0).

Theorem 1.1. If K(x) > 0 in Ω, f meets ( f 1) − ( f 2), g meets (g1) − (g2) − (g3), (1.1) has at least one
solution for all λ > 0.

Theorem 1.2. If K(x) < 0 in Ω, f meets ( f 1) − ( f 2), g meets (g1) − (g2) − (g3), there exists λ∗ > 0
making (1.1) has at least one solution when λ ≥ λ∗, and there exist λ0 > 0 enough small such that (1.1)
has no solution.

Theorem 1.3. If K(x) < 0 in Ω, f meets ( f 1) − ( f 2), (1.1) has no solution, if
∫ 1

0
g(s)ds = +∞.

This work is organised as follows. In section 2, we give some lemmas and obtain a
sub-supersolution theorem for some singular Kirchhoff equation with convection (2.1). In Section 3,
we proof the results. Some ideas like [1, 22, 25–29].
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2. The sub-supersolutions approach for problem (2.1)

This section, we discuss −△u(x) =
1

a(∥u∥2)
f (x, u(x),∇u(x)), x ∈ Ω,

u|∂Ω = 0,
(2.1)

where f (x, u, ξ) satisfies two conditions:
(F1) f (x, u, ξ) is continuously differentiable relative to the variables u and ξ and locally Hölder

continuous in Ω × (0,+∞) × Rn;
(F2) there are θ ∈ (0, 1) and η ∈ [0, 2) making there is a corresponding constant C = C(Ω; b) > 0,

∀b > 0, such that
| f (x; u; ξ)| ≤ Cu−θ

[
1 + |ξ|η

]
,∀(x, u, ξ) ∈ Ω × (0, b] × RN .

Now consider  |△u| ≤
1

a(0)
| f (x, u,∇u)| , x ∈ Ω,

u|∂Ω = 0.
(2.2)

Set

ΣR =

{
u ∈ C2(Ω) ∩C1

0(Ω) satisfies problem (2.2), u > 0|max
x∈Ω
|u(x)| ≤ R

}
.

Obviously, 0 ∈ ΣR and then ΣR is not empty for any R > 0. For the functions in ΣR, we have following
lemma.

Lemma 2.1. ∀R > 0, there is k0 > 0 making(∫
Ω

|∇u(x)|2dx
)1/2

≤ k0

for all u ∈ ΣR.

Proof. Suppose u ∈ ΣR. Multiplying u in both side in (2.2) and integrating on Ω, using Young
inequality,

a(0)
∫
Ω
|∇u(x)|2dx ≤

∫
Ω
| f (y, u(y),∇u(y))| u(y)dy

≤ C
∫
Ω

(u1−θ(y))
[
1 + |∇u(y)|η

]
dy

≤ CR1−θ
[
|Ω| +

∫
Ω
|∇u(y)|ηdy

]
≤ CR1−θ

[
|Ω| +C1 + ε

∫
Ω
|∇u(y)|2dy

]
.

Therefore, there is a k0 > 0 such that
∥u∥ ≤ k0.

The proof is completed. □

Let
f +(x, u, ξ) = max{ f (x, u, ξ) , 0}

Mathematical Biosciences and Engineering Volume 19, Issue 10, 10581–10601.



10584

and
f −(x, u, ξ) = max{− f (x, u, ξ) , 0}.

Then
f (x, u, ξ) = f +(x, u, ξ) − f −(x, u, ξ).

In the following, we define the supersolution of (2.1) and the corresponding sub-solution.

Definition 2.2. If the positive function u with u ∈ C2(Ω) ∩C1(Ω) satisfies −△u(x) ≥
1

a(0)
f +(x, u(x),∇u(x)), x in Ω,

u|∂Ω = 0,

u(x) is a upper solution of (2.1).

Suppose u is a positive supersolution of (2.1). Since the condition (F2) hold, form Lemma 2.1, for
R = supx∈Ω u(x), there is k0 > 0 making

∥u∥ =

√(∫
Ω

|∇u(x)|2dx
)
≤ k0

for all u ∈ ΣR.

Definition 2.3. If the positive function u with u ∈ C2+α(Ω) ∩C1(Ω) satisfies u(x) ≤ u(x), ∀x ∈ Ω and
−△u(x) ≤

1
a(k2

0)
f +(x, u(x),∇u(x))

−
1

a(0)
f −(x, u(x),∇u(x)), x in Ω,

u|∂Ω =0,

u(x) > 0 is a subsolution of (2.1) corresponding with the supersolution u(x).

Let
C1(Ω) = {u : Ω→ R : u(x) is continuously differentiable on Ω}

with norm

∥u∥1 = max
{

max
x∈Ω
|u(x)|,max

x∈Ω
|∇u(x)|

}
.

Note that C1(Ω) is a Banach space.
We list lemma which will be used later.

Lemma 2.4. (see [30]) Let u ∈ W2,p(Ω) satisfy

|△u(x)| ≤ f0 + K|∇u|2

with u|∂Ω = 0, |u|∞,Ω ≤ M ∈ (0,+∞) and f0 ∈ Lp(Ω). Then there is k′ > 0, depending u only through M
such that

|u|W2,p(Ω) ≤ k′.
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Remark 2.5. In the above lemma, if u|∂Ω = ϕ(x) with ϕ ∈ C2+α(∂Ω), we get same conclusion.

Theorem 2.6. Set Ω ⊆ RN(N ≥ 1) be a smooth bounded domain. If (F1) and (F2) hold. Assume u > 0
is a upper solution of (2.1) and u > 0 is a lower solution of (2.1) corresponding with the supersolution
u. Moreover, if there is δ0 > 0 making u(x) ≥ δ0d(x, ∂Ω)γ with 0 < γθ < 1. Then (2.1) has at least one
solution u ∈ C2(Ω) ∩C1,1−γθ(Ω),

u(x) ≤ u(x) ≤ u(x),

∀x ∈ Ω.

In order to obtain Theorem 2.6, make a sequence of subdomains of Ω with C2+α-boundaries, named
{Ωk}

∞
k=1 such that

Ω1 ⊂⊂ Ω2 ⊂⊂ · · · ⊂⊂ Ωk ⊂⊂ Ωk+1 ⊂⊂ · · ·

with ∪∞k=1Ωk = Ω. For each k, consider
−△u(x) =

1

a
(
min

{
k2

0,
∫
Ωk
|∇u(x)|2dx

})
f (x, u(x),∇u(x)), x ∈ Ωk,

u|∂Ωk =u(x) > 0.

(2.3)

Lemma 2.7. For each k > 0, (2.3) has a solution uk ∈ C1(Ωk) making

u(x) ≤ uk(x) ≤ u(x), x ∈ Ωk.

Proof. If u is a solution of problem (2.3) with u(x) ≤ u(x) ≤ u(x) on Ωk, we have

|△u| ≤ Cu−θγ(x) [1 + |∇u|η] ,

which together Lemma 5.10 in [30] and the interpolation inequality lemma in [30] infers there is Rk > 0
such that

∥u∥1 < Rk.

Define f : Ω × (0,+∞) × R as

f (x, u, ξ) =


f (x, u, ξ), if u(x) ≤ u ≤ u(x),
f (x, u(x), ξ) + h1(x), if u < u(x),
f (x, u, ξ) − h2(x), if u > u(x),

where  h1(x) = 1
u(x)

[
| f (x, u(x), 0)| + 1

]
min

{
u(x), u(x) − u

}
,

h2(x) = 1
u(x)

[
| f (x, u(x), 0)| + 1

]
min {u(x), u − u(x)} .

(2.4)

Now consider 
−△u(x) =

f (x, u(x),∇u(x))

a
(
min

{
k2

0,
∫
Ωk
|∇u(x)|2dx

}) , x ∈ Ωk,

u|∂Ωk =u(x).

(2.5)
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First, we prove that the solution of (2.5) is the solution of (2.3).
If u is a solution of (2.5), we will prove that u(x) ≤ u(x) ≤ u(x), x ∈ Ωk.
In fact, if there is a x0 ∈ Ωk with u(x0) < u(x0), let A = {x ∈ Ωk|u(x) < u(x), there exists a continuous

line ϕ : [0, 1]→ Ωk, ϕ(0) = x0, ϕ(1) = x and u(ϕ(t)) < u(ϕ(t)) for all t ∈ [0, 1]}. Obviously, u(x) < u(x)
for all x ∈ A and u(x) = u(x), ∀x ∈ ∂A(note u(x) = u(x) for all x ∈ ∂Ωk). Now there exists a x1 ∈ A
such that u(x1) − u(x1) = minx∈A(u(x) − u(x)) making ∇u(x1) = ∇u(x1) and

0 ≥ −△
(
u(x1) − u(x1)

)
≥ 1

a
(
min

{
k2

0 ,
∫
Ωk
|∇u(x)|2dx

}) f (x1, u(x1),∇u(x1))

− 1
a(k2

0)
f +

(
x1, u(x1),∇u(x1)

)
+ 1

a(0) f −
(
x1, u(x1),∇u(x1)

)
= 1

a
(
min

{
k2

0 ,
∫
Ωk
|∇u(x)|2dx

}) f
(
x1, u(x1),∇u(x1)

)
− 1

a(k2
0)

f +
(
x1, u(x1),∇u(x1)

)
+ 1

a(0) f −
(
x1, u(x1),∇u(x1)

)
+ 1

a
(
min

{
k2

0 ,
∫
Ωk
|∇u(x)|2dx

})h1(x1)

≥ 1
a(k2

0)
f
+ (

x1, u(x1),∇u(x1)
)
− 1

a(0) f
− (

x1, u(x1),∇u(x1)
)

− 1
a(k2

0)
f +

(
x1, u(x1),∇u(x1)

)
+ 1

a(0) f −
(
x1, u(x1),∇u(x1)

)
+ 1

a
(
min

{
k2

0 ,
∫
Ωk
|∇u(x)|2dx

})h1(x1)

= 1

a
(
min

{
k2

0 ,
∫
Ωk
|∇u(x)|2dx

})h1(x1)

> 0,

where h1 is defined in (2.4). This is contradictory. Thus, 0 < u(x) ≤ u(x), ∀x ∈ Ωk.
On the other hand, if there is a x0 ∈ Ωk with u(x0) > u(x0), let B = {x ∈ Ωk|u(x) > u(x), there is

a continuous line ψ : [0, 1] → Ωk such that ψ(0) = x0, ψ(1) = x and u(ψ(t)) > u(ψ(t)), ∀t ∈ [0, 1]}.
Obviously, u(x) > u(x) , ∀x ∈ B and u(x) = u(x), ∀x ∈ ∂B(note u(x) = u(x) ≤ Ωk, ∀x ∈ ∂Ωk). Then
there is x2 ∈ B making u(x2) − u(x2) = maxx∈B(u(x) − u(x)) such that ∇u(x2) = ∇u(x2) and

0 ≤ −△ (u(x2) − u(x2))
≤ 1

a
(
min

{
k2

0 ,
∫
Ωk
|∇u(x)|2dx

}) f (x2, u(x2),∇u(x2))

− 1
a(0) f +

(
x2, u(x2),∇u(x2)

)
= 1

a
(
min

{
k2

0 ,
∫
Ωk
|∇u(x)|2dx

}) f (x2, u(x2),∇u(x2))

− 1
a(0) f + (x2, u(x2),∇u(x2))
− 1

a
(
min

{
k2

0 ,
∫
Ωk
|∇u(x)|2dx

})h2(x2)

≤ 1
a(0) f + (x2, u(x2),∇u(x2)) − 1

a(k2
0)

f − (x2, u(x2),∇u(x2))

− 1
a(0) f + (x, u(x),∇u(x)) − 1

a
(
min

{
k2

0 ,
∫
Ωk
|∇u(x)|2dx

})h2(x2)

≤ − 1

a
(
min{k2

0 ,
∫
Ωk
|∇u(x)|2dx}

)h2(x2)

< 0,

where h2 is defined in (2.4). This is contradictory.

Mathematical Biosciences and Engineering Volume 19, Issue 10, 10581–10601.



10587

Therefore, 0 < u(x) ≤ u(x) ≤ u(x) for all x ∈ Ωk, which implies that u satisfies problem (2.3).
Second, we show that (2.5) has at least one positive solution.
For u ∈ C1(Ωk), define

(Aku)(x) = 1

a
(
min

{
k2

0 ,
∫
Ωk
|∇u(x)|2dx

}) ·∫
Ωk

Gk(x, y) f (y, u(y),∇u(y))dy, x ∈ Ωk,

where Gk(x, y) is the Green’s function of −△u(x) = h(x), u∂Ωk = u(x).

Let
E =

{
u ∈ C1(Ωk)|u = λAku, λ ∈ [0, 1]

}
.

By condition (F2) and (2.4),

|△u(x)| ≤
C

a(0)
u−γθ

(
1 + |∇u(x)|2

)
+ h1(x) + h2(x),

which together with the remark of Lemma 2.4 and the embedding theorem guarantees there is a C1 > 0
such that

∥u∥1 ≤ C1.

By Leray-Schauder’s fixed point theorem, we have Ak has at least one fixed point uk in C1(Ωk).
Consequently, (2.3) has a solution uk > 0 on Ωk with u(x) ≤ uk(x) ≤ u(x).

□

Now by the definitions of f , for each k ≥ 1, from Theorem 6.2 in [15], we conclude that there is a
solution uk(x) to (2.3) such that

(a) uk(x) ∈ C2+α(Ωk) ∩C2(Ωk);
(b) u(x) ≤ uk(x) ≤ u(x), x ∈ Ωk.

We extend uk(x) to the whole domain such that uk(x) = u(x), ∀x ∈ Ω \ Ωk. Then uk(x) ∈ C(Ω). In
this way, we get a sequence of continuous functions {uk(x)}∞k=1 possessing obviously the following
properties:

(a) u(x) ≤ uk(x) ≤ u(x), x ∈ Ω;

(b) −△uk(x) = 1

a
(
min

{
k2,

∫
Ωk
|∇uk(x)|2

}) f (x, uk(x),∇uk(x)), x ∈ Ωk for every k = 1, 2, · · · .

Now we prove the following lemma.

Lemma 2.8. For each k = 1, 2, · · · , there exists a corresponding constant Ck > 0 such that

∥u j∥C2+α(Ωk) ≤ Ck, for all j ≥ k + 1. (2.6)
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Proof. Let k be fixed and take two domains Q1 and Q2 such that

Ωk ⊂⊂ Q1 ⊂⊂ Q2 ⊂⊂ Ωk+1.

Then for any j ≥ k + 1 we have

−△u j =
1

a
(
min

{
k2

0,
∫
Ω j
|∇u j|

2dx
}) f (x, u j(x),∇u j(x)), on Ωk+1. (2.7)

Denote

f j(x) =
1

a
(
min

{
k2

0,
∫
Ω j
|∇u j|

2dx
}) f (x, u j(x),∇u j(x))

( j = k + 1, k + 2, · · · ). Now (2.7) can be rewritten as

−△u j(x) = f j(x), on Ωk+1. (2.8)

First, since u(x) ≤ u j(x) ≤ u(x) on Ωk+1 for all j ≥ k + 1, we see that u j(x) ( j = k + 1, k + 2, · · · ) are
uniformly bounded on Ωk+1.

Second, using gradient estimate theorem of Ladyzenskaya and Uraltreva (see [ [31], Theorem 3.1]),
we know from (2.7) a constant C1 independent of j such that for any j ≥ k + 1,

max
x∈Q2
|∇u j(x)| ≤ C1 max

x∈Ωk+1
u j(x) ≤ C1 max

x∈Ω
u(x),

which implies that ∇u j(x) ( j = k+1, k+2, · · · ) are uniformly bounded on Q2. Therefore, the functions
f j(x) ( j = k + 1, k + 2, · · · ) are uniformly bounded on Q2.

Third, by the interior Lp estimate theorem, we conclude from (2.8) that for any p > max{1,N}, there
is a corresponding constant C2 independent of j making for any j ≥ k + 1,

∥u j∥W2,p(Q1)

≤ C2

(
∥ f j∥Lp(Q2) + ∥u j∥Lp(Q2)

)
≤ C2|Q2|

1
p

(
maxx∈Q2

∣∣∣∣ f j(x)
∣∣∣∣ +maxx∈Q2

∣∣∣u j(x)
∣∣∣) .

Since the last inequality is bounded by a constant independent of j as we have proved, we see that
∥u j∥W2,p(Q1) is bounded by a constant independent of j. Now take p = N

1−α . Then by applying Sobolev-
Morrey embedding inequatlity we conclude that ∥u j∥C1+α(Q1) is bounded by a constant independent of j,
which furthermore implies that ∥ f j∥Cα(Q1) is bounded by a similar constant.

Finally, we use the interior Hölder estimate theorem (see [ [15], Theorem 6.2] to (2.8) and get
another constant C3 independent of j such that for every j ≥ k + 1

∥u j∥C2+α(Ωk) ≤ C3

(
∥ f j∥Cα(Q1) +max

x∈Q1

|u j(x)|
)
.

From this and the conclusion we have just proved, we get inequality (2.6). □
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The proof of Theorem 2.6.
Lemma 2.8 infers there exists a subseuqnece {u jl(x)} of {u j} and u ∈ C2(Ω) such

that

∥u jl − u∥k = max
{ ∑

1≤s,t≤N

max
x∈Ωk

∣∣∣∣∣∣∂2u jl(x)
∂xs∂xt

(x) −
∂2u(x)
∂xs∂xt

(x)

∣∣∣∣∣∣,
max
x∈Ωk

|∇u jl(x) − ∇u(x)|,max
x∈Ωk

|u jl(x) − u(x)|
}

to 0 as jl → +∞ and the corresponding subsequence of min
{
k2

0,
∫
Ω jl
|∇u jl(x)|2dx

}
converging to s0.

This implies that u(x) ∈ C2(Ω) and satisfies that −△u(x) =
f (x, u(x),∇u(x))

a(s0)
, x ∈ Ω,

u|∂Ω = 0,

which implies that

u(x) =

∫
Ω

G(x, y) f (y, u(y),∇u(y))dy

a(s0)
, x ∈ Ω.

Then
|u(x1) − u(x2)|

≤
1

a(s0)

∫
Ω

|G(x1, y) −G(x2, y)|Cd−γθ(y, ∂Ω)
[
1 + |∇u(x)|2

]
dy

and
|∇u(x1) − ∇u(x2)|

≤
1

a(s0)
·∫

Ω

|Gx(x1, y) −Gx(x2, y)|Cd−γθ(y, ∂Ω)
[
1 + |∇u(x)|2

]
dy

By the standard regularity theory, u ∈ C1,1−γθ(Ω). Moreover, since u ∈ ΣR, from Lemma 2.1, we know(∫
Ω

|∇u(x)|2dx
) 1

2

< k0.

And since (∫
Ω

|∇u(x)|2dx
) 1

2

= lim
jl→+∞

∫
Ω jl

|∇u jl(x)|2dx
 1

2

,

we have ∫
Ω jl

|∇u jl(x)|2dx < k2
0

for jl large enough. And so

min

k2
0,

∫
Ω jl

|∇u jl(x)|2dx

 =
∫
Ω jl

|∇u jl(x)|2dx
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for jl large enough, which implies that

a

min

k2
0,

∫
Ω jl

|∇u jl(x)|2dx


 = a

∫
Ω jl

|∇u jl(x)|2dx


for jl large enough.
Consequently,

s0 =

∫
Ω

|∇u(x)|2dx.

Then 
−△u(x) =

f (x, u(x),∇u(x))

a
(∫
Ω
|∇u(x)|2dx

) , x ∈ Ω,

u|∂Ω = 0.□

φ1 is the normalized positive eigenfunction corresponding to the first eigenvalue λ1 of −△u(x) = λu, in Ω,
u = 0, on ∂Ω.

Lemma 2.9. (see [1]) Let F : Ω× (0,∞)→ R be a continuous function, and the mapping s 7→
F(x, s)

s
is strictly decreasing at each x ∈ Ω, with s ∈ (0,∞). If there are v,w ∈ C2(Ω) ∩C(Ω) such that

(a) △ω + F(x,w) ≤ 0 ≤ △ν + F(x, v) in Ω;
(b) w, v > 0 in Ω and v ≤ w on ∂Ω;
(c) △w ∈ L1(Ω) or △v ∈ L1(Ω).

Then ν ≤ ω in Ω.

Lemma 2.10. (see [32])
∫
Ω

φ−s
1 < ∞ if and only if s < 1.

Lemma 2.11. (see [33]) The conditions of this lemma are the conditions of the lemma 2.4 in [33].
Then 

−△u(x) = F(x, u), in Ω,
u > 0, on Ω,
u = 0, on ∂Ω,

has at least one positive solution u ∈ C2(Ω) ∩C(Ω).

3. Proofs of main theorems

3.1. Proof of Theorem 1.1.

Fix λ > 0. 
−△u(x) =

1
a0

(λ f (x, u) + K(x)g(u)), in Ω,

u > 0, in Ω,
u = 0, on ∂Ω,

(3.1)
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has a solution uλ.
Let R = maxx∈Ω u(x) and define ΣR as in (2.4). Lemma 2.1 infers there exists a k0 > 0 making∫

Ω

|∇u|2dx < k2
0 (3.2)

for all u ∈ ΣR.
Let H : [0,∞)→ [0,∞) satisfying{

H′′(t) = g(H(t)), ∀t > 0,
H′(0) = H(0) = 0.

(3.3)

Equation (3.3) infers H′′ is decreasing, while H and H′ are nondecreasing on (0,∞). Then there exist
ξ1

t , ξ
2
t ∈ (0, t) such that

H(t)
t
=

H(t) − H(0)
t − 0

= H′(ξ1
t ) ≤ H′(t)

and
H′(t)

t
=

H′(t) − H′(0)
t − 0

= H′′(ξ2
t ) ≥ H′′(t),

∀t > 0.
Then

H(t) ≤ tH′(t) ≤ 2H(t), ∀t > 0.

Let
uλδ = δH(φ1)

where 0 < δ < 1. For a(k2
0) > 0 (k0 is defined in (3.2)), using the fact that g is monotonic, we can

conclude

−△uλδ −
1

a(k2
0)

K(x)g(uλδ) +
1
a0
|∇uλδ |

η

≤ −δg(H(φ1))|∇φ1|
2 + λ1δH′(φ1)φ1 −

1
a(k2

0)
K∗g(H(φ1))

+
1
a0
δη(H′)η(φ1)|∇φ1|

η

≤ −δg(H(φ1))|∇φ1|
2 + 2λ1δH(φ1) −

1
a(k2

0)
K∗g(H(φ1))

+
1
a0
δη(H′)η(φ1)|∇φ1|

η, in Ω.

(3.4)

Let

0 < δ ≤ δ∗1 = min
{

1,
( a0K∗g(H(∥φ1∥∞))
a(k2

0)(H′)η(∥φ1∥∞)∥|∇φ1|∥
η
∞

) 1
η

}
such that

−
K∗g(H(∥φ1∥∞))

a(k2
0)

+
δη(H′)η(∥φ1∥∞)∥|∇φ1|∥

η
∞

a0
≤ 0, in Ω,
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which together with (3.4) yields

−△uλδ −
1

a(k2
0)

K(x)g(uλδ) +
1
a0
|∇uλδ |

η

≤ 2λ1δH(φ1)
≤ 2λ1uλδ , in Ω.

(3.5)

Let 0 < δ ≤ δ∗2 small enough such that

1
a(k2

0)
λ f (x, δH(∥φ1∥∞))

δH(∥φ1∥∞)
≥ 2λ1. (3.6)

( f 1) and (3.6) infer
1

a(k2
0)

λ f (x, uλδ)

uλδ
≥
λ f (x, δH(∥φ1∥∞))
a(k2

0)δH(∥φ1∥∞)
≥ 2λ1, in Ω.

Let us choose δ∗ = min{δ∗1, δ
∗
2}, ∀δ ∈ (0, δ∗]. The inequality (3.6)combined (3.5) yields

− △uλδ −
1

a
(
k2

0

)K(x)g
(
uλδ

)
+

1
a0

∣∣∣∇uλδ
∣∣∣η

≤ 2λ1uλδ

≤
1

a
(
k2

0

)λ f
(
x, uλδ

)
, in Ω.

(3.7)

Equations (3.1) and (3.7) infer ∀λ ≥ 0 −△uλ ≥
(λ f (x, uλ) + K(x)g (uλ))

a0
, in Ω,

uλ = 0, on ∂Ω

and 

−△uλδ ≤
1

a
(
k2

0

) (
λ f (x, uλδ) + K(x)g

(
uλδ

))
−

1
a0

∣∣∣∇uλδ
∣∣∣η , in Ω,

uλδ =0, on ∂Ω.

Then we have 

△uλ +
[
λ f (x, uλ) + K(x)g (uλ)

]
a0

≤ 0, in Ω,

△uλδ +

[
λ f

(
x, uλδ

)
+ K(x)g

(
uλδ

)]
a0

≥ 0, in Ω,

uλ, uλδ > 0, in Ω,

uλ, uλδ = 0, on ∂Ω,

△uλ ∈ L1(Ω).

From Lemma 2.9 we know uλδ ≤ uλ in Ω for all δ ∈ (0, δ∗].
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Furthermore, from (g3) and the definition of H, we can conclude that

lim
t→0

H(t)

t
2
α+1

= 1.

Then we get

lim
t→0

H(t)
tγ
= +∞

when γ > 2
α+1 . It follows that

lim
x→∂Ω

H(φ1(x))
d(x, ∂Ω)γ

= +∞.

Hence, there is a δ0 > 0 making
uλδ ≥ δ0d (x, ∂Ω)γ

with 0 < γθ < 1.
The Theorem 2.6 guarantees that

−a
(∫
Ω

|∇u|2dx
)
△u = K(x)g (u) + λ f (x, u) − |∇u|η, in Ω,

u > 0, in Ω,
u = 0, on ∂Ω

has a solution u ∈ H1
0(Ω) with

uλδ(x) ≤ u(x) ≤ uλ(x), in Ω.

Therefore, (1.1) has at least one positive solution, ∀λ > 0. □

3.2. Proof of Theorem 1.2.

( f 1), ( f 2) and Lemma 2.11 deduce that there is uλ ∈ C2(Ω) making
−△uλ =

λ f (x, uλ)
a0

, in Ω,

uλ > 0, in Ω,
uλ = 0, on ∂Ω,

(3.8)

∀λ > 0.
Let R = maxx∈Ω u(x) and define ΣR as in (2.4). Lemma 2.1 infers there is a k0 > 0 making∫

Ω

|∇u|2dx < k2
0 (3.9)

for all u ∈ ΣR.
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Let uλ = MH(φ1), with M ≥ 1 > 0 is a constant. Because g is monotonic,

−△uλ −
K(x)g

(
uλ

)
a0

+

∣∣∣∇uλ
∣∣∣η

a0

≤ λ1MH′(φ1)φ1 − Mg (H(φ1)) |∇φ1|
2 −

K∗g(H(φ1))
a0

+
1
a0

Mη(H′)η(φ1)|∇φ1|
η

≤

(
−

1
a0

K∗ − M|∇φ|2
)
g(H(φ1))|∇φ1|

2 + 2λ1MH(φ1)

+
1
a0

Mη(H′)η(φ1)|∇φ1|
η in Ω.

(3.10)

Hopf’s maximum principle deduce that there exist δ0 and Σ ⊂ Ω making |∇φ1| ≥ δ0, in Ω \ Σ,
|φ1| ≥ δ0, in Σ.

On one hand, we consider the case x ∈ Ω \ Σ.
Let

M ≥ M1 = max
{

1,
−K∗
a0δ

2
0

}
.

Since

lim
dist(x,∂Ω)→0+

(
M|∇φ1|

η +
K∗
a0

)
g (H(φ1)) = +∞,

if
1
a0

Mη (H′)η (φ1)|∇φ1|
η −

(
M|∇φ1|

η +
K∗
a0

)
g(H(φ1)) ≤ 0 (3.11)

in Ω \ Σ, by letting Σ close enough to the boundary of Ω. The above inequality combined (3.10) yields

−△uλ −
K(x)g

(
uλ

)
a0

+

∣∣∣∇uλ
∣∣∣η

a0
≤ 2λ1uλ in Ω \ Σ. (3.12)

For a
(
k2

0

)
> 0 (k0 is defined in (3.9)) and

f
(
x,MH(∥φ1∥∞)

)
> 0,

we can choose

λ > λ0 = max

1,
2λ1Ma

(
k2

0

)
H(∥φ1∥∞)

minx∈Ω\Σ f (x,MH(∥φ1∥∞))


making

λ
1

a
(
k2

0

) min
x∈Ω\Σ

f (x,MH(∥φ1∥∞))

MH(∥φ1∥∞))
≥ 2λ1. (3.13)
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( f 1) and (3.13) decude
1

a(k2
0)

λ f(x,uλ)
uλ
≥ 1

a(k2
0)

λ f (x,MH(∥φ1∥∞))
MH(∥φ1∥∞) ≥ 2λ1, (3.14)

in Ω \ Σ. The last inequality combined (3.12) yields

− △uλ −
1
a0

K(x)g
(
uλ

)
+

1
a0
|∇uλ|

η

≤ 2λ1uλ

≤
λ f

(
x, uλ

)
a(k2

0)
, in Ω \ Σ.

(3.15)

If x ∈ Σ
−△uλ −

1
a0

K(x)g
(
uλ

)
+

1
a0

∣∣∣∇uλ
∣∣∣η

≤ 2λ1MH (φ1) −
1
a0

K∗g (H (φ1))

+
1
a0

Mη (H′)η (φ1) |∇φ1|
η , in Σ.

Because φ1 > 0 in Σ and f > 0 on Σ, we choose

λ ≥ λ2 = max
{
λ0, a⋆

}
with

a⋆ = a(k2
0)
Φ⋆1

Φ⋆2

Φ⋆1 = max
x∈Σ

{
2λ1MH(φ1) −

K∗g(H(φ1))
a0

+
Mη(H′)η (φ1) |∇φ1|

η

a0

}
Φ⋆2 = min

x∈Σ
f (x,MH (φ1))

such that
λ

a
(
k2

0

) min
x∈Σ

f (x,MH (φ1))

≥ max
x∈Σ

(
2λ1MH(φ1) −

1
a0

K∗gH (φ1) +
1
a0

Mη (H′)η (φ1) |∇φ1|
η

)
.

Then

−△uλ −
K(x)g

(
uλ

)
a0

+
1
a0
|∇uλ|

η

≤ λ

a(k2
0)

minx∈Σ f
(
x, uλ

)
≤ λ

a(k2
0)

f
(
x, uλ

)
.

(3.16)

It follows from (3.8), (3.15) and (3.16) that for each λ > λ∗ = max{λ1, λ2}, −△uλ ≥
λ f (x, uλ)

a0
, in Ω,

uλ = 0, on ∂Ω
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and 
−△uλ ≤

λ f
(
x, uλ

)
a
(
k2

0

) +

(
K(x)g

(
uλ

)
− |∇uλ|

η
)

a0
, in Ω,

uλ = 0, on ∂Ω.

Furthermore, we obtain 
λ f (x, uλ)

a0
+ △uλ ≤ 0 ≤

λ f
(
x, uλ

)
a0

+ △uλ, in Ω,

uλ, uλ > 0, in Ω,
uλ, uλ = 0, on ∂Ω,
△uλ ∈ L1(Ω).

Lemma 2.9 infers uλ ≤ uλ in Ω. Then uλ and uλ are respectively upper and lower solution of the
problem (1.1). Moreover, from (g3) and the definition of H, we can conclude that

lim
t→0

H(t)

t
2
α+1

= 1.

Then we have

lim
t→0

H(t)
tγ
= +∞

when γ > 2
α+1 . It follows that

lim
x→∂Ω

H(φ1(x))
d(x, ∂Ω)γ

= +∞,

which implies that there is a δ0 > 0 such that

uλ ≥ δ0d(x, ∂Ω)γ

with 0 < γθ < 1 and 0 < α < 1. By Theorem 2.6, there is a solution u ∈ C1(Ω) for (1.1), and
uλ ≤ u ≤ uλ in Ω.

To end the proof, like [1], we have

f (x, s) + K(x)g(s) < ms,

∀(x, s) ∈ Ω × (0,+∞), with

m = max
x∈Ω

f (x, c)
c

.

Let
λ0 = min

{
1,
λ1a0

2m

}
.

We will prove (1.1)λ has no positive solution as mentioned above for all λ ≤ λ0. Due to

f (x, s) + K(x)g(s) < ms,
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u0 is a lower solution of 
−△u =

λm
a0

u, in Ω,

u > 0, in Ω,
u = 0, on ∂Ω.

(3.17)

if u0 is a solution of (1.1)λ.
Let k0 big enough such that k0φ1 is a upper solution for (3.17) and u0 ≤ k0φ1 in Ω. Thus, (3.17) has

a solution u ∈ C2(Ω). (3.17) multiply by φ1 and integrat over Ω,

−

∫
Ω

φ1△udx =
λm
a0

∫
Ω

φ1udx,

that is
λ1

∫
Ω

uφ1dx =
λm
a0

∫
Ω

uφ1dx ≤
λ1

2

∫
Ω

uφ1dx.

Then ∫
Ω

uφ1dx = 0.

This is contradictory. Then (1.1)λ has no positive solutions, ∀λ ≤ λ0. □

3.3. Proof of Theorem 1.3.

Some ideas is similar to [34] and [1].
Assume that there is λ > 0 making (1.1) has a solution uλ. Set

b0 = a
(∫
Ω

|∇uλ|2dx
)
.

( f 1), ( f 2) and Lemma 2.11 deduce that
−△u(x) =

λ f (x, u)
a0

, in Ω,

u > 0, in Ω,
u = 0, on ∂Ω

has a positive solution uλ ∈ C2(Ω), ∀λ > 0. Additionally, there are C1, C2 > 0 satisfying

C1dist (x, ∂Ω) ≤ uλ(x) ≤ C2dist (x, ∂Ω) , (3.18)

∀x ∈ Ω.
We will consider 

−△u −
g(u + ε)

b0
K∗ =

λ f (x, u)
a0

, in Ω,

u > 0, in Ω,
u = 0, on ∂Ω,

(3.19)
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with K∗ = maxx∈Ω K(x) < 0. Furthermore, we have
△uλ +

λ f (x,uλ)
a0
≤ 0 ≤ △uλ +

λ f (x,uλ)
a0

, in Ω,
uλ, uλ > 0, in Ω,
uλ = uλ = 0, on ∂Ω,
△uλ ∈ L1(Ω), (since uλ ∈ C2(Ω)),

Lemma 2.9 infers uλ ≤ uλ in Ω. We know that uλ and uλ are respectively lower and upper solution of
(3.19). Thus, there is a solution uε ∈ C2(Ω) satisfying

uλ ≤ uε ≤ uλ, in Ω.

Integrating in the problem (3.19),

−

∫
Ω

△uεdx − K∗
∫
Ω

g (uε + ε)
b0

dx = λ
∫
Ω

f (x, uε)
a0

dx.

Hence, by the divergence theorem,

−

∫
∂Ω

∂uε
∂n

ds −
∫
Ω

K∗
g(uε + ε)

b0
dx ≤ M, (3.20)

with M > 0 is a constant. ∂uε
∂n ≤ 0 on ∂Ω, and (3.20) infer

−

∫
Ω

K∗g(uε + ε)
b0

dx ≤ M. (3.21)

Because of uε ≤ uλ in Ω, (3.21) infers ∫
Ω

g(uλ + ε)dx ≤ C

for some C > 0. Then, we have
∫
ω

g(uλ + ε)dx ≤ C, for any compact subset ω ⊂ Ω. When ε → 0+,∫
ω

g(uλ)dx ≤ C. Then
∫
Ω

g(uλ)dx ≤ C.

However, (3.18) and
∫ 1

0
g(s)ds = +∞ can conclude∫

Ω

g(uλ)dx ≥
∫
Ω

g(C2dist(x, ∂Ω))dx = +∞

which contradicts
∫
Ω

g(uλ)dx ≤ C. □
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