MBE, 19(10): 10581-10601.
% DOI: 10.3934/mbe.2022494
AIMS Received: 26 June 2022
E@ Revised: 13 July 2022
Accepted: 18 July 2022
http://www.aimspress.com/journal/mbe Published: 25 July 2022

Research article

The existence and nonexistence of positive solutions for a singular Kirchhoff
equation with convection term

Xiaohui Qiu and Baogiang Yan*
School of Mathematical Sciences, Shandong Normal University, Jinan 250000, China

* Correspondence: Email: yanbgcn@aliyun.com.

Abstract: This paper considers a singular Kirchhoff equation with convection and a parameter. By
defining new sub-supersolutions, we prove a new sub-supersolution theorem. Combining method of
sub-supersolution with the comparison principle, for Kirchhoff equation with convection, we get the
conclusion about positive solutions when nonlinear term is singular and sign-changing.

Keywords: a singular Kirchhoff equation; nonlinear term; positive solution; sub-supersolution; the
comparison principle

1. Introduction

In this work, we study

—a (f IVu(x)lzdx) Au(x)
Q

= Af (x,u) + K(x)g(u) — [Vul", in Q, (1.1)
u > 0, in Q9
u=0, on 0Q.

where Q is a smooth and bounded domain in RY (N > 2), a : [0. + c0) — (0, +0) is continuous and
increasing with

inf a(t) = a(0) =ap >0, and lim a(f) = +oo,
te[0,+00)

t—+00

KeC"Q),1>00<n<2.
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This work is motivated by [1] where Ghergu and Radulescu considered

—Au(x) = K(x)g(u) + Af(x,u) — |[Vul®, in Q,
u > O, 1n Q’
u=>0, on 0Q2.

They obtained the existence or nonexistence of solutions. Many other works on the solutions for
equations can be found in [2-8] also.

For the case that the nonlinearity is independent on Vi, many researchers made extensively research
in equations of this type, see [9-21] and their references.

But since h(x, u, Vu) = Af(x,u) + K(x)g(u) — |Vu|" in problem (1.1) depends on gradient, variational
methods can not be used to study problem (1.1) in a direct way. According to the works in [1], it is
natural to try to use the sub-supersolution approach to study the problem (1.1).

A difficulty is that there is no ready-made sub-supersolution approach for (1.1) although there are
some results on the methods of sub-supersolutions for problem (1.1) when nonlinearity % is
independent of Vu or is continuous on u = 0, see [22-24].

Our paper will prove the sub-supersolutions theorem for a generalized (2.1) and use the obtained
theorem to consider (1.1).

Suppose that the function f : Q x [0, 00) — [0, o) is Holder continuous, and f > 0 on Qx (0, 00).
And f satisfies:

(f1) the mapping s +— fx.9) with s € (0, o) is decreasing, Vx € Q;
s
(f2) lina ACID)) = +oo and lim 1 5) = 0, uniformly for x € Q.
§— S s—+00 Ky

g € C%(0, ), g > 0, and decreasing function satisfying
(g1) lim g(s) = +o0;

1
@) [ g < oo
0

(g3) there are @ € (0, 1) and 6y > 0, C > 0 making g(s) < Cs™%, Vs € (0, 6).

Theorem 1.1. If K(x) > 0 in Q, f meets (f1) — (f2), g meets (g1) — (g2) — (g3), (1.1) has at least one
solution for all 1 > 0.

Theorem 1.2. If K(x) < 0 in Q f meets (f1) — (f2), g meets (g1) — (g2) — (g3), there exists 1* > 0
making (1.1) has at least one solution when A > A*, and there exist 1y > 0 enough small such that (1.1)
has no solution.

1
Theorem 1.3. If K(x) <0 in Q, f meets (f1) — (f2), (1.1) has no solution, iff g(s)ds = +oo.
0

This work is organised as follows. In section 2, we give some lemmas and obtain a
sub-supersolution theorem for some singular Kirchhoft equation with convection (2.1). In Section 3,
we proof the results. Some ideas like [1,22,25-29].
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2. The sub-supersolutions approach for problem (2.1)

This section, we discuss

1
{ ) = s 05, (), V(). x € Q. o

ulpg = 0,

where f(x, u, &) satisfies two conditions:
(F1) f(x,u,€) is continuously differentiable relative to the variables # and ¢ and locally Holder
continuous in Q X (0, +00) X R";
(F,) there are 8 € (0, 1) and 1 € [0, 2) making there is a corresponding constant C = C(Q; b) > 0,
Yb > 0, such that
|f(xu;6)) < Cu™® [1+1&7],V(x, u, &) € Qx (0,b] x RV,

Now consider

a(0) (2.2)

1
|AI/[| < —= |f(xa u, Vl/l)' , X € Qa
ulpo = 0.

Set

Tk = {u € C(Q) N CL(Q) satisfies problem (2.2), u > 0| max |u(x)| < R}.
xeQ

Obviously, 0 € X and then Xy is not empty for any R > 0. For the functions in Xz, we have following
lemma.

Lemma 2.1. VR > 0, there is kg > 0 making
1/2
( f |Vu(x)|2dx) < ko
Q

Proof. Suppose u € Xi. Multiplying u in both side in (2.2) and integrating on €, using Young
inequality,

forallu € Zp.

a(0) [, IVu(x)Pdx < [[1f (. u(y), Vu(y))l u(y)dy
< C [, [1 + Vu)|"] dy

< CR™[19] + [, IVu()l"dy|
< CR'(IQ| + Cy + £ Ji, IVu(y)Pdy|.
Therefore, there is a kg > 0 such that
llull < ko.
The proof is completed. O

Let
freu, &) = max{f (x,u,&),0}
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and
S (xu, &) = max{—f (x,u,&), 0}
Then
fu,é) = fF(xu,é) - f(x,u,é).

In the following, we define the supersolution of (2.1) and the corresponding sub-solution.

Definition 2.2. If the positive function i with u € C2(Q) N C(Q) satisfies
1
—Au(x) > — f(x,u(x), Vu(x)), xinQ,
a(0)
Ulpa =0,

u(x) is a upper solution of (2.1).

Suppose u is a positive supersolution of (2.1). Since the condition (£2) hold, form Lemma 2.1, for
R = sup, ., u(x), there is ky > 0 making

[l = \/(f IVM(X)IZdX) < ko
Q

Definition 2.3. If the positive function u withu € C***(Q)N C 1(ﬁ) satisfies u(x) < u(x), Yx € Q and

for all u € Xp.

~8u() < (;1{5)1” (s (), V()
L |
- %f (x, u(x), Vu(x)), xinQ,
ulag =0,

u(x) > 0 is a subsolution of (2.1) corresponding with the supersolution u(x).

Let
Cl(ﬁ) ={u: QoR: u(x) is continuously differentiable on ﬁ}

with norm
[|lull; = max {maX |u(x)|, max IVM(X)I} :

xeQ xXeQ

Note that C! (5) is a Banach space.
We list lemma which will be used later.

Lemma 2.4. (see [30]) Let u € W*P(Q) satisfy
lau(x)| < fo + K|Vul?

with ulge = 0, |u|lwo < M € (0, +00) and fy € LP(QQ). Then there is k' > 0, depending u only through M
such that
lulw2r) < K.
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Remark 2.5. In the above lemma, if ulsq = ¢(x) with ¢ € C***(0Q), we get same conclusion.

Theorem 2.6. Set Q C RY(N > 1) be a smooth bounded domain. If (F,) and (F») hold. Assume u > 0
is a upper solution of (2.1) and u > 0 is a lower solution of (2.1) corresponding with the supersolution
u. Moreover, if there is 6¢ > 0 making u(x) > 6od(x, 0Q2)” with 0 < y0 < 1. Then (2.1) has at least one
solution u € C*(Q) N Cl’l_w(ﬁ),

u(x) < u(x) < u(x),

Vx e Q.

In order to obtain Theorem 2.6, make a sequence of subdomains of Q with C**®-boundaries, named
{4 )2, such that
QccQ,cc---ccQ,cc Qg cC---

with U2 € = Q. For each k, consider

1
a(min {2, [ [Vu(x)Pdx))
f(x’ M(.X), VI/[(.X)), X € Qk’

ulag, =u(x) > 0.

—Au(x) =

(2.3)

Lemma 2.7. For each k > 0, (2.3) has a solution u; € Cl(ﬁk) making
u(x) < up(x) <ul(x), xe Q.
Proof. 1f u is a solution of problem (2.3) with u(x) < u(x) < u(x) on Q, we have
lau) < Cu™(x) [1 +|Vul"],

which together Lemma 5.10 in [30] and the interpolation inequality lemma in [30] infers there is R;, > 0
such that
llelly < Ry

Define ? c Q% (0, +00) X R as
fx,u,é), if u(x) < u < u(x),

Foou, &) =3 fnu(x), &) +h(x), ifu<u),
f(x,u, &) — hy(x), if u > u(x),

where
() = 5 [1£ (e, u(x), 0)f + 1] min {u(x), u(x) - u}, 0
ha(x) = =65 [1f (6, u(x), 0)] + 1] min (w(x), u — u(x)} . ’
Now consider _
J(x, u(x), Vu(x))
—A = , X € Ly,
v a(min {2, [}, IVu(x)Pdx}) X €L (2.5)
Ulse, =u(x).
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First, we prove that the solution of (2.5) is the solution of (2.3).

If u is a solution of (2.5), we will prove that u(x) < u(x) < u(x), x € (.

In fact, if there is a xp € € with u(xy) < u(xp), let A = {x € Qi|u(x) < u(x), there exists a continuous
line ¢ : [0, 1] = Q, #(0) = xo, (1) = x and u(p(t)) < u(¢(r)) for all ¢ € [0, 1]}. Obviously, u(x) < u(x)
for all x € A and u(x) = u(x), Yx € dA(note u(x) = u(x) for all x € 9Q;). Now there exists a x; € A
such that u(x;) — u(x;) = min 5 (u(x) — u(x)) making Vu(x;) = Vu(x,) and

e, mara)] 40, V)

_mﬁr (x1, u(xp), Vﬂ()ﬂ)) + ﬁf‘ (xl, u(xy), Vﬂ(xl))
) (0, V)

a(min{k(z), o, IVuCORdx
_@f+ (xl, u(xy), Vﬂ(xl)) + ﬁf‘ (xl, u(x), Vg(xl))
1 )

* a(min{k(z), o, IVuCORdx
[ |
@f (XpZ(xl), Vﬂ(xl)) ot (xl,g(xl), Vg(xl))
_a(l@f+ (xbﬂ(xl), Vﬂ(xl)) + ﬁf‘ (xl,g(xl), VE(Xl))
: })hl(Xl)

+
a(min{kg,#k [Vu(x)2dx
) a(min{k(z)’fgk |Vu(x)|2dx})hl ('xl)
> 0,

0 > —A(u(xl) - z(xl))
>

\%

where h, is defined in (2.4). This is contradictory. Thus, 0 < u(x) < u(x), Vx € .

On the other hand, if there is a xy € Q; with u(xy) > u(xp), let B = {x € Q|u(x) > u(x), there is
a continuous line ¢ : [0, 1] — € such that ¥(0) = xo, ¥(1) = x and u(¥(?)) > u((r)), vVt € [0, 1]}.
Obviously, u(x) > u(x) , Yx € B and u(x) = u(x), Vx € dB(note u(x) = u(x) < Q, Yx € Q). Then
there is x, € B making u(x,) — u(x,) = max, z(u(x) — u(x)) such that Vu(x,) = Vu(x,) and

0 <-—A@(x)—1ulx))
<

] })f (X2, u(x2), Vu(x3))

a(min{ig. o, uCoPdx
~a5 /" (xz,1 u(xp), Viu(xy))

- a(min{ké,fnk IVu(x)Izdx})f (XZ, E(XZ), Vﬁ(XQ))

— 25T (0, (x), V()

- 1
a(min{ké,fnk |Vu(x)|2dx})h2(x2)

< it 00, 1(02), Vit()) = s 7 (o, U2), Vii(x2)

1 + — — 1
_mf (x, u(x), Vu(x)) - a(min{k%,fgk |Vu(x)|2dx})h2(X2)
1

<- )hz(XZ)

a(min{kg,fﬂk [Vu(x)Pdx}
<0,

where £, is defined in (2.4). This is contradictory.
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Therefore, 0 < u(x) < u(x) < u(x) for all x € €, which implies that u satisfies problem (2.3).
Second, we ihow that (2.5) has at least one positive solution.
For u € C'(Q), define

— 1 '
(Axu)(x) = a(min{k(z)st lV'ﬁx)de})

Jo, Gl O, u(), Vu@))dy, x € .

where Gi(x, y) is the Green’s function of —Au(x) = h(x), usq, = u(x).

Let
E = {u e C'(Q)lu = AAu, A € [0, 1]}.

By condition (F;) and (2.4),
lau(x)| < %w" (1+ 1Vu)P) + hy (x) + (),

which together with the remark of Lemma 2.4 and the embedding theorem guarantees there isa C; > 0
such that
llully < Ci.

By Leray-Schauder’s fixed point theorem, we have A, has at least one fixed point u; in C 1(ﬁk).
Consequently, (2.3) has a solution u; > 0 on  with u(x) < u(x) < u(x).
O

Now by the definitions of f, for each k > 1, from Theorem 6.2 in [15], we conclude that there is a
solution u;(x) to (2.3) such that

() u(x) € CT(Q) N CHQ);

(b) u(x) < u(x) < u(x), x € Q.

We extend u;(x) to the whole domain such that u;(x) = u(x), Vx € Q \ ﬁk. Then u,(x) € C (ﬁ). In
this way, we get a sequence of continuous functions {u(x)};>, possessing obviously the following
properties:

(2) u(x) < u(x) < u(x), x € Q;
(b) —Aui(x) = 1 SO, ue(x), Vur(x)), x € Q foreveryk=1,2,---.

a(min{e2, f,, Wuo})

Now we prove the following lemma.

Lemma 2.8. Foreachk =1, 2, - --, there exists a corresponding constant C; > 0 such that

lujllcres,y < Cro forall j>k+ 1. (2.6)
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Proof. Let k be fixed and take two domains Q; and Q, such that
Q. cC Q) cC O, CC Q.

Then for any j > k + 1 we have

1
a(min i, [, 1Vu;Pd))

—Auj = S uj(x), Vui(x)), on Q. 2.7)

Denote |
fix) = Fx, uj(x), Vu(x))

a (min {ké, J;z |Vuj|2dx})

(j=k+1,k+2,---). Now (2.7) can be rewritten as

—Auj(x) = fi(x), on Q. (2.8)

First, since u(x) < uj(x) < u(x) on Q. forall j > k+ 1, weseethatu;(x) (j=k+1,k+2,---)are
uniformly bounded on ;.

Second, using gradient estimate theorem of Ladyzenskaya and Uraltreva (see [ [31], Theorem 3.1]),
we know from (2.7) a constant C; independent of j such that for any j > k + 1,

max |Vu;(x)| < C; max u;(x) < C; max u(x),
x€Q» XEQ)1 xeQ
which implies that Vu;(x) (j = k+1, k+2, - - -) are uniformly bounded on Q,. Therefore, the functions
fj(x) (j=k+1,k+2,---)are uniformly bounded on Q.
Third, by the interior L” estimate theorem, we conclude from (2.8) that for any p > max{1, N}, there
is a corresponding constant C, independent of j making for any j > k + 1,

||uj||W2fp(_Ql)
< G (IIF Ml + ltjllzocon)

< Cy|Os|P (maxer2 ]_Cj(x) +max, o |u j(x)|).

Since the last inequality is bounded by a constant independent of j as we have proved, we see that
|l jllw2r(0,) is bounded by a constant independent of j. Now take p = % Then by applying Sobolev-
Morrey embedding inequatlity we conclude that ||u||c1+(g,) 1s bounded by a constant independent of j,
which furthermore implies that || fi||ce(o,) 1s bounded by a similar constant.

Finally, we use the interior Holder estimate theorem (see [ [15], Theorem 6.2] to (2.8) and get

another constant C5 independent of j such that for every j > k + 1
”uj”CZM(ﬁk) < Cs (”fj”C‘Y(Ql) + max |uj(x)|) .
xeQ

From this and the conclusion we have just proved, we get inequality (2.6). O
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The proof of Theorem 2.6.
Lemma 2.8 infers there exists a subseuqnece {u;,(x)} of {u;} and u € C?*(Q) such
that
%, (x) 0*u(x)
0x,0x, () = 0x,0x,

o

lloej, — ully = max{ Z max
1<si<N X%

max |Vuj,(x) — Vu(x)|, max |u;,(x) — u(x)l}

xeQy xeQy

to 0 as j; — +oo and the corresponding subsequence of min {kg, fQ Vu j,(x)lzdx} converging to s.
Jl

This implies that u(x) € C*(Q) and satisfies that

, x€Q,
a(so)

{ ) = L0000, Vu)

ulpg = 0,

which implies that

|, GGe ) f (3, u(y), Vu(y))dy .

u(x) = ao0) , X€E
Then
lu(x1) — u(xy)|
1
< — [ 16613 - Gl Cd 0.0 1+ FuoF | ay
a(so) Jo
and
[Vu(x1) — Vu(x,)|
< L
a(so)

f GL(x1.Y) = G2, ) Cd ™ (3,0 [1 + [Vu()| dy
Q

By the standard regularity theory, u € C"'=7%(Q). Moreover, since u € Zg, from Lemma 2.1, we know

( f |Vu(x)|2a’x)2 < k.
Q

( f |Vu(x)|2dx)2 = lim [ f IVujl(x)lzdxlz,
Q =t Ja;,

f |Vu; (x)*dx < kg
Q

i

And since

we have

for j; large enough. And so

min{kg, f IVujl(x)Izdx}: f IVu,,(x)Pdx
Q; Q;

Jl Jl
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for j; large enough, which implies that

a[min{kg, f |Vuj,(x)|2dx}):a( f |Vujl(x)|2dx)
Q) Qj,

S0 = f IVu(x)|*dx.

Q

for j; large enough.
Consequently,

Then
SO, u(x), Vu(x))

a( [, IVu()Pdx) *

u|ag =0.0

—Au(x) =

¢ 1s the normalized positive eigenfunction corresponding to the first eigenvalue A; of
—Au(x) = du, in £,
{ u=0, onodQ.
F(x,s)

Lemma 2.9. (see [1]) Let F : Q x (0, 0) — R be a continuous function, and the mapping s —

is strictly decreasing at each x € Q, with s € (0, ). If there are v,w € C*(Q) N C (ﬁ) such that

(@) Aw+ F(x,w) <0< Av+ F(x,v) in Q;
®)w,v>0in Qandv <won 0€;
(c) aw € L'(Q) or Av € LY(Q).

Thenv < win .

Lemma 2.10. (see [32]) f(p]s < oo ifandonly if s < 1.
Q

Lemma 2.11. (see [33]) The conditions of this lemma are the conditions of the lemma 2.4 in [33].
Then

—Au(x) = F(x,u), in Q,
u>0, on Q,
u=0, on 0Q2,

has at least one positive solution u € C*(Q) N C(Q).
3. Proofs of main theorems

3.1. Proof of Theorem 1.1.

Fix 1 > 0. 1
—Au(x) = a—(/lf(x, u) + K(x)g(u)), in Q,
0
u>0, inQ, (3.1
u=0, on 0Q,

Mathematical Biosciences and Engineering Volume 19, Issue 10, 10581-10601.
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has a solution u;,.
Let R = max s u(x) and define Xy as in (2.4). Lemma 2.1 infers there exists a ky > 0 making

f \Vul*dx < i (3.2)
Q

for all u € Xp.

Let H : [0, 0) — [0, o0) satisfying
H"(1) = g(H(1)), Vit>0, (3.3)
H'(0) = HQO) = 0. )

Equation (3.3) infers H” is decreasing, while H and H’ are nondecreasing on (0, o). Then there exist
&, & €(0,1) such that

H@ _HO=HO) _ oy ey

t t—0
and
H'(t H @) - H (O
() — () ( ) — Hﬂ(ftz) 2 H//(t)’
t -0
Yt > 0.
Then
H() <tH'(t) <2H(t), Vt>0.
Let

Uy = 0H(¢1)

where 0 < § < 1. For a(kg) > 0 (ko 1s defined in (3.2)), using the fact that g is monotonic, we can
conclude

1 1
—Au, - ——K + —|Vu, |
Uy, a(k(%) (x)g(ﬂ,lé.) aol E,{(Sl 1
< —0g(H(e))\Vei* + L16H (p1)gp1 — mK*g(H(sol))
0
1
0 H )Vl (3.4)

1
< —0g(H(e))\Vei|* + 22,6H(¢1) — @K*g(H((Pl))
0

1
+—0"(H")"(p1)IVel",  in Q.
ap

Let

K.o(H . 1
0<555;:min{1,( aoK.g(H(lp 1)) ),}

a(kd)(H' Y (111l Vepr 11
such that

_KgH(lello)) S"(H' Yl lleIVeprlllss
a(k2) ao =

0, 1inQ,

Mathematical Biosciences and Engineering Volume 19, Issue 10, 10581-10601.
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which together with (3.4) yields

1 1
—ru, - ——K + —|Vu, |
Uy i) (x)g(u, ) aol uy |l

< 20,6H(p1)
<2u,, inQ.

Let 0 < ¢ < 65 small enough such that

1 Af(x, 6H(llg]l))

>24;.
a(k2)  SH(l¢illw) !

(f1) and (3.6) infer
1 Aew) | AfesSHAlgills)

atky)  u,, ak)SH(leillo)
Let us choose 6" = min{67, 5}, Yo € (0,6°]. The inequality (3.6)combined (3.5) yields

24, nQ.

1 1
- Agﬂ(s - @K(x)g (Z/lﬁ) T a_O |szl(s|77

<21,

1
< /lf(x,b), in Q.
a (kg) °
Equations (3.1) and (3.7) infer VA > 0

= W) + K(x)g ()
1= )

—Au in Q,
ao
u, =0, on 6Q
and |
—tuy, <—— (Af(xu) + Kg (u,,))
“(kO)
1 n .
-—1V , Q,
a0| ZAJ n
u,, =0, on 9Q.
Then we have . B < 3
sy + D KD @] -5
ao
Aflxu, |+ K(x)g(u,
Au, + [ A")a () >0, inQ,
0

upu, >0, inQ,
L5

ﬁ/l,gﬂé =0, onodQ,
Al € LY(Q).

From Lemma 2.9 we know u, < u,y in Q for all 6 € (0, 0"].

(3.5)

(3.6)

(3.7)
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Furthermore, from (g3) and the definition of H, we can conclude that

H(t
lim ® = 1.
t—0 fa+t
Then we get
H
tim 29 e
t—0 1Y
when y > ﬁ It follows that
H(pi(x)) _
——— = +00

lim
x—=dQ d(x, 0Q)Y
Hence, there is a 6y > 0 making

u

4 = 0od (x,0Q)

with0 < y0 < 1.
The Theorem 2.6 guarantees that

—a( f |Vu|2dx) Au = K(x)g (u) + Af (x,u) — |Vul",
Q
u>0,
u=0,
has a solution u € H}(Q) with
glﬁ(x) <u(x) <uy(x), inf.

Therefore, (1.1) has at least one positive solution, VA > 0. O

3.2. Proof of Theorem 1.2.
(f1), (f2) and Lemma 2.11 deduce that there is u, € Cz(ﬁ) making

Af(x,u )
a2 IR
ao
u, >0, in Q,
u, =0, on 0Q,

YA >0.

in Q,

in Q,
on 0Q

(3.8)

Let R = max 5 u(x) and define Xy as in (2.4). Lemma 2.1 infers there is a ky > 0 making

f \VulPdx <k
Q

for all u € Xp.

(3.9)
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Letu, = MH(yp;), with M > 1 > 0is a constant. Because g is monotonic,

Kol o

“ “ K.g(H(@))
< WMH (p)¢1 - Mg (H(p) [Verf - —E—F1=
0
1 ,
+—M(H'Y'(p1)| Ve (3.10)
(0]

1
< (K = MIVGE JoCH )V + 20 MH(g)
0

1
+—M"(H')"(¢1)[Vei|7  in Q.
ap

Hopf’s maximum principle deduce that there exist 6p and X C Q making

Vil > 69, 1nQ\Z,
loil > 69, inZ.

On one hand, we consider the case x € Q \ X.

Let
-K,
M > M1 = max{l,—z}.
Cl()(so
Since
lim M|V, |" + & (H(py)) = +00
dist(x,0Q)—0* 1 do §Ue)) = ’
if
1 K.
a_MU (H')" (@)IVer " = (M|V901V7 + p )g(H(gé?])) <0 (3.11)
0 0

in Q \ 2, by letting X close enough to the boundary of Q. The above inequality combined (3.10) yields

Keoe(u) [rf

ap (20}

<2lu, inQ\I. (3.12)
For a (k3) > 0 (ko is defined in (3.9)) and
f(x, MH(llp1ll,)) > 0,

we can choose

20 Ma (i) H(llpall..)
A> Adyp =maxq1l, —
min,co\s f(x, MH(|l¢1llo))

making .
| min S e, MH(llg1ll))

24;. 3.13
(@) MHGwll) G
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(f1) and (3.13) decude

1 Af(xay) 1 AfMH(g1 )
) m 2w MHGe 2 2

in Q \ X. The last inequality combined (3.12) yields

1 1
= bty = =K ()g (1) + IV,
< 2/112/1

3 /lf(x,gﬂ)

, InQ\ZX.
a(k(z)) in Q\

IfxeX

1 1 7
—Au, — —K +—1|V
% ap (X)él) (ZA) aop | EA|
< 24MH (¢1) - a_K*g (H (¢1))
0
1
+—M"(H')" (1) [Veu|", inX.
ap
Because ¢; > 0 in ¥ and f>0on ¥, we choose

A > A, = max {4y, a*}

with o
a* = a(kg)a;*
K.o(H M"(H')" Vo |
oF = max{%MH(%) _ Keg(H(g) | M'(H') (p0) [Vl }
xex ap ap
@} = min f (x, MH (¢1))
XEX
such that
min f (x, MH (¢1))
a (kg) Xx€x
1 1
> max (211MH(901) - —K.gH (¢1) + —M" (H')" (¢1) |V¢1|”).
XEX ap ag
Then
K(x)g(u 1
—u, - Ke () + —[Vu,|"
ap ap

< @ minxeff(x’ Z/l)
< @f (x, Zx) .

It follows from (3.8), (3.15) and (3.16) that for each A > A* = max{4;, A»},

(3.14)

(3.15)

(3.16)
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and
Af (xu K(x)g(u,) —IVu,|"
—Au, < ( A)+( (ﬁ) ’l), in Q,
a (k(z) ap
u, =0, on 0Q.
Furthermore, we obtain
Af (x,u Af(xu
At g <0< M+Agd, in Q.
ao ao
ﬁ/l’z/l > 0, ln Q’
uyu, =0, on 0Q,
A, € LY(Q).

Lemma 2.9 infers u, < u, in Q. Then u, and u, are respectively upper and lower solution of the

problem (1.1). Moreover, from (g3) and the definition of H, we can conclude that

H(t
lim ® =1.
—0 g3
Then we have
. H(@)
lim = 400
VI 24
when y > ﬁ It follows that
H(p1(x)

o0 d(x, oy
which implies that there is a 5o > 0 such that
u, > 0od(x, 0L2)"

with 0 < 9 < 1 and 0 < @ < 1. By Theorem 2.6, there is a solution u € Cl(ﬁ) for (1.1), and
u, <u<uyinQ.

To end the proof, like [1], we have
f(x,8)+ K(x)g(s) < ms,

Y(x,s) € QX% (0, +0c0), with

3 flx,c)
m = max .
x€Q c
Let 1
Ay = min{l, 1_610} .
2m

We will prove (1.1), has no positive solution as mentioned above for all 1 < Ay. Due to

f(x, )+ K(x)g(s) < ms,
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Up 1s a lower solution of
Am

—Au = —u, in Q,
dao
u>0, inQ, (.17)
u=>0, on 0Q2.

if u is a solution of (1.1),.
Let k, big enou§h such that ko, is a upper solution for (3.17) and uy < kop; in Q. Thus, (3.17) has
a solution u € C*(Q). (3.17) multiply by ¢, and integrat over €,

Am
—f(p]Audx:—fcp]udx,
Q ap Jo

A A
/llfu(pldxz—mfugoldxs—lfugpldx.
Q ap Jo 2 Ja
fugoldx:O.
Q

This is contradictory. Then (1.1), has no positive solutions, YA < Ay. O

that is

Then

3.3. Proof of Theorem 1.3.

Some ideas is similar to [34] and [1].
Assume that there is 4 > 0 making (1.1) has a solution u,. Set

by = a( f IVu,llzdx).
Q

(f1), (f2) and Lemma 2.11 deduce that

Af(x, .
—Au(x) = flx u)’ in Q,
ao
u>0, in Q,
u=0, on 0Q2

has a positive solution u, € Cz(ﬁ), VA > 0. Additionally, there are Cy, C, > 0 satisfying

Cidist (x,0Q) < u(x) < Cydist (x,0Q), (3.18)

Vx e Q.

We will consider
gu+e) . Afu

—Au in Q,
bo ao
u> 0, in Q, (3.19)
u=0, on 092,
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with K* = max, g K(x) < 0. Furthermore, we have

Aﬁd+%f‘)£0smu+%:”), in Q,
Tpuy >0, inQ,

u;=u; =0, onoQ,

Al € LY(Q), (since u, € C2(Q)),

Lemma 2.9 infers u, < u, in Q. We know that u, and u, are respectively lower and upper solution of
(3.19). Thus, there is a solution u, € C*(Q) satisfying

Uy < ug < ﬁ,}, in Q.

Integrating in the problem (3.19),

—fAugdx—K*fde:/lff(x’ug)dx.
Q Q by Q a

Hence, by the divergence theorem,

[ ey f 8%ty (3.20)
oQ on Q by

with M > 0 is a constant. %‘jf < 0 on 0Q, and (3.20) infer

K*
_ f Kew+8, u (3.21)
Q bO

Because of u, < i, in Q, (3.21) infers
fg(ﬁ,l +&)dx<C
Q

for some C > 0. Then, we have fw g(u, + &)dx < C, for any compact subset w C Q. When ¢ — 07,
[ 8Gi)dx < C. Then [, g(u)dx < C.

However, (3.18) and fol g(s)ds = 400 can conclude

fg(ﬁ/l)dx > fg(Czdist(x, 0Q))dx = +oo
Q Q

which contradicts fQ glupydx<C.noO
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