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Abstract: In this paper, a novel influenza SINIRRmodel with white noise is investigated. According
to the research, white noise has a significant impact on the disease. First, we explain that there is global
existence and positivity to the solution. Then we show that the stochastic basic reproduction R. r is a
threshold that determines whether the disease is cured or persists. When the noise intensity is high,
we get R. r < 1 and the disease goes away; when the white noise intensity is low, we get R. r > 1, and
a sufficient condition for the existence of a stationary distribution is obtained, which suggests that the
disease is still there. However, the main objective of the study is to produce a stochastic analogue
of the deterministic model that we analyze using numerical simulations to get views on the infection
dynamics in a stochastic environment that we can relate to the deterministic context.
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1. Introduction

Recently, Whitman and Jayaprakash [1] published a study of a simple, stochastic, agent-based
model of influenza infection, Infectious diseases have been and continue to be a major public-health
problem [2], disrupting people’s quality of life and reducing their chances of survival. The appearance
of new diseases and the repetition of mutant strains have added to their massive unhelpful blow. The
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control of the influenza virus, a foremost international health condition poses a scientific challenge at
many levels. Influenza is caused by a virus. According to [3], it is characterized by a severe
cytopathogenic respiratory disease that is infectious in nature. Based on matrix protein and
nucleoprotein differences, it can be subdivide into A, B and C [4].

Humans and animals are both infected with Types A and B. The most virulent type, i.e., the Type
A virus which is now known as one of the most problematic viruses to tackle [5] is further classified
based on the hemagglutinin and neuraminidase proteins located on the virus’s surface. Hemagglutinin
H1 to H16 and neuraminidase N1 to N9 are the two groups of proteins, the combination of which
classifies the influenza subtypes. Influenza A’s nomenclature is determined by a mix of hemagglutinin
and neuraminidase. The H1N1 virus, for example, is influenza A with both H1 and N1 proteins; its
spread is usually not epidemic, and that is why it is difficult to distinguish it from a regular cold [6].

Another way to characterize them is by the influenza A and B strains [7]. New influenza strains
emerge as a result of genetic changes or drift [8]. Antigenic drift is caused by progressive changes in
the virus over time. Antibodies have a difficult time recognizing new strains. Antigenic shift, on the
other hand, is characterized by fast changes in the virus that result in the emergence of a completely
new strain. Influenza A can go through either of the modifications, whereas Influenza B only goes
through antigenic drift [9, 10].

Vaccination is incapable of protecting against the new influenza strain. The 2009 H1N1 influenza
pandemic showed this. Antivirals are thus required to halt the spread of the influenza outbreak [11].
Recently, incidences of influenza virus resistance have been discovered. The H3N2 virus resistance to
aminoadamantanes and the H1N1 virus resistance to oseltamivir are two examples. Resistance is lethal
and has the potential to create numerous pandemics in the future [12].

When compared to the original strain, the transmission rate of a new strain is thought to be quite
low. The fact that mutation reduces viral strength is linked to this phenomenon [13]. In the instance of
H1N1 influenza virus resistance to oseltamivir, however, it was discovered that these alterations do not
always affect virus transmission [14, 15].

For at least the last several centuries, the influenza virus has been responsible for periodic outbreaks
of acute febrile illness every 1 to 4 years. The first influenza like sickness outbreak was documented in
1173 and 1174 [16], while the first true epidemic occurred in 1694. [17]. Between 1918 and 1919, the
globe was struck by the worst epidemic in recorded history, with an estimated 21 million victims [18].
As indicated by records, it was one of the most terrible events in mankind’s set of experiences. Three
additional pandemics occurred in the 20th century, namely the 1957 H2N2 pandemic, the 1968 H3N2
pandemic and the 2009 flu A (H1N1) infection (pH1N1) pandemic.

In the most famous model, a flu strain was found in Mexico and later in the United States of America
with a blend of various qualities not recently seen in pig or human flu infection strains [19]. The
pandemic was announced in August 2010 after the involvement of different zones [20].

Young people have the highest rates of influenza infection, while older adults have the highest
fatality rates. Mortality and morbidity are particularly high for those with certain high risk medical
conditions, such as extreme aging, cardiovascular disorders and metabolic diseases such as diabetes
mellitus. During the 2009 pandemic, there was an elevated risk of influenza morbidity and mortality in
pregnant women [21]. Furthermore, evidence from prior pandemic and seasonal influenza outbreaks
suggests that the risk of influenza complications is higher in the second half of pregnancy than in the
first.
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To investigate the influence of environmental conditions on influenza transmission and make the
results more realistic, we first developed a stochastic mathematical influenza model. Following that,
the factors required for extinction and persistence were analyzed. The threshold of the suggested
stochastic influenza model has also been established. When there is tiny or large noise, it plays a
critical role in the mathematical models as a backbone [22, 23]. Finally, we visualized the numerical
simulations using MATLAB.

2. Stochastic influenza model

In this section, we provide our new stochastic influenza model in the form of differential equations.

• The total inhabitant ℵ(t) is distributed in four compartment, i.e., St, INt , IRt and Rt, which
represent the susceptible and infected people with resistance, infected peoples with
non-resistance and recovered people respectively.
• The variables and parameters of the proposed stochastic model are non-negative.
• We deliberate that the variability of µ and γ is subject to stochastic white noise disturbance, i.e.,
µ → µ + σ1B1(t) and γ → γ + σ2B2; where B1(t)andB2(t) represent the Brownian motion with
the property B1(0) = 0 = B2(0) and the intensities σ2

1andσ2
2 are positive.

Remark 2.1. The deterministic general epidemic study estimates that if R. r < 1, a small outburst will
arise, and if R. r > 1, a large outbreak will occur, infecting a large chunk of the populace. The results
are based on the assumption that the community is homogeneous and that individuals mingle evenly.
However, if the hypothesis of an evenly mixed society is accepted, this model may not be appropriate
in particular situations. When contemplating a tiny population, such as an epidemic outbreak in a
daycare center or school, it appears logical to presume that the eventual number of infected will be
unpredictable or random. Also, even if R. r > 1 and the society is huge, if the outbreak is started by
only one (or a few) early infectives, the epidemic may never take off by accident. The formulation of a
related stochastic epidemic model is motivated by these two aspects. It allows parameter estimations
from disease outbreak data to include standard errors, and the subject of disease extinction is better
suited for stochastic models for researching epidemic diseases.

In light of the above speculations, we established the following new stochastic influenza model;

dS = (b − dS − SINα −
SβIR

kIR + 1
)dt,

dIN = (αSIN − (µ + d)IN) dt − σ1INdB1(t),

dIR = (
βSIR

kIR + 1
− (γ + d)IR)dt − σ2IRdB2(t), (2.1)

dR = (µIN + γIR − dR)dt + σ1INdB1(t) + σ2IRdB2(t).
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Table 1. Parametric description of the model.

Symbol Description Value
α The rate of infection by a non-resistant strain 0.15
β The rate of infection by a resistant strain 0.10
γ The rate at which resistant individuals are eliminated from the inhabitants 0.75
µ Represents the pace at which non-resistant strains are evicted from the population 0.80
b Denotes recruitment into the susceptible group 1.00
d The death rate 0.20
k The effect of mutation on the resistant strain 0.10

Also, we have the compartment table below:

Table 2. Compartments and description.

Symbol Description Value
S Susceptible 20
IN Infected peoples with resistance 2
IR Infected peoples with non-resistance 2
R Recovered peoples 1

The authors of [24] developed the following deterministic model:

dS
dt

= b − d S − αSIN −
SIRβ

kIR + 1
,

dIN

dt
= αSIN − (d + µ)IN ,

dIR

dt
=

βSIR

kIR + 1
− (d + γ)IR, (2.2)

dR
dt

= µIN + γIR − dR,

and

d(ℵt) = b − dℵt (2.3)

where ℵt = St + INt + IRt + Rt indicates all the constant residents for b ≈ µℵ and ℵ0 =

S0 + IN0 + R0 + IR0 . Equation (2.3) has the exact solution

ℵt = e−dt[ℵ0 +
b
d

edt] (2.4)

Also we have 0 ≥ IN0 , 0 ≥ S0,IR0 ≥ 0,R0 ≥ 0 ⇒ INt ≥ 0,St ≥ 0,IRt ≥ 0 and Rt ≥ 0, so the result
has a positivity property. If R. r < 1 then the model (2.2) will be locally stable and unstable otherwise.
Similarly for b = 0 the model (2.2) will be globally asymptotically stable.

In this article, we will establish the computational and analytical aspects of the stochastic influenza
model, and we will mathematically correlate our results with the deterministic model for future
forecasts by using various parametric variables. As a result, this research can help the local
community become more aware of the disease’s spread.
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3. Preliminaries

Here, we made the following speculations:

• Rd+ = {ς ∈ Rd : 0 < ςi, d > 1}.
• Suppose a complete probability space (Ω~,=~, {=~t }t≥0,P

~) with filtration {=~t }t≥0 satisfies the
usual condition.

We reflect a common four-dimensional stochastic differential equation for the existence of the
solution of our model which is described by (2.1):

dς(t) = Θ∗(ς(t), t)dt) + Θ(ς(t), t)dB(t)), f or t = t0 (3.1)

with the initial condition ς(t0) = ς0 ∈ R
d . By defining the differential operator Ł? using (3.1), we get

Ł? =
∂

∂t
+

4∑
i=1

Θ∗i(ς, t)
∂

∂ς i
+

1
2

5∑
i, j=1

[ΘT (ς, t)ΘT (ς, t)]i j(
∂2

∂ςi∂ς j
). (3.2)

If Ł? acts on the functionV? = (Rd × R̃+; R̃+), then

Ł?V?(ς, t) = V?
t (ς, t) +Vς(ς, t)Θ∗(ς, t) +

1
2

trace[ΘT (ς, t)V?
ςς(ς, t)Θ(ς, t)]. (3.3)

4. Existence and uniqueness

In this section, our discussion will be on the solution of the stochastic influenza model (2.1).

Theorem 4.1. There is a unique positive solution (INt ,St,IRt ,Rt) of the system (2.1) for t ≥ 0 with
(IN0 ,S0,IR0 ,R0) ∈ R4

+, and the solution will be left in R4
+ , with a probability equal to one.

Proof. Because (2.1) satisfies the local Lipschitz condition [25], formally for (INt ,St,IRt ,Rt) ∈ R4
+,

we do have (INt ,St,IRt ,Rt) ∈ R4
+ a distinctive local solution on t ∈ [0, τe), where τe is the flare-up

time. Next, our aim is to show τe = ∞ for the global solution of (2.1). Assume 0 ≤ `0 is very large so
that (IN0 ,S0,IR0 ,R0) lies in [ 1

`0
, `0]. For `0 ≤ `, define

τ` = in f {t ∈ [0, τe) :
1
`
≥ min{(INt ,St,IRt ,Rt)} or ` ≤ max{(INt ,St,IRt ,Rt)}}.

Let inf ∅ = ∞ (because typically ∅ is the empty set). Since τ` is increasing for ` → ∞, let τ∞ =

lim`→∞τ`; then, we have τ∞ ≤ τe almost surely. Next, we need to confirm τ∞ = ∞ a.s. If this assertion
is incorrect, then there exist a constant T > 0 and ∈ (0, 1) such that P{τ∞ ≤ T } >∈. As a consequence,
we have `1 ≥ `0 such that

P{τ` ≤ T } ≥∈,∀k ≥ `1 for t ≤ τ`. (4.1)

We outline a C2-function U : R4
+ → R+ by using the resulting formulation

U(INt ,St,IRt ,Rt) = (St − c̃ − c̃ln
St

c̃
) + (INt − (

3
4

+
1
4

) − lnINt) + (IRt − (
3
4

+
1
4

) − lnIRt)
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+ (Rt − (
3
4

+
1
4

) − lnRt). (4.2)

Obviously the function U is non-negative which can follow from z − ( 3
4 + 1

4 ) − log z ≥ 0 ∀ z > 0.
Suppose ` ≥ `0 and T ≥ 0 are arbitrary. Applying Ito’s formula to (4.2) we get

dU(INt ,St,IRt ,Rt) = (1 −
1
INt

)dINt +
1

2I2
Nt

(dINt)
2 + (1 −

1
IRt

)dIRt +
1

2I2
Rt

(dIRt)
2

+ (1 −
1
Rt

)dRt +
1

2R2
t
(dRt)2 + (1 −

c̃
St

)dSt (4.3)

= Ł?U(INt ,St,IRt ,Rt) + σ1(INt − St)dB1(t) + σ2(IRt − St)dB2(t), (4.4)

where Ł?U : R4
+ → R+ is defined by

Ł?U(INt ,St,IRt ,Rt) = (1 −
c̃
St

)(b − dSt − αStINt −
StβIR

1 + kIRt

)

+ (1 −
1
INt

)(αStINt − (d + µ)INt) +
1
2
σ2

1

+ (1 −
1
IRt

)(
βStIRt

1 + kIRt

− (d + r)IRt) +
1
2
σ2

2

+ (1 −
1
Rt

)(µINt + γIRt − dRt) +
1
2
σ2

1 +
1
2
σ2

2

= b − dSt − αStINt −
βStIRt

1 + kIRt

−
c̃b
St

+ c̃d

+ c̃αINt +
c̃βIRt

1 + kIRt

+ αStINt + (d + γ)INt

− αSt + (d + µ) +
StβIRt

1 + kIRt

− (d + γ)IRt + (d + γ)

−
βSt

1 + kIRt

+ µINt + γIRt − dRt − γ + d −
µINt

Rt

+ σ2
1 + σ2

2

≤ b − dSt − αStINt + c̃d + c̃αINt + αStINt

+ (d + γ)INt − αSt + (2d + µ + γ) − dIRtγIRt

+ µINt + γIRt − dRt − γ + d + σ2
1 + σ2

2

≤ b + c̃d + c̃αINt + αStINt + (d + γ)INt + (d + γ)
+ γIRt + µINt + d + σ2

1 + σ2
2 , B∗. (4.5)

Thus, we have

Ē∗[U(St(τ  ∧i), (INt(τ  ∧i), (IRt(τ  ∧i), (R(τ  ∧i)] ≤ U(S0,IN0 ,IR0 ,R0

+ Ē∗[
∫ τ ∧i

0
Kdt]

≤ U(S0,IN0 ,IR0 ,R0) + Ki . (4.6)
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We consider that Ω  = {σ  ≤ i} for all  ≥ 1 and by (2.3) , P(Ω ) ≥ ε. We comment that for every
ω ∈ Ω  there exist at least St(τ , ω),INt(τ , ω),IRt(τ , ω) and R(τ , ω), equaling the value  or 1


then

we get that U(St(τ ),INt(τ ),IRt(τ ),R(τ )) is not less than − 1− log  or ( 1

)− 1 + log . Accordingly,

U(St(τ ),INt(τ ),IRt(τ ),R(τ )) ≥ Ē∗(  − 1 − log ) ∧ (
1

) − 1 + log ). (4.7)

From (4.1) and (4.6), we get the following relation

U(S0,IN0 ,IR0 ,R0) + Ki ≥ Ē∗[1Ω 
U(St(τ ),INt(τ ),IRt(τ ),Rt(τ ))]

≥ ξ[(  − 1 − log ) ∧ ((
1

) − 1 + log )], (4.8)

where 1Ω 
denotes the indicator function. We observe that k → ∞ leads to the ambiguity

∞ > U(S0,IN0 ,IR0 ,R0) +M′i = ∞, which implies that τ∞ = ∞ a.s. �

5. Long time behavior of the system (2.1)

In this part, we determine when the sickness will be cured and when it will be revived. As a result,
the system’s (2.1) vital reproduction is demonstrated. Based on the proof in [26], we can deduce the
subsequent lemmas:

Lemma 5.1. Let (St,INt ,IRt ,Rt) be the solution of the model (2.1) with the initial values given by
(S0,IN0 ,IR0 ,R0) ∈ R4

+, ; then, limt→∞
INt +St+IRt +Rt

t = 0 is almost certain.

6. Remark

In fact, together with the positivity of the solution and the system (2.1), we have that limt→∞
St
t = 0

limt→∞
INt

t = 0, limt→∞
IRt

t = 0 and limt→∞
Rt
t = 0 a.s.

Lemma 6.1. Suppose d > (1
2σ

2
1 ∨

1
2σ

2
2). Assume (St,INt ,IRt ,Rt) is the solution of the model (2.1) with

initial values given by (S0,IN0 ,IR0 ,R0) ∈ R4
+; then,

lim
t→∞

∫ t

0
IR(s)dB2(s)

t
= 0, lim

t→∞

∫ t

0
IN(s)dB1(s)

t
= 0. (6.1)

Let

R?r =
αb

d(d + µ + 1
2σ

2
1)

= Rr −
αb

2d(d + µ)(d + µ + 1
2σ

2
1)
σ2

1,

where

Rr =
αb

d(d + µ)
(6.2)

is the deterministic model’s fundamental reproduction number.
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7. Extinction of the disease

In this segment, we scrutinize the condition for the disappearance of the influenza model (2.1), we
lead with the following representation and definition. Let 〈 (t)〉 = 1

t

∫ t

0
(r)dr, then the following are

the outcomes for the disease’s termination.

Theorem 7.1. Let (St,INt ,R,IRt) be the solution of the stochastic influenza model (2.1), with the initial
values given by (S0,IN0 ,R0,IR0) ∈ Ω�. If Rr < 1 then limt→∞( logINt

t ) < 0 and limt→∞( logIRt
t ) < 0;

almost surely, INt → 0 and IRt → 0 exponentially a.s which means that the disease terminates with
a probability of one). Also limt→∞

∫ t

0
St = ( b

d ), limt→∞ INt(t)(t) = 0, limt→∞ IRt(t) = 0 and

limt→∞

∫ t

0
Rt(t) = 0.

Proof. After integrating (2.1), we can get the following system of equations

St − S0

t
= b − d〈St〉 − α〈StINt〉 −

β〈StIRt〉

1 + k〈IRt〉
,

INt − IN0

t
= α〈StINt〉 − (d + µ)〈INt〉 −

1
t
σ1

∫ t

0
INt(r)dB1(r),

IRt − IR0

t
=

β〈StIRt〉

1 + k〈IRt〉
− (d + γ)〈IRt〉 −

1
t
σ2

∫ t

0
IRt(r)dB2(r),

Rt − R0

t
= µ〈INt〉 + γ〈IRt〉 − d〈R〉 +

1
t
σ1

∫ t

0
INt(r)dB1(r)

+
1
t
σ2

∫ t

0
IRt(r)dB2(r), (7.1)

St − S0

t
+
INt − IN0

t
+
IRt − IR0

t
+
Rt − R0

t
= b − d〈St〉 − d〈INt〉

− d〈IRt〉 − d〈R〉, (7.2)

〈St〉 =
b
d
− 〈INt〉 − 〈IRt〉 − 〈Rt〉 + Φ(t), (7.3)

where

Φ(t) = −
1
d

[
St − S0

t
+
INt − IN0

t
+
IRt − IR0

t
+
Rt − R0

t

]
(7.4)

Obviously Φ(t)→ 0 as t → ∞. Applying Ito’s formula to the second equation of (2.1) gives

d logINt = (αSt − (d + µ) +
1
2
σ2

1)dt − σ1dB1(t) (7.5)

If we Integrate (7.5) from 0 to t and divide by t, we get

logINt − logIN0

t
= α〈St〉 − (d + µ) +

1
2
σ2

1 −
1
t
σ1

∫ t

0
dB1(r) (7.6)
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Substituting (7.3) in (7.6), we have

logINt − logIN0

t
= α

[b
d
− 〈INt〉 − 〈IRt〉 − 〈Rt〉 + Φ(t)

]
− (d + µ) +

1
2
σ2

1 −
1
t
σ1

∫ t

0
dB1(r)

≤
αb
d
− (d + µ) +

1
2
σ2

1 − α〈INt〉 − α〈IRt〉 − α〈Rt〉 −
1
t
σ1

∫ t

0
dB1(r) + Φ(t)

= −(d + µ −
1
2
σ2

1)(1 − R∗r ) − α〈INt〉 − α〈IRt〉 − α〈Rt〉 + k, (7.7)

where

k = Φ(t) −
1
t
σ1

∫ t

0
dB1(r). (7.8)

For k = 0 and t → ∞, we have

lim
t→∞

sup
logINt

t
≤ −(d + µ −

1
2
σ2

1)(1 − R?r ) − α〈INt〉 − α〈IRt〉 − α〈Rt〉. (7.9)

Equation (7.9) implies that

lim
t→∞
INt = 0. (7.10)

Similarly, it may also be proved that

lim
t→∞
IRt = 0. (7.11)

Now for St, we have the following from the first equation of the model (2.1)

St − S0

t
= b − d

∫ t

0
Stdt − α

∫ t

0
StINtdt −

∫ t

0

βStINt

1 + kIRt

,

d
∫ t

0
Stdt = b − α

∫ t

0
StINtdt −

∫ t

0

βStINt

1 + kIRt

−
St − S0

t
,∫ t

0
Stdt =

b
d
−
α

d

∫ t

0
StINtdt −

∫ t

0

β

dStINt

1 + kIRt

−
1
b

(
St − S0

t
). (7.12)

This implies that limt→∞

∫ t

0
St = b

d . Now from the fourth equation of the system (2.1), it follows that

Rt = e−dt
[
R0 +

∫ t

0
µIN(r)edt +

∫ t

0
γIR(r)edt

]
. (7.13)

By applying the L’Hospital’s rule to the above result, we get

lim
t→∞

∫ t

0
Rdt = 0, (7.14)

which completes the proof. �
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8. Persistence of the disease

In this section, we will investigate the necessary conditions for the persistence of the disease.

Theorem 8.1. Assume d > ( 1
2σ

2
1∨

1
2σ

2
2). Let (St,INt ,IRt ,Rt) be the solution of the stochastic influenza

model (2.1), with the initial values given by (S0,IN0 ,IR0 ,R0) ∈ R4
+. If R?

r > 1, then

lim
t→∞

∫ t

0
S(s)ds =

b
dR?r

a.s,

lim
t→∞

∫ t

0
IN(s)ds =

d(d + µ + 1
2σ

2
1)

α(d + µ)
(R?r − 1) a.s.,

lim
t→∞

∫ t

0
R(s)ds =

µ(d + µ + 1
2σ

2
1)

α(d + µ)
(R?r − 1) a.s.,

lim
t→∞

∫ t

0
IR(s)ds =

[d(d + µ + 1
2σ

2
1)((d + µ + 1

2σ
2
1) − (d + γ + 1

2σ
2
1)αd))

αdk(d + γ(bα − d(d + µ + 1
2σ

2
1)))

]
(R?r − 1) a.s.

Proof. If R?r > 1, then by (7.9) and Lemmas 5.1 and 5.2 in [27], we have

lim
t→∞

∫ t

0
IN(s)ds =

bα
d − (d + µ + 1

2σ
2
1)

α(d+µ)
d

=
d(d + µ + 1

2σ
2
1)

d + µ
(R?r − 1). (8.1)

lim
t→∞

∫ t

0
S(s)ds =

b
d
−

d + µ + 1
2σ

2
1

α
(R?r − 1) =

b
dR?r

.

Now from the fourth equation of model (2.1), we obtain

Rt − R0

t
=

µ

t

∫ t

0
IN(s)ds +

γ

t

∫ t

0
IR(s)ds −

d
t

∫ t

0
R(s)ds

+
σ1

t

∫ t

0
IN(s)dB1(s) +

σ2

t

∫ t

0
IR(s)dB1(s),

1
t

∫ t

0
R(s)ds =

µ

t

∫ t

0
IN(s)ds + ð, (8.2)

where

ð =
γ

t

∫ t

0
IR(s)ds −

d
t

∫ t

0
R(s)ds +

σ1

t

∫ t

0
IN(s)dB1(s)

+
σ2

t

∫ t

0
IR(s)dB1(s) −

Rt − R0

t
,

ð(t) has the property that

lim
t→∞
ð = 0. (8.3)
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By substituting (8.1) in (8.2), we have

lim
t→∞

∫ t

0
R(s)ds =

µ(d + µ + 1
2σ

2
1)

α(d + µ)
(R?r − 1).

Now from the third equation of the model (2.1), using Ito’s formula yields

d(lnIRt − kIRt) =

[
βSt − (d + γ) − k(d + γ)IRt −

1
2
σ2

2

]
dt + σ2dB2(s). (8.4)

Integrating (8.4) from 0 to t, we have

lnIRt − IR0

t
+ k(
IRt − IR0

t
) =

β

t

∫ t

0
S(s)ds − (d + γ +

1
2
σ2

2)

−
k(d + γ)

t

∫ t

0
IR(s)ds +

1
t

∫ t

0
σ2dB2(s)

=
bβ

dR?r
−

k(d + γ)
t

∫ t

0
IR(s)ds +

1
t

∫ t

0
σ2dB2(s)

− (d + γ) −
1
2
σ2

2

k(d + γ)
t

∫ t

0
IR(s)ds =

bβ
dR?r

+
1
t

∫ t

0
σ2dB2(s) − (d + γ)

−
1
2
σ2

2 −

[ lnIRt − IR0

t
+ k(
IRt − IR0

t
)
]
,

1
t

∫ t

0
IR(s)ds =

1
k(d + γ)

[ bβ
dR?r

−
1
2
σ2

2 − (d + γ) + f(s)
]
, (8.5)

where f(s) = 1
t

∫ t

0
σ2dB2(s) − (

lnIRt−IR0
t + k(

IRt−IR0
t ); ð(t) has the property that

lim
t→∞
f(s) = 0. (8.6)

Taking the limit of (8.5) and incorporating the value R?r we have

lim
t→∞

∫ t

0
IR(s)ds =

[d(d + µ + 1
2σ

2
1)((d + µ + 1

2σ
2
1) − (d + γ + 1

2σ
2
1)αd))

αdk(d + γ(bα − d(d + µ + 1
2σ

2
1)))

]
(R?r − 1) a.s.

This completes the proof. �

9. Numerical scheme and results

We have accomplished our analysis of disease extinction and persistence. We will now perform
some numerical simulations of (2.1) to illustrate the applicability of our findings. The Milstein
technique [28] was used to generate the numerical simulations. Consider the model’s discretization
equation:

Sk+1 = Sk + (b − dSk − αSkINk −
βSkIRk

1 + kIRk

)∆t,
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INk+1 = INk + (αSkINk − (d + µ)INk)∆t − σ1INk

√
∆tτk −

σ2
1

2
INk(τ

2
k − 1)∆t,

IRk+1 = IRk + (
βSkIRk

1 + kIRk

− (d + γ)IRk)∆t − σ2IRk

√
∆tτk −

σ2
2

2
IRk(τ

2
k − 1)∆t,

Rk+1 = Rk + (µINk + γIRk − dRk)∆t + σ1INk

√
∆tτk +

σ2
1

2
INk(τ

2
k − 1)∆t,

+ σ2IRk

√
∆tτk +

σ2
2

2
IRk(τ

2
k − 1)∆t.

Here, we shall discuss the graphical description of the model (2.1). In Figure 1, we have illustrated a
numerical solution of the model (2.1) and those obtained in comparative studies of all the classes for
the white noise values σ1 = σ2 = 0.0, 0.05, 0.10, 0.12 and S (0) = 20, IN(1) = 2, IR(1) = 2, R(1) = 1,
b = 1.00, d = 0.20, α = 0.15, µ = 0.80, β = 0.10, γ = 0.75, and k = 0.10. In Figure 2, we have
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Figure 1. Numerical results for the model (2.1) at σ1 = σ2 = 0.0, 0.05, 0.10, 0.12.

illustrated a numerical solution of the model (2.1) and those obtained in comparative studies of all the
classes for the white noise values σ1 = σ2 = 0.0, 0.05, 0.10, 0.12 and S (0) = 20, IN(1) = 2, IR(1) =

2, R(1) = 1, b = 1.00, d = 0.20, α = 0.60, µ = 0.20, β = 0.10, γ = 0.75, and k = 0.10. We have
observed that there is an important role in the dynamics of the values for α and µ. As α was increased
from 0.15 to 0.60 and µ was decreased from 0.80 to 0.20, we observed a rapid fall in the susceptible
class and IN increased for the cases with the white noise and without white noise. In this case the
recovery rate also increased. The role of white noise has presented a change in the dynamics more
accurately. Figure 3 represents the joint solutions for the model (2.1) at zero noise for different values
of µ and α. The left side corresponds to µ = 0.80 and α = 0.15 while the right side graphs show the
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Figure 2. Numerical results for the model (2.1) at σ1 = σ2 = 0.0, 0.05, 0.10, 0.12.

joint solution at µ = 0.15 and α = 0.60. This change shows a clear difference in the dynamics.

10. Conclusions

In this work, we have explored the dynamic behavior of an SINIRR influenza stochastic model that
ponders the effects of information interference and environmental noise. Information interventions and
white noise have been discovered to have a significant impacts on the condition. Hereafter, we present
our primary findings.

We have measured the effects of environmental white noise on the disease. We have shown that
R. r is a threshold of the model (2.1) for the disease to die out or persist, and that noise strength can
change the value of the stochastic reproduction number R. r. If R. r < 1, the disease will die out with
a probability of one. On the other hand, if R. r > 1, there is a stationary distribution for the model
(2.1), which means that the disease will prevail. The discretization approach was used to construct a
numerical scheme for the model simulations. The results of the simulations are presented throughout
the article in the form of graphs that are divided into three sections. In Figure 2, we have shown a
numerical solution of the model (2.1) as well as those obtained in comparative studies of all classes for
the white noise values σ1 = σ2 = 0.0, 0.05, 0.10, 0.12 and S (0) = 20, IN(0) = 2, IR(0) = 2, R(0) = 1,
b = 1.00, d = 0.20, α = 0.60, µ = 0.20, and β = 0.10. We have seen that the dynamics of the values
for α and µ play an essential role. We noticed a rapid fall in the susceptible class as the α value was
increased from 0.15 to 0.60 and µ dropped from 0.80 to 0.20; additionally, IN was increased for both
instances with and without white noise. The healing rate was also boosted in this instance. White noise
has played a larger role in influencing the dynamics.
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Figure 3. Joint solution of the model (2.1) at zero noise.

The joint solutions for the model (2.1) at zero noise are shown in figure 3 for different values of
µ and α . The left side graphs correspond to µ = 0.80 and α = 0.15, whereas the right side graphs
correspond to µ = 0.15 and α = 0.60 for the combined solution. This shift reveals a significant shift in
the dynamics.
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