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Abstract: The intelligent clonal optimizer (ICO) is a new evolutionary algorithm, which adopts a 

new cloning and selection mechanism. In order to improve the performance of the algorithm, 

quasi-opposition-based and quasi-reflection-based learning strategy is applied according to the 

transition information from exploration to exploitation of ICO to speed up the convergence speed 

of ICO and enhance the diversity of the population. Furthermore, to avoid the stagnation of the 

optimal value update, an adaptive parameter method is designed. When the update of the optimal 

value falls into stagnation, it can adjust the parameter of controlling the exploration and 

exploitation in ICO to enhance the convergence rate of ICO and accuracy of the solution. At last, 

an improved intelligent chaotic clonal optimizer (IICO) based on adaptive parameter strategy is 

proposed. In this paper, twenty-seven benchmark functions, eight CEC 2104 test functions and 

three engineering optimization problems are used to verify the numerical optimization ability of 

IICO. Results of the proposed IICO are compared to ten similar meta-heuristic algorithms. The 

obtained results confirmed that the IICO exhibits competitive performance in convergence rate and 

accurate convergence. 

Keywords: continuous optimization problems; opposition-based learning; intelligent clonal 
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1. Introduction 

Intelligent technology has developed rapidly in recent decades. More and more real-world 

optimization problems need to be solved, such as engineering design, UAV path planning and data 

processing. Many traditional optimization methods have been proposed before. However, their 

performance is poor on complex optimization problems. The emergence of meta-heuristic algorithm 

solves this problem to some extent. This kind of algorithm with excellent performance has been 

studied by more and more scholars. The most famous meta-heuristic algorithm is genetic algorithm 

(GA) [1] proposed by John Holland in 1975 which is based on the mechanics of the natural 

selection process. 

Meta-heuristic algorithms can be divided into four categories: physics-based, human-based, 

swarm-based, and evolutionary algorithms. Physics-based optimization algorithms are inspired by 

physics laws in nature. One of the most famous algorithms in this class is simulated annealing [2], 

which is based on the annealing process of solid matter in physics. Equilibrium optimizer (EO) [3] is 

a physics-based algorithm proposed in recent years, which inspired by control volume mass balance 

models used to estimate both dynamic and equilibrium states. A class of optimization algorithms 

with human behavior as the main idea is called human-based algorithms. For example, 

Teaching-learning-based optimization (TLBO) was proposed based on the influence of a teacher on 

learners [4]. The algorithm obtains the optimal value through iteration of its two parts, which include 

the “teacher phase”, meaning learning the teacher, and the “learner phase”, meaning learning by the 

interaction between learners. Other human-based algorithms include imperialist competitive 

algorithm (ICA) [5] and collective decision optimization algorithm (CDOA) [6]. Swarm intelligence 

(SI) algorithms are the most popular kind of algorithms. They are inspired by the behavioral patterns 

of populations in nature. This class of algorithms is characterized by focusing on the interaction 

between individuals in the population. Inspired by the foraging behavior of birds, Kennedy and 

Eberhart proposed the famous particle swarm optimization algorithm (PSO) [7]. PSO sets a swarm of 

birds (particles) searching for food (best solution) within a certain range (search space). When one of 

the birds finds the most food, the other birds fly in the direction of the optimal individual. They fly 

taking into account both the position of the global best individual and their own personal best 

position. At the same time, many excellent SI algorithms have been proposed in recent years. For 

example, Tu et al. [8] proposed a new stochastic optimization algorithm named the colony predation 

algorithm (CPA) which is based on the corporate predation of animals in nature. The algorithm finds 

the optimum by communication and collaboration, dispersing prey, encircling prey, supporting the 

most likely successful hunter, and seeking another target. Inspired by the behavior of the moths, 

Wang [9] proposed a new bio-inspired meta-heuristic algorithm called moth search (MS) algorithm. 

The algorithm treats the best individual as the light source. Some sub-optimal individuals move in a 

Lévy flights, and poor individuals move towards the best individual. Other SI optimization 

algorithms include ant colony optimization (ACO) [10], artificial bee colony (ABC) [11], grey wolf 

optimization (GWO) [12], marine predators algorithm (MPA) [13], slime mould algorithm (SMA) [14], 

mayfly algorithm (MA) [15], sine cosine algorithm (SCA) [16], harris hawks optimization(HHO) [17] 

and whale optimization algorithm (WOA) [18]. Different from SI optimization algorithm, 

evolutionary algorithm mainly incorporates the idea of natural selection. It selects excellent 

individuals from the population to the next generation according to different selection operators, and 

can also integrate some other operations, such as crossover operation and mutation operation. 
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Evolutionary algorithms include genetic algorithms (GA) [19], tree growth algorithm (TGA) [20], 

evolution strategy (ES) [21], differential evolution (DE) [22], arithmetic optimization algorithm 

(AOA) [23]. 

Meta-heuristic algorithms have been developed for many years, and many improvements have 

been proposed. As an improvement proposed in 2005, opposition-based learning (OBL) [24] has 

been studied and applied by many scholars. Guo et al. [25] proposed a random unscented sigma point 

mutation strategy and combines it with opposition-based learning strategy and nonlinear 

convergence factor adjustment strategy to propose an improved HHO algorithm (IHHO). This 

strategy achieves further optimization of the algorithm by exploiting the visible region around the 

optimal solution. It boosts the convergence speed and the accuracy of the solution. Si et al. [26] 

described the basic OBL and its four variants in detail and analyzed their impact on the search 

space’s coverage, accuracy, exploration and exploitation, and convergence of salp swarm algorithm 

(SSA). They combined SSA with five OBLs to from five enhanced hybrid SSA-OBL and compared 

them with other algorithms. The experimental results show that incorporating different OBL in SSA 

enhanced its exploration ability. Hussien [27] proposed an enhanced opposition-based SSA. In this 

algorithm, in the initialization phase, OBL is used to generate an opposite population to enhance the 

diversity of the initial population. In the update phase, OBL is used in each iteration to generate the 

opposite population of the current population. Then, the best �  individuals from these two 

populations are selected to replace the current population. This method effectively improved the 

quality of the population in the iterations. Wang et al. [28] proposed the orthogonal OBL (OOBL) 

based on OBL and applied it to the Yin-Yang-pair optimization to overcome the problem of low 

quality of candidate solutions in the exploration process. OOBL incorporates the characteristics of 

orthogonal experimental design, which selects the value of each dimension of the individual from the 

positive and opposite solutions according to the orthogonal matrix. It helps to make full use of the 

information of different dimensions of the positive and opposite solutions to generate better 

individuals. In addition to OBL, scholars have also conducted a lot of research on parameter control. 

The main idea of adaptive parameter control is to automatically adjust parameters during the 

algorithm process [29]. Lei et al. [30] proposed an aggregative learning gravitational search 

algorithm with self-adaptive gravitational constants (ALGSA) to alleviate the issues of low search 

performance and premature convergence. ALGSA adaptively adjusts the gravitational constant � 

according to the current state of each individual to better balance the exploration and development of 

the algorithm. ALGSA has better performance compared to some existing variants of the 

gravitational search algorithm. 

Intelligent clonal optimizer (ICO) [31] is a new evolutionary algorithm which was proposed by 

Sahargahi et al. recently. In ICO, the population is initialized using chaos mapping, so that a 

population with better diversity can be obtained, which is beneficial to subsequent iterations. Next, A 

temporary target is generated in each iteration in the algorithm, which is determined by the best 

individuals in the population. A set of offsets can be calculated from this target. The offspring are 

generated by adding the parent to this offset or randomly generated near the parent. The number of 

offspring generated is defined by the fitness value of its parent. ICO has good performance in both 

unimodal and multimodal functions. Although the algorithm performed better than many existing 

algorithms, it has some defects. When it deals with the unimodal functions, the global optimal value 

will stagnate for a long time. After this period of stagnation, the algorithm will converge rapidly to 

the optimum. Therefore, the convergence rate and stability of the algorithm are affected seriously. In 
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order to solve the problem that the optimal value update of ICO is stagnant, the adaptive parameter 

strategy is introduced. The adaptive parameter strategy set a threshold for the optimal number of 

stagnations. When the number of stagnations exceeds this threshold, the adaptive parameter strategy 

will accelerate the process of the algorithm from exploration to exploitation, thereby enhancing the 

convergence rate of the algorithm. At the same time, ICO has the problem of falling into local 

optimum when dealing with some functions. The introduction of the opposition-based learning can 

effectively solve this problem. Different from the previous methods, two variants of OBL, 

quasi-opposition-based learning and quasi-reflection-based learning, are used in different phases of 

the algorithm to improve the exploration and exploitation capabilities of the algorithm, respectively. 

In the exploration phase, quasi-opposition-based learning is used to conduct a larger search around 

the individual. Whereas in the exploitation phase, quasi-reflection-based learning is used to perform 

a small search around the individual to improve the accuracy of the solution. Finally, simulation 

experiments were performed on three engineering optimization problems, eight CEC 2104 test 

functions and twenty-seven benchmark functions to verify the competitive performance of IICO. 

The main contribution of this paper would be: 

1) The improved ICO algorithm was proposed in this paper, which combined opposition-based 

learning and adaptive parameter strategy. 

2) The effects of opposition-based learning and adaptive parameter strategy on ICO were discussed 

in detail and analyzed. 

3) Comparative simulation experiments were performed on unimodal, multimodal, CEC 2104 

functions and three engineering optimization problems. At the same time the experimental analysis 

was carried out. 

The rest of the paper is structured as follows. The principle of the intelligent clonal optimizer 

and the improvement are described in Section 2. Simulation experiments would be carried out in 

Section 3. In Section 4, three engineering optimization problems are solved. Finally, conclusion is 

presented in Section 5. 

2. The ICO and proposed IICO 

2.1. Intelligent clonal optimizer 

The ICO algorithm initializes the population using the chaotic mapping. A series of random points 

in space can be obtained by chaotic mapping. The equation of the logistic mapping is as follows: 

���� = � × �� × (1 − ��), � = 0,1,                         (1) 

where � is the logistic parameter. When � is close to 4 and �� ∈ [0, 1], the logistic function is in 

total chaos. When a group of chaotic vectors is generated, they should be transformed into variables 

in search space using the following equation: 

�� = �� + (�� − ��) × ��                            (2) 

where �� and �� represent the upper and lower bounds of variables respectively. Assume the 

dimension of the problem is � , the population in the � th iteration is defined as 

��(�), ��(�), … , ��(�), and the �th individual is denoted as ��(�) = ����(�), ���(�), … , ���(�)�, � =



10279 

Mathematical Biosciences and Engineering  Volume 19, Issue 10, 10275-10315. 

1,2, … , �. 

2.1.1. Cloned operator 

In ICO algorithm, some individuals need to be selected to generate offspring. The number of 

offspring produced by each parent is defined by the following equation. 

�� = ���� + (���� − ����) × ���                          (3) 

��� =
���������

������������
                                  (4) 

where �� is the number of offspring created from �th parent. ���� and ���� are the minimum and 

maximum number of clones respectively. ���� is generally set to 0. Moreover, ��� represents the 

normalized fitness value of each solution while ��  refers to the fitness value of the solution. 

Furthermore, ������ and ����� represent the worst and best fitness values in the current population 

respectively. The larger the value of ���, the smaller the fitness value, the better the solution. 

In ICO, there are two ways to generate offspring. The first is that offspring are randomly generated 

within a small range of the parent. The second is that offspring are generated through the temporary target. 

The offspring generated by these two ways are stored in list �� and ��, respectively. For the second 

case, the distance from each offspring to its parents is calculated by the following equation. 

∆�� = � × ∆���� + ��                              (5) 

where � represents a random number between 0 and 1. The initial values of ∆� can be set to zero 

for all solutions. To compute ��, some elite solutions are selected from the population and stored in 

�� list. The equation is as follows. 

�� = {��|�� ∈ �, � = ������� �(�), 1 ≤ � ≤ �����}                  (6) 

� = �����(� × [98 × (1 − ����
�� ) + 2] 100⁄ )                    (7) 

����� = �
�      � ≥ 1
1      ��ℎ������

                             (8) 

where ����� is the number of the best solutions selected from the population, ���� is the current 

iteration. According to the equation, the value of ����� depends on � and � is reduced from initial 

value �. Therefore, ����� is gradually reduced from � to 1 in every iteration. The algorithm will 

gradually shift from the exploration to the exploitation. The value of � can be calculated as follows: 

� = 0.25 × (
������

����×�
+

������

�×�
)                           (9) 

= 0.25 ×
������(������)

����×�
                             (10) 

where ������ is maximum number of evaluations of the function, � is the population 

number. The calculation equation of �� is given by 

�� = 20 × ����� × ��                             (11) 
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����� = 10 × ln � × �                            (12) 

� = exp(−� × ���� �⁄ )                           (13) 

� = (�� − ��) 2⁄                               (14) 

where M is the mean of the upper and lower bounds of the variable. � is obtained from the 

following equation: 

� = �
− ln(10 × �) × � ����⁄ ,  � ≤ � ��� ���� > 1
��, ���� = 1

              (15) 

where �� and � are constants which is 100 and 1e-19 respectively. The value of � is reduced 

from 1 to 1e-18 when it reaches �. The value of �� is calculated through the following equation: 

�� =
������

���
                                 (16) 

���,� =
∑ ���×����.��,��∈��

�����
                         (17) 

where �� is a temporary target which represents the weighted average of the selected elite solutions, 
� represents the Cartesian distance between �� and ���. � is a positive small constant, ���  is 

determined through Eq (4), �� is a random constant between [0, 1]. 

The probability of using the second method to generate offspring is defined by the following 

equation. 

����� = [(� − ����)��

(� − 1)��� ] × ��������� − ������� + ������          (18) 

where �������� and ������ indicates the initial and final value of standard deviation respectively. �� 

is the nonlinear modulation index which is 2. Finally, �� and �� can be obtained by the above 

and following equations. 

�
���� = �� + ∆��, ��∆��� = ∆��, 1 ≤ �� ≤ ��   �� � ≥ �����

���� = �� + ����� × ��, ��∆��� = ∆��, 1 ≤ �� ≤ ��   �� � < �����
        (19) 

where � is a random value in the range [0, 1], �� is a random number that obeys the normal distribution. 

2.1.2. Conservative selection operator 

After the offspring are generated, the elite solutions in them should be selected. The equation is 

as follows: 

�� = �
���, ��� ≤ ⌈����� × �⌉

⌈����� × �⌉, ��ℎ������
                     (20) 

� = � − ��                               (21) 

�� = �
���, ��� ≤ ⌈� × 0.9⌉

⌈� × 0.9⌉, ��ℎ������
                    (22) 
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�� = �
��, �� ≤ � − ��
� − ��, ��ℎ������

                        (23) 

In these equations, ���  and ���  represent the number of elements in �� and ��  lists 

respectively. �� shows the number of the population. �� and �� are the number of offspring 

selected from �� and �� respectively. �� refers to the number of offspring selected from the 

parents. Table 1 shows the pseudocode of the ICO algorithm. 

Table 1. Pseudo-code of ICO. 

Pseudo-code of ICO 

Set input parameters (N, D, MaxFEs) 
�������� = 0.5, ������ = 0.1, ���� = 0, ���� = 40 

�� = 100, � = 1� − 19, � = 4, �� = 2 

Generate initial population [�]�×� using Eqs (1) and (2) 

Evaluate fitness � of each individual 

���� = 1, ��� = � 

compute �, � using Eqs (10) and (14) respectively 

while ��� ≤ ������ do 

 compute �, � using Eqs (13) and (15) respectively 

 compute �����, ����� using Eqs (12) and (18) respectively 

 compute the normalized fitness vectors �� using Eq (4) 

 compute ����� using Eqs (7) and (8) 

 compute �� using Eq (6) 

 compute � using Eqs (16) and (17) 

 compute � using Eq (11) 

 �� = 1; �� = 1 

 for � = 1: � do 

  for � = 1: �� do 

   � = ������(0,1) 

   if � < ����� do 

    ���� = �� + ����� × �� 

    ��Δ��� = Δ�� 

    �� = �� + 1 

   else 

    Δ�� = � × Δ���� + �� 

    ���� = �� + Δ�� 

    ��Δ��� = Δ�� 

    �� = �� + 1 

   end if 

   ��� = ��� + 1 

  end for 

 end for 

 update �, � ��� Δ� vectors using Eqs (20)–(23) 

end while 

Return the best optimal solution 
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2.2. Proposed IICO algorithm 

2.2.1. Opposition-based learning strategy 

With the development of meta-heuristic algorithms, many improvement methods have been 

proposed. They can be applied to all kinds of algorithms. As one of them, opposition-based learning 

(OBL) [24] is a very widely used improvement, which can enhance the population diversity. Later, 

researchers proposed its two variants named quasi-opposition-based learning [32] and 

quasi-reflection-based learning [33]. In this paper, these two methods are combined to improve the 

performance of the ICO algorithm. 
Assume � = (��, ��, … , ��)  is a point in � -dimensional space with �� ∈ [��, ��], � =

1,2, … , �. The opposite point of � is defined as �� = (���, ���, … , ���). The quasi-opposite point and 

quasi-reflected point are defined as �� = (���, ���, … , ���), and �� = (�̅�, �̅�, … �̅�) respectively. These 

points are defined as follows: 

��� = ��� + ��� − ��                             (24) 

��� = ����[(
�������

�
), ���� + ��� − ���]                    (25) 

�̅� = ����[(
�������

�
), ��]                          (26) 

 

Figure 1. The value range of quasi-opposite point and quasi-reflected point. 

When the dimension of the problem is one, the value ranges of the quasi-opposite and 

quasi-reflected points are shown in Figure 1. Figure 1 shows that the quasi-reflected point �̅ is 

closer to the original point �, which is of benefit to exploiting near the original point, whereas the 

quasi-opposite point �� is farther from the original point, which can effectively explore around the 

original point. Therefore, quasi-opposition-based learning can enhance the exploration ability of ICO 

algorithm, and quasi-reflection-based learning can enhance the exploitation ability of ICO algorithm. 

According to the updating equation of ICO algorithm, when ����� > 1, the temporary target is 

the weighted average of the selected elite solutions, and the algorithm is in the exploration phase. In 

this phase, the quasi-opposition-based learning is applied to the algorithm when the updating Eq (19) 

is used and ����� > 1, � ≥ ����� . When the quasi-opposite solution ���(� + 1)  is calculated 

through Eq (25), the greedy strategy is used, and the better solution of the two enters the next 

iteration. The selection equation is shown in Eq (27). 
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��(� + 1) = �
��

���(� + 1), �� �(��
���(� + 1)) < �(���(� + 1))

���(� + 1), ��ℎ������
           (27) 

When ����� = 1, the temporary target is the best solution of the current population, the 

algorithm is in the exploitation phase. In this phase, the algorithm is quickly approaching the optimal 

value. Therefore, the quasi-reflection-based learning scheme is applied to IICO when the updating 

Eq (19) is used and ����� = 1, � ≥ �����. When the quasi-reflected solution ���(� + 1) is calculated 

through Eq (26), the greedy selection is used again. As shown in Eq (28): 

��(� + 1) = �
��

���(� + 1), �� �(��
���(� + 1)) < �(���(� + 1))

���(� + 1), ��ℎ������
          (28) 

The use of the opposite-based learning strategy can effectively meliorate the performance of 

the algorithm. 

2.2.2. Adaptive parameter strategy 

According to the principle of the algorithm in the previous section, as the parameter ����� 

changes from � to 1, the algorithm gradually transforms from exploration to exploitation. The 

value of �����  depends on � . When � ≤ 1, the value of �����  is 1 and the ICO algorithm 

completely enters the exploitation phase and begins to converge rapidly. However, when the 

algorithm deals with the unimodal functions, this process is too long. This leads to stagnation in 

global optimum and decelerates the convergence rate of the algorithm as shown in Figure 2. To solve 

this problem, an adaptive parameter strategy is proposed, which introduces a parameter ���� 

initialized zero. When the global optimal value is not updated, the parameter ���� add one. When 

the value of ���� exceeds a threshold ������� and � > 1, the convergence of the algorithm is 

accelerated by subtracting � by one, and then setting ���� to zero. The equation is as follows: 

� = �
� − 1, �� ���� ≥ ������� ��� � > 1
�, ��ℎ������

                 (29) 

 

Figure 2. The convergence curve of Sphere function. 
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This strategy effectively prevents from the stagnation of the global optimal update and 

accelerates the rate of convergence on the unimodal functions. After testing, this strategy also 

improves the performance of the ICO algorithm on multimodal functions. 

2.2.3. The flow of IICO algorithm 

By combining the characteristics of the quasi-opposition-based learning and 

quasi-reflection-based learning, the population diversity of the original algorithm is improved and 

the accuracy of solutions is enhanced. At the same time, the introduction of the adaptive parameter 

strategy enhances the convergence speed of ICO. Figure 3 is the flow chart of the IICO algorithm. In 

the flowchart, the part marked in red is the improved step. When some constants in the algorithm are 

calculated, � is updated using Eq (29). After the population is updated, the value of the parameter 

���� will be updated according to whether the global optimal value is updated. The pseudocode of 

IICO is presented in Table 2. The source code of IICO is published in 

https://github.com/zhangjhboy/IICO. 

Table 2. Pseudo-code of IICO. 

Pseudo-code of IICO 

Set input parameters (N, D, MaxFEs) 
�������� = 0.5, ������ = 0.1, ���� = 0, ���� = 40 

�� = 100, � = 1� − 19, � = 4, �� = 2, ���� = 0, ������� = 3 

Generate initial population [�]�×� using Eqs (1) and (2) 

Evaluate fitness � of each individual 

���� = 1, ��� = � 

compute �, � using Eqs (10) and (14) respectively 

while ��� ≤ ������ do 

compute �, � using Eqs (13) and (15) respectively 

compute �����, ����� using Eqs (12) and (18) respectively 

compute the normalized fitness vectors �� using Eq (4) 

compute � using Eq (7) 

if ���� < ������� and � > 1 do 

  � = � − 1 

 ���� = 0 

end if 

compute ����� using Eq (8) 

compute ES using Eq (6) 

compute � using Eqs (16) and (17) 

compute � using Eq (11) 

 �� = 1; �� = 1 

 for � = 1: � do 

  for � = 1: �� do 

   � = ������(0,1) 

   if � < ����� do 

Continued on next page 
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    ���� = �� + ����� × �� 

    ��Δ��� = Δ�� 

    �� = �� + 1 

   else 

    Δ�� = � × Δ���� + �� 

    ���� = �� + Δ�� 

    if ����� == 1 do 

     compute �� using Eq (26) 

     if ���(��) < ���(����) do 

      ���� = �� 

        end if 

    else 

                 compute �� using Eq (25) 

     if ������� < ���(����) do 

      ���� = �� 

     end if 

    ��� = ��� + 1 

    ��Δ��� = Δ�� 

    �� = �� + 1 

   end if 

   ��� = ��� + 1 

  end for 

 end for 

 update �, � ��� Δ� vectors using Eqs (20)–(23) 

 if the global optimum is updated do 

  ���� = 0 

 else 

 ���� = ���� + 1 

 end if 

end while 

Return the best optimal solution 

2.2.4. Computational complexity of IICO 

The computational complexity if IICO mainly consists of initialization, population update and 

fitness value calculation. Therefore, the time complexity of the ICO algorithm is �(������ ×

(� + �)). In the opposition-based learning strategy, the time consumption of the calculation of the 

quasi-opposition and quasi-reflected point is �(������ × �) . The complexity of adaptive 

parameter strategy is �(1). Therefore, the whole-time complexity of the IICO algorithm is 

�(������ × (2� + �)). 
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Figure 3. The flowchart of IICO. 
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3. Simulation experiments 

3.1. Experiments setup 

In order to verify the superiority of the IICO algorithm, this paper select nine unimodal, nine 

multimodal and nine fixed-dimension multimodal benchmark functions, as shown in Tables 3–5. 

Eight CEC2014 test functions are shown in Table 6. And the IICO algorithm will compare with some 

other algorithms. These competitive algorithms include ICO [31], EO [3], GWO [12], HHO [17], 

PSO [7], SCA [16], SMA [14], WOA [18], AOA [23] and MA [15]. The parameter settings of the 

algorithm are shown in Table 7, where � represents dimension of the functions, Range indicates the 

range of the search space, and ���� is the optimum. In the experiment, the maximum number of 

function evaluations is � × 2000. The x-axis of the result figure of each algorithm will be displayed 

in the number of iterations, which can make the difference between each algorithm more obvious. 

The number of initial populations is set to 30 for all algorithms. In order to reduce the influence of 

random factors involved in each algorithm, 30 Monte Carlo simulation experiments would be carried 

out and the results would be averaged. 

Table 3. Unimodal scalable benchmark functions. 

Equations D Range Min 

��(�) = ∑ ��
��

���   50 [-10, 10] 0 

��(�) = ��
� + 10� ∑ ��

��
���   50 [-100, 100] 0 

��(�) = ∑ |��|
����

���   50 [-1, 1] 0 

��(�) = (∑ ��
��

��� )�  50 [-100, 100] 0 

��(�) = ∑ ��
�(2 + sin

�

��
)�

���   
50 [-100, 100] 0 

��(�) = ∑ ���
��

���   50 [-10, 10] 0 

��(�) = ∑ ��
��

���   50 [-100, 100] 0 

��(�) = ∑ �∑ ��
�
��� �

��
���   

50 [-10, 10] 0 

��(�) = ∑ |��|
�
���   50 [-100, 100] 0 

Table 4. Multimodal scalable benchmark functions. 

Equations D Range Min 

���(�) = −20�
���.��

�

�
∑ ��

��
��� �

− �
�

�

�
∑ ���(����)�

��� �
+ 20 + �  

50 [-32, 32] 0 

���(�) =
�

����
∑ ��

��
��� − ∏ cos �

��

√�
��

��� + 1  
50 [-600, 600] 0 

���(�) =

− ∑ ��
�

�(��
������

� ��.�������)

�
�

cos �4���
� + ����

� + 0.5�����������
���   

50 [-5, 5] 0 

Continued on next page 
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���(�) = 10� + ∑ [��
� − 10 cos(2���)]�

���   50 [-5.12, 5.12] 0 

���(�) = ∑ �0.5 +
�����������

������
� ���.�

���.������
��������������

� �
�����

���   

50 [-100, 100] 0 

���(�) = ∑ �0.5 +
��������

������
� ���.�

����.������
������

� ��
�����

���   

50 [-10, 10] 0 

���(�) = ∑ ���
��

��� + ����[0,1)  50 [-1.28, 1.28] 0 

���(�) = 0.1 ∑ (�� − �)��
��� − cos ���∑ (�� − �)��

��� �  

50 [0, 10] 0 

���(�) = ∑ �������(0,1) ��� −
�

�
��

���   
50 [-10, 10] 0 

Table 5. Fixed-dimension multimodal benchmark functions. 

Equations D Range Min 

���(�) = ��
� + ��

� + 25[����(��) + ����(��)]  2 [-5, 5] 0 

���(�) = − ��sin �� cos �� �
���

���
����

�

�
�

��  

2 [-10, 10] -19.2085 

���(�) = ��
� + 2��

� − 0.3 cos(3���) [cos(4���)] + 0.3  2 [-100, 100] 0 

���(�) =
�

�

���
�∑

�

��∑ ��������
��

�

��
�

  
2 [-65.53, 

65.53] 

0 

���(�) = (��
� + ��

�)�.��[����(50(3��
� + ��

�)�.�) + 1]  2 [-100, 100] 0 

���(�) = 0.5 +
�������

����
����.�

����.���(��
����

�)�
�  

2 [-10, 10] 0 

���(�) = 0.5 +
�������

����
����.�

����.���(��
����

�)�
�  

2 [-100, 100] 0 

���(�) = 0.1 + ����(��) + ����(��) − 0.1�(���
����

�)  
2 [-10, 10] 0 

���(�) = ��
� + ��

� − cos(18��) − cos(18��) + 2  2 [-1, 1] 0 

Table 6. CEC2014 test functions. 

Equations D Range Min 

F28: Shifted and Rotated Rosenbrock’s Fucntion 10 [-100, 100] 400 

F29: Shifted and Rotated Ackley’s Function 10 [-100, 100] 500 

F30: Shifted and Rotated Weierstrass Function 10 [-100, 100] 600 

F31: Shifted and Rotated Griewank’s Function 10 [-100, 100] 700 

F32: Shifted and Rotated Katsuura Function 10 [-100, 100] 1200 

Continued on next page 
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F33: Shifted and Rotated HappyCat Function 10 [-100, 100] 1300 

F34: Shifted and Rotated HGBat Function 10 [-100, 100] 1400 

F35: Shifted and Rotated Expanded Scaffer’s F6 Function 10 [-100, 100] 1600 

Table 7. Parameter settings for algorithms. 

Algorithm Parameters 

IICO �� = 2, � = 4, �� = 100, � = 1� − 19, �������� = 0.5, ������ = 0.1, �������

= 3 

���� = 0, ���� = 0, ���� = �
2, � ∈ �������� �������� (�1 − �9)
40, ��ℎ������ (�10 − �27)

  

ICO ���� �� �ℎ� ���� �������ℎ� 

EO �� = 2, �� = 2, �� = 0.5 

GWO � = [2,0] 

HHO �� ∈ [−1,1] 

PSO �� = 2, �� = 2, ����ℎ� = [0.9 0.4] 

SCA �1 ∈ [0,1], �2 ∈ [0,2�], �3 ∈ [0,2] 

SMA � = 0.03 

WOA �� = [2 0], �� = [−2 − 1], � = 1 

AOA � = 5, � = 1, � = 0.2, �� = 0.499 

MA � = 0.8, �1 = 1, �2 = 1.5, �3 = 1.5, � = 2, ����� = 0.1, �� = 0.1 

The experiments were performed in Python 3.7.3 and PyCharm 2021.2.3 under the Windows 10 

system with an AMD Ryzen 5 4600H CPU and 16 GB RAM. 

3.2. Parameter sensitivity analysis 

The sensitivity of new parameter of IICO is analyzed in this section, which is �������. This 

is a new parameter introduced in IICO. It affects the balance between the exploration and 

exploitation of the algorithm. Excessive ������� value will slow down the convergence rate of 

the algorithm and fail to achieve the desired effect. Too small value will lead to too short algorithm 

exploration phase and affect the diversity of the population. The results are as shown in Figure 4. 

It is clear from the diagram that when ������� =  3, the effect is best in most cases. Overall, 

as the value increases, the convergence rate will gradually decline. 

3.3. Experimental analysis of the performance of two improvements 

To verify the effect of the two improvements, the comparative experiment between IICO and 

two ICO variants is conducted in this section, including a combined version of ICO with OBL 

(ICO-OBL) and a combined version of ICO with the adaptive parameter strategy (ICO-APS). The 

experimental results are shown in Figure 5. 
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Figure 4. Sensitivity analysis results of �������. 
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Figure 5. Experimental results of the performance of two improvements. 

In unimodal functions F1, F4, and F8, ICO-APS has a faster convergence rate than ICO, and the 

reduced time is just the stagnation time of ICO. The adaptive parameter strategy effectively prevents 

the stagnation of the optimal value update by accelerating the process of the algorithm from 

exploration to exploitation and thus speeds up the convergence speed. ICO-OBL also has a faster 

convergence rate than ICO to a certain extent. However, it has the same stagnant phase as ICO. As a 

combined version of these two ICO variants, IICO has significantly better convergence speed than 

the other three algorithms. In multimodal functions F10, F12 and F14, ICO-APS is not much 

different from ICO. This is because the stagnation of ICO is mainly reflected in the unimodal 

function. Compared with the ICO solution, ICO-OBL has improved accuracy. When the two are 

combined, the convergence speed of IICO and the accuracy of the solution are significantly 

improved. In fixed-dimension multimodal functions F19, F21, F24 and F26, ICO-APS has the same 

performance as in multimodal functions. Compared with the ICO solution, the accuracy and 

convergence speed of ICO-OBL are obviously enhanced. In the exploration phase, 

quasi-opposition-based learning can search a large range around the individual to enhance the 

diversity of the population. During the exploitation phase, quasi-reflection-based learning can 

perform a fine-grained search around the individual to enhance the accuracy of the solution. The 

characteristics of these two make ICO-OBL achieve better results than ICO. 

3.4. Qualitative analysis 

The capability of IICO is preliminarily investigated in this section. The proposed IICO 

algorithm would be compared to the original ICO. In Figure 6, search history, trajectory of 1st 

dimension, average fitness and convergence curve are demonstrated. 

The first column of Figure 6 shows the 3D model of the benchmark functions. The second 

column of Figure 6 shows the location information of the population in the first and second 

dimensions. IICO and ICO are represented as red and blue points, respectively. It can be seen from 

the figure that red points gather more at the optimal position than blue points. This means that OBL 

effectively improves the quality of the population using the characteristics of quasi-opposite and 

quasi-reflected points, so that the individuals of IICO can reach the best position faster. The third 

graph of Figure 6 presents the trajectory of the first solution in the first dimension. At the beginning, 

it can be seen that both algorithms change dramatically. With the iteration, the curve will gradually 
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become stable. On function F3, IICO performs much better than ICO, and it can enter a stable state 

faster. However, in other functions, there is little difference between the two algorithms. The fourth 

and fifth columns of Figure 6 represent the average value of solutions fitness value and convergence 

curve respectively. The mean value of the solutions presents the overall fitness of the algorithm at 

each iteration. It can be seen that when the number of iterations is the same, IICO always has a better 

average fitness value. Moreover, the convergence curve graph records the change in the global 

optimal value in each iteration of the algorithm. It can be seen that IICO can reach the optimal value 

faster than the original algorithm. The adaptive parameter strategy speeds up convergence by 

reducing stagnation in optimal value updates. In the exploration phase, OBL searches in a large range 

around the individual to enhance the diversity of the population. In the exploitation phase, it searches 

within a small range of individuals to improve the accuracy of the solution and speed up the 

convergence rate to a certain extent. Through the above analysis, it can be concluded that the overall 

performance of IICO is better than the original algorithm. 
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Figure 6. Qualitative results for benchmark functions involved. 

3.5. Intensification capability analysis 

For the unimodal benchmark functions, there is only one optimal value. All individuals in the 

population will aggregate towards this optimal value. The global convergence ability of the 

algorithm is required. Excellent algorithm can converge to the global optimal value faster. Therefore, 

simulation experiments on unimodal benchmark functions would be carried out to verify the 

intensification capability of the algorithm. The best, worst, mean and standard deviation are shown in 

Table 8. 
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Table 8. Unimodal test results. 

F IICO ICO EO GWO HHO PSO SCA SMA WOA AOA MA 

F1 

Best 

Worst 

Mean 

Std. 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

3.3E-161 

2.5E-155 

1.1E-156 

4.6E-156 

 

7.44E+01 

2.44E+02 

1.43E+02 

3.60E+01 

 

0.00E+00 

1.1E-209 

3.8E-211 

0.00E+00 

 

1.19E-11 

2.47E-09 

4.19E-10 

6.02E-10 

 

1.27E-46 

4.39E-36 

1.60E-37 

7.88E-37 

 

9.85E-17 

1.50E-08 

6.11E-10 

2.68E-09 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

5.04E-11 

1.31E-10 

8.01E-11 

1.98E-11 

 

2.06E-24 

2.79E-17 

1.31E-18 

5.15E-18 

F2 

Best 

Worst 

Mean 

Std. 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

3.9E-156 

2.4E-149 

9,9E-151 

4.3E-150 

 

7.22E+09 

3.13E+10 

1.46E+10 

5.16E+08 

 

3.7E-307 

2.6E-214 

8.7E-206 

0.00E+00 

 

1.03E-03 

1.00E+4 

3.33E+2 

1.79E+3 

 

2.18E-38 

4.00E-28 

2.62E-29 

8.05E-29 

 

2.98E-13 

1.49E-04 

9.55E-06 

2.74E-05 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

5.33E-03 

1.12E-02 

7.90E-03 

1.80E-03 

 

6.33E-08 

1.67E+02 

8.89E+00 

3.16E+01 

F3 

Best 

Worst 

Mean 

Std. 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

7.93E-02 

4.44E-01 

2.21E-01 

8.00E-02 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

5.45E-07 

2.86E-03 

3.16E-04 

6.29E-04 

 

0.00E+00 

4.8E-248 

1.6E-249 

0.00E+00 

 

1.81E-42 

1.98E-34 

6.63E-36 

3.55E-35 

 

4.2E-153 

3.8E-127 

1.4E-128 

6.8E-128 

 

9.99E-27 

8.93E-23 

9.73E-24 

1.88E-23 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

5.18E-96 

1.21E-55 

4.04E-57 

2.17E-56 

 

3.45E-62 

2.95E-50 

1.58E-51 

5.62E-51 

F4 

Best 

Worst 

Mean 

Std. 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

0.00E+00 

3.7E-305 

2.2E-306 

0.00E+00 

 

3.89E+07 

5.96E+08 

1.84E+08 

1.17E+08 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

9.47E-19 

9.37E-15 

1.16E-15 

1.90E-15 

 

7.18E-88 

1.25E-67 

8.30E-69 

3.06E-68 

 

1.10E-27 

2.71E-13 

1.61E-14 

5.99E-14 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

1.51E-17 

1.29E-16 

5.35E-17 

2.54E-17 

 

2.21E-27 

2.72E-12 

9.10E-14 

4.88E-13 

F5 

Best 

Worst 

Mean 

Std. 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

0.00E+00 

1.5E-292 

6.7E-294 

0.00E+00 

 

3.29E+10 

3.84E+11 

1.12E+11 

9.64E+10 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

1.15E-08 

1.42E-04 

9.08E-06 

2.63E-05 

 

1.1E-119 

8.08E-84 

2.75E-85 

1.45E-84 

 

1.19E-37 

2.64E-21 

9.09E-23 

4.74E-22 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

1.25E-27 

1.62E-25 

3.19E-26 

3.83E-26 

 

6.48E-07 

5.04E-02 

2.07E-03 

9.11E-03 

F6 

Best 

Worst 

Mean 

Std. 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

6.0E-250 

4.7E-233 

1.6E-234 

0.00E+00 

 

9.95E+03 

1.61E+05 

5.05E+04 

3.15E+04 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

6.28E-13 

1.04E-09 

1.27E-10 

2.13E-10 

 

1.05E-88 

4.49E-64 

1.66E-65 

8.08E-65 

 

1.09E-29 

5.90E-16 

1.97E-17 

1.06E-16 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

3.89E-21 

3.45E-20 

1.80E-20 

8.32E-21 

 

1.79E-30 

2.15E-22 

1.19E-23 

3.95E-23 

F7 

Best 

Worst 

Mean 

Std. 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

5.8E-250 

5.2E-229 

1.7E-230 

0.00E+00 

 

2.91E+06 

4.31E+07 

2.04E+07 

9.65E+06 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

1.24E-09 

7.60E-07 

8.90E-08 

1.87E-07 

 

2.66E-82 

4.50E-62 

1.75E-63 

8.14E-63 

 

2.94E-23 

4.84E-14 

2.17E-15 

8.96E-15 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

2.92E-18 

2.13E-17 

8.45E-18 

5.05E-18 

 

8.22E-16 

1.27E-05 

4.40E-07 

2.28E-06 

F8 

Best 

Worst 

Mean 

Std. 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

1.05E-07 

1.80E-01 

1.00E-02 

3.38E-02 

 

3.66E+02 

1.17E+03 

6.19E+02 

1.65E+02 

 

1.1E-296 

5.5E-218 

3.3E-219 

0.00E+00 

 

4.22E+0 

5.72E+1 

1.03E+1 

9.20E+0 

 

2.27E-41 

2.36E-31 

1.77E-32 

5.42E-32 

 

5.50E-15 

8.61E-07 

4.18E-08 

1.55E-07 

 

1.04E-43 

1.90E-01 

6.36E-03 

3.41E-02 

 

4.79E-09 

1.71E-07 

2.91E-08 

3.41E-08 

 

1.54E-03 

3.59E-01 

2.75E-02 

6.36E-02 

Continued on next page
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F9 

Best 

Worst 

Mean 

Std. 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

9.23E-95 

5.26E-91 

3.40E-92 

9.53E-92 

 

3.81E+02 

7.50E+02 

5.67E+02 

9.7E+01 

 

6.1E-148 

5.2E-111 

1.7E-112 

9.3E-112 

 

2.12E-06 

1.67E-04 

2.52E-05 

3.68E-05 

 

1.86E-25 

2.99E-20 

1.49E-21 

5.65E-21 

 

5.10E-07 

3.55E-04 

5.18E-05 

6.92E-05 

 

0.00E+00 

2.31E-295 

7.70E-297 

0.00E+00 

 

2.64E-04 

4.32E-04 

3.35E-04 

4.30E-05 

 

5.36E-06 

4.31E-02 

4.42E-03 

9.78E-03 

It can be seen that IICO can obtain the optimal value on all selected unimodal functions, and its 

mean and standard deviation values are 0. This shows that the algorithm is stable. However, several 

other algorithms can achieve almost the same effect. For example, the results of ICO are no different 

from IICO except for the F3 function. Since ICO can already obtain optimal values on multiple 

unimodal benchmark functions, IICO cannot continue to optimize numerically. This is be because the 

main advantage of IICO in unimodal functions is in the speed of convergence. This table does not 

show the advantages of IICO very well. 

3.6. Diversification capability analysis 

Different from the unimodal functions, the multimodal functions have multiple local optima. 

The algorithm is easy to fall into local optimum and lead to premature. The strong global exploration 

ability is required. Like the intensification capability analysis, the relevant data are shown in Table 9 

andTable 10. 

Table 9. Multimodal test results. 

F IICO ICO EO GWO HHO PSO SCA SMA WOA AOA MA 

F10 

Best 

Worst 

Mean 

Std. 

 

4.44E-16 

4.44E-16 

4.44E-16 

0.00E+00 

 

1.37E-09 

6.26E-09 

3.54E-09 

1.28E-09 

 

7.54E-15 

1.46E-14 

1.07E-14 

3.47E-15 

 

1.42E+01 

1.82E+01 

1.63E+01 

9.30E-01 

 

4.44E-16 

4.44E-16 

4.44E-16 

0.00E+00 

 

9.33E-06 

1.82E-03 

2.05E-04 

3.78E-04 

 

4.44E-16 

4.44E-16 

4.44E-16 

0.00E+00 

 

3.10E-08 

5.67E-05 

6.73E-06 

1.13E-05 

 

4.44E-16 

3.99E-15 

6.80E-16 

8.86E-16 

 

1.15E-05 

1.93E-05 

1.61E-05 

1.72E-06 

 

1.10E+01 

1.60E+01 

1.40E+01 

1.12E+00 

F11 

Best 

Worst 

Mean 

Std. 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

0.00E+00 

7.39E-03 

4.93E-04 

1.84E-03 

 

6.53E+01 

2.16E+02 

1.27E+02 

4.21E+01 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

4.82E-09 

5.62E-02 

8.02E-03 

1.25E-02 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

9.75E-14 

1.79E-07 

1.40E-08 

3.79E-08 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

4.44E-09 

1.34E-08 

8.81E-09 

1.96E-09 

 

1.10E+01 

6.94E+01 

3.59E+01 

1.51E+01 

F12 

Best 

Worst 

Mean 

Std. 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

0.00E+00 

2.02E+01 

5.73E+00 

6.78E+00 

 

2.86E+01 

3.68E+01 

3.28E+01 

1.67E+00 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

1.45E+01 

2.52E+01 

2.02E+01 

2.77E+00 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

0.00E+00 

2.08E-09 

1.24E-10 

3.78E-10 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

1.68E-10 

4.94E-10 

3.17E-10 

7.35E-11 

 

1.43E+01 

2.78E+01 

1.98E+01 

3.18E+00 

F13            

Best 0.00E+00 0.00E+00 0.00E+00 1.96E+02 0.00E+00 4.07E+01 0.00E+00 0.00E+00 0.00E+00 2.32E-09 4.37E+01 

Worst 0.00E+00 3.02E-14 8.65E+00 3.87E+02 0.00E+00 1.45E+02 0.00E+00 2.59E-06 0.00E+00 7.11E-09 1.26E+02 

Continued on next page
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Mean 0.00E+00 1.59E-15 6.29E-01 2.84E+02 0.00E+00 8.90E+01 0.00E+00 9.05E-08 0.00E+00 4.11E-09 8.87E+01 

Std. 0.00E+00 5.91E-15 1.98E+00 4.40E+01 0.00E+00 2.17E+01 0.00E+00 4.65E-07 0.00E+00 1.07E-09 1.94E+01 

F14 

Best 

Worst 

Mean 

Std. 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

2.22E-14 

1.37E-12 

2.25E-13 

2.49E-13 

 

1.57E+01 

1.86E+01 

1.70E+01 

7.73E-01 

 

1.86E+01 

2.19E+01 

2.05E+01 

7.20E-01 

 

0.00E+00 

3.73E-04 

3.01E-05 

8.38E-05 

 

1.46E+01 

2.04E+01 

1.78E+01 

1.34E+00 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

1.73E-10 

3.97E-05 

3.05E-06 

7.68E-06 

 

0.00E+00 

1.51E-03 

1.49E-04 

3.89E-04 

 

4.21E-07 

1.20E-06 

7.74E-07 

1.77E-07 

 

1.68E+01 

2.18E+01 

2.04E+01 

1.6E+00 

F15 

Best 

Worst 

Mean 

Std. 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

5.48E+00 

9.47E+00 

7.85E+00 

1.11E+00 

 

6.60E+00 

1.03E+01 

8.02E+00 

1.21E+00 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

1.30E+00 

4.57E+00 

3.14E+00 

1.09E+00 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

1.33E-10 

3.66E-08 

5.24E-09 

1.06E-08 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

1.02E-10 

2.10E-10 

1.54E-10 

3.41E-11 

 

2.03E+00 

1.50E+00 

9.53E+00 

5.59E+00 

F16 

Best 

Worst 

Mean 

Std. 

 

1.15E-07 

2.02E-05 

6.02E-06 

5.43E-06 

 

2.07E-06 

7.42E-05 

2.52E-05 

1.65E-05 

 

6.38E-04 

2.08E-03 

1.18E-03 

4.11E-04 

 

9.62E+00 

4.52E+01 

1.99E+01 

8.28E+00 

 

1.58E-07 

1.30E-04 

2.92E-05 

3.38E-05 

 

1.20E-02 

4.29E-02 

2.65E-02 

7.04E-03 

 

3.40E-07 

2.41E-05 

9.80E-06 

6.89E-06 

 

2.11E-05 

1.56E-03 

6.33E-04 

4.41E-04 

 

2.23E-06 

6.89E-04 

1.18E-04 

1.66E-04 

 

4.83E-06 

8.06E-05 

1.97E-05 

1.55E-05 

 

1.38E-02 

1.48E-01 

3.87E-02 

2.72E-02 

F17 

Best 

Worst 

Mean 

Std. 

 

1.56E-01 

1.56E-01 

1.56E-01 

5.11E-17 

 

3.91E+00 

7.67E+00 

5.56E+00 

1.06E+00 

 

2.50E+00 

7.67E+00 

4.05E+00 

1.05E+00 

 

7.67E+00 

1.26E+01 

1.00E+01 

1.71E+00 

 

1.56E-01 

1.00E+01 

4.59E+00 

2.59E+00 

 

6.26E-01 

1.40E+00 

1.22E+00 

3.31E-01 

 

2.66E+01 

3.82E+01 

3.27E+01 

2.65E+00 

 

3.91E+00 

7.67E+00 

5.45E+00 

1.14E+00 

 

8.13E-05 

5.63E+00 

3.20E-01 

9.88E-01 

 

3.91E+00 

5.64E+00 

5.34E+00 

6.17E-01 

 

3.91E+00 

7.67E+00 

5.13E+00 

9.33E-01 

F18 

Best 

Worst 

Mean 

Std. 

 

7.13E-01 

1.05E+00 

9.18E-01 

8.62E-02 

 

7.95E-01 

1.06E+00 

9.23E-01 

6.94E-02 

 

3.90E-01 

7.83E-01 

5.42E-01 

8.81E-02 

 

2.84E+01 

4.93E+01 

3.86E+01 

6.05E+00 

 

4.56E-01 

6.52E-01 

5.49E-01 

4.05E-02 

 

3.87E+00 

2.16E+01 

1.07E+01 

5.10E+00 

 

9.00E-01 

1.09E+00 

9.97E-01 

5.00E-02 

 

1.01E+00 

1.30E+00 

1.17E+00 

7.76E-02 

 

5.00E-01 

8.69E-01 

6.31E-01 

9.13E-02 

 

9.58E-01 

1.14E+00 

1.05E+00 

5.06E-02 

 

1.39E-01 

3.28E+00 

1.92E+00 

6.05E-01 

Table 10. Fixed-dimension multimodal test results. 

F IICO ICO EO GWO HHO PSO SCA SMA WOA AOA MA 

F19 

Best 

Worst 

Mean 

Std. 

 

1.20E-124 

4.01E-103 

1.37E-104 

7.199E-104 

 

2.70E-06 

9.55E+00 

7.99E-01 

2.27E+00 

 

3.72E-65 

8.35E-60 

3.94E-61 

1.51E-60 

 

1.27E-79 

9.48E+00 

3.16E-01 

1.70E+00 

 

1.35E-29 

8.40E-11 

2.84E-12 

1.50E-11 

 

4.60E-18 

1.75E-12 

1.79E-13 

4.00E-13 

 

6.71E-16 

2.74E-09 

1.10E-10 

4.92E-10 

 

9.19E-20 

7.01E-14 

3.20E-15 

1.25E-14 

 

1.39E-44 

2.10E-31 

8.12E-33 

3.78E-32 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

1.10E-22 

4.42E-19 

5.87E-20 

9.29E-20 

F20 

Best 

Worst 

Mean 

Std. 

 

-19.2085 

-19.0982 

-19.1912 

3.11E-02 

 

-19.2085 

-190671 

-19.1909 

3.50E-02 

 

-19.2085 

-19.2085 

-19.2085 

4.62E-14 

 

-19.2085 

-19.2085 

-19.2085 

3.49E-15 

 

-19.2045 

-15.1402 

-17.4365 

1.76E+00 

 

-19.2085 

-11.0696 

-18.8976 

1.46E+00 

 

-19.1978 

-17.2418 

-18.5002 

5.39E-01 

 

-19.2085 

-19.2085 

-19.2085 

3.04E-11 

 

-19.2085 

-15.1402 

-18.6661 

1.38E+00 

 

-19.2085 

-8.09512 

-15.6753 

4.34E+00 

 

-19.2085 

-19.2085 

-19.2085 

7.08E-15 

Continued on next page
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F21 

Best 

Worst 

Mean 

Std. 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

2.46E-02 

2.77E+02 

2.00E+01 

5.10E+01 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

0.00E+00 

2.18E-01 

7.27E-03 

3.91E-02 

 

0.00E+00 

4.25E-04 

1.42E-05 

7.63E05 

 

3.89E-14 

3.07E-10 

4.61E-11 

7.48E-11 

 

2.19E-14 

1.61E-07 

1.23E-08 

3.99E-08 

 

0.00E+00 

1.01E-11 

8.45E-13 

2.53E-12 

 

0.00E+00 

2.18E-01 

4.36E-02 

8.73E-02 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

0.00E+00 

2.18E-01 

7.27E-03 

3.91E-02 

F22 

Best 

Worst 

Mean 

Std. 

 

0.9980 

7.8744 

3.1206 

1.5166 

 

0.9980 

11.7187 

5.6677 

3.3755 

 

0.9980 

12.6705 

3.7015 

4.2544 

 

0.9980 

21.0726 

7.1859 

5.9973 

 

0.9980 

19.0927 

7.1387 

5.0527 

 

0.9980 

11.7187 

3.8905 

2.8277 

 

0.9980 

10.7631 

4.0405 

2.7850 

 

0.9980 

2.9821 

1.2296 

0.5545 

 

0.9980 

15.5038 

3.7774 

3.7025 

 

0.9980 

12.6705 

9..3507 

4.2385 

 

0.9980 

5.9288 

2.0953 

1.1788 

F23 

Best 

Worst 

Mean 

Std. 

 

2.56E-28 

3.61E-23 

2.17E-24 

6.99E-24 

 

1.21E-01 

2.72E+00 

1.25E+00 

7.33E-01 

 

7.90E-16 

4.88E-14 

1.52E-14 

1.35E-14 

 

4.33E-20 

4.17E-02 

2.04E-03 

7.71E-03 

 

1.21E-07 

4.43E-02 

6.25E-03 

9.59E-03 

 

6.19E-04 

1.15E-02 

2.96E-03 

2.13E-03 

 

6.68E-04 

2.38E-02 

6.64E-03 

5.39E-03 

 

3.02E-05 

9.67E-03 

1.58E-03 

2.23E-03 

 

2.83E-11 

1.80E-05 

7.75E-07 

3.26E-06 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

5.24E-06 

3.70E-04 

9.21E-05 

9.81E-05 

F24 

Best 

Worst 

Mean 

Std. 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

8.11E-09 

2.87E-02 

5.77E-03 

6.40E-03 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

0.00E+00 

1.83E-02 

3.19E-03 

4.97E-03 

 

0.00E+00 

9.29E-03 

6.34E-04 

1.87E-03 

 

0.00E+00 

6.66E-16 

4.44E-17 

1.33E-16 

 

0.00E+00 

3.65E-11 

2.42E-12 

8.09E-12 

 

0.00E+00 

3.12E-03 

1.04E-04 

5.61E-04 

 

0.00E+00 

3.12E-03 

1.04E-03 

1.47E-03 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

0.00E+00 

1.82E-10 

6.08E-12 

3.27E-11 

F25 

Best 

Worst 

Mean 

Std. 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

7.26E-06 

3.47E-01 

6.88E-02 

8.83E-02 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

0.00E+00 

6.58E-02 

4.12E-03 

1.22E-02 

 

0.00E+00 

6.24E-03 

2.08E-04 

1.23E-03 

 

0.00E+00 

6.78E-13 

7.06E-14 

1.65E-13 

 

1.55E-15 

3.29E-10 

3.01E-11 

8.36E-11 

 

0.00E+00 

3.78E-07 

1.26E-08 

6.78E-08 

 

0.00E+00 

3.08E-03 

3.68E-04 

8.13E-04 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

0.00E+00 

6.33E-03 

3.62E-04 

1.37E-03 

F26 

Best 

Worst 

Mean 

Std. 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

1.54E-05 

1.20E-01 

7.58E-02 

4.08E-02 

 

0.00E+00 

1.00E-01 

3.67E-02 

4.80E-02 

 

0.00E+00 

1.00E-01 

7.66E-02 

4.22E-02 

 

0.00E+00 

1.43E-01 

4.63E-02 

5.27E-02 

 

1.38E-17 

1.00E-01 

2.03E-02 

3.98E-02 

 

5.89E-15 

4.11E-02 

1.38E-03 

7.38E-03 

 

0.00E+00 

1.00E-01 

7.00E-02 

4.58E-02 

 

0.00E+00 

1.00E-01 

4.33E-02 

4.95E-02 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

0.00E+00 

1.00E-01 

2.40E-02 

4.20E-02 

F27 

Best 

Worst 

Mean 

Std. 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

2.00E-02 

3.60E-01 

2.02E-01 

8.03E-02 

 

0.00E+00 

5.91E-09 

1.97E-10 

1.06E-09 

 

0.00E+00 

4.84E-01 

8.07E-02 

1.00E-01 

 

0.00E+00 

1.46E-01 

1.29E-02 

3.19E-02 

 

0.00E+00 

1.21E-01 

8.09E-03 

3.02E-02 

 

2.22E-16 

1.43E-07 

5.13E-09 

2.57E-08 

 

0.00E+00 

5.11E-05 

2.15E-16 

9.18E-16 

 

0.00E+00 

4.44E-16 

1.48E-17 

7.97E-17 

 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

 

0.00E+00 

1.21E-01 

1.21E-02 

3.63E-02 

Table 9 presents the results of all algorithms in multimodal functions. According to the obtained 

results. The performance of IICO, SCA, WOA algorithms is significantly better than the other eight 

algorithms. They find better values than other algorithms in most functions. Compared with the 

original algorithm, IICO has better performance in functions F10, F13, F14 and F16–F18. The reason 

is that opposition-based learning enhances the exploration and exploitation capabilities of IICO while 

the adaptive parameter strategy provides more exploitation time for the algorithm. In functions F11, 

F12 and F15, there is no difference between the results of IICO and ICO, because ICO has obtained 
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the optimal data. For other algorithms, SCA and WOA have the best results. They have almost the 

same data as IICO. 

Table 10 indicates the results of all algorithms in fixed-dimension multimodal functions. Similar 

to the previous analysis, the results of IICO are overall better than ICO. Overall, IICO, EO and AOA 

have the best performance. 

3.7. Acceleration convergence analysis 

The previous part has a general understanding of the performance of IICO. In this section, IICO 

will be compared with other algorithms, and the comparison results are shown by the convergence 

curve. The results are shown in Figure 7. The figure shows the comprehensive performance of each 

algorithm, such as convergence speed, accuracy and so on. This can better reflect the advantages and 

disadvantages of each algorithm. In unimodal functions, F1–F9, IICO always reaches the optimal 

value fastest. This indicates that IICO has the fastest convergence rate compared to other algorithms. 

Furthermore, IICO also maintains the same performance in multimodal functions F10–F17, that is, it 

can reach the best value fastest. In addition, in functions F10, F13, F14, F16 and F17, IICO has 

higher solution accuracy than the original algorithm. However, in function F18, IICO does not 

perform very well. For fixed-dimension multimodal functions F19–F27, IICO has no best 

performance. In most cases, the performance of AOA is better than that of IICO. Compared with the 

original algorithm, the performance of IICO is still greatly improved. According to the description of 

NFL theory, it is impossible for an algorithm to achieve the best results in all functions, and this 

apples to IICO. In most benchmark functions, IICO has the best performance. In a few functions, its 

results are not the best. 

 

Continued on next page 
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Figure 7. Convergence curves of benchmark functions. 

3.8. Scalability experiments 

In this section, dimensional analysis will be conducted. It refers to making an algorithm run and 

compare results under different dimensions. In general, as the dimension of the problem increases, 

the accuracy of the algorithmic solution decreases. The scalability of the algorithm can be tested by 

dimensional analysis. The scalability means that when the dimension of the problem increases, the 

algorithm can still maintain the same performance except the time cost. In this experiment, the 

dimensions are 50, 100, 150, 200, 300 and 500 respectively. The experimental results are shown in 

Figure 8. 

In unimodal functions F1–F9, it can be seen that the curve of IICO is mostly parallel to the x 

axis. This indicates that IICO has strong scalability. The increase of dimension does not change other 

aspects of performance except time consumption. For multimodal functions, IICO does not perform 

as well as in unimodal functions. In functions F12–F14 and F17, IICO still maintains good scalability. 

However, in other multimodal functions, IICO is unstable. 

 

Continued on next page 
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Figure 8. Scalability analysis results. 
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3.9. Wilcoxon rank sum test 

To demonstrate the difference between IICO and other algorithms, the Wilcoxon rank sum test 

was performed. The optimal results obtained by IICO were compared pairwise with the results of 

other algorithms. The normal value � was set to be 0.05. if � ≤ 0.05, there is a significant 

difference between the two algorithms, otherwise, there is no difference. The results of the Wilcoxon 

rank sum test are shown in Table 11. 

It can be seen from the table that there is little difference between IICO and ICO in the 

unimodal functions. This is because both end up with the optimal value of the functions. The 

advantage of IICO is reflected in the fast convergence speed. In most other cases, � < 0.05. This 

shows that IICO is quite different from other algorithms. 

Table 11. Results of Wilcoxon rank sum test. 

Fcn ICO EO GWO HHO PSO SCA SMA WOA AOA MA 

F1 1 6.39E-5 6.39E-5 6.39E-5 6.39E-5 6.39E-5 6.39E-5 1 6.39E-5 6.39E-5 

F2 1 6.39E-5 6.39E-5 6.39E-5 6.39E-5 6.39E-5 6.39E-5 1 6.39E-5 6.39E-5 

F3 6.38E-5 6.39E-5 1.83E-4 1.83E-4 1.83E-4 1.83E-4 1.83E-4 6.39E-5 1.83E-4 1.83E-4 

F4 1 6.39E-5 6.39E-5 1 6.39E-5 6.39E-5 6.39E-5 1 6.39E-5 6.39E-5 

F5 1 6.39E-5 6.39E-5 1 6.39E-5 6.39E-5 6.39E-5 1 6.39E-5 6.39E-5 

F6 1 6.39E-5 6.39E-5 1 6.39E-5 6.39E-5 6.39E-5 1 6.39E-5 6.39E-5 

F7 1 6.39E-5 6.39E-5 1 6.39E-5 6.39E-5 6.39E-5 1 6.39E-5 6.39E-5 

F8 1 6.39E-5 6.39E-5 6.39E-5 6.39E-5 6.39E-5 6.39E-5 6.39E-5 6.39E-5 6.39E-5 

F9 1 6.39E-5 6.39E-5 6.39E-5 6.39E-5 6.39E-5 6.39E-5 6.39E-5 6.39E-5 6.39E-5 

F10 6.39E-5 1.41E-4 1.83E-4 6.39E-5 1.83E-4 6.39E-5 1.83E-4 8.74E-5 1.83E-4 1.83E-4 

F11 1 1 6.39E-5 1 6.39E-5 1 6.39E-5 1 6.39E-5 6.39E-5 

F12 1 7.51E-4 6.39E-5 1 6.39E-5 1 2.31E-4 1 6.39E-5 6.39E-5 

F13 0.36812 0.04497 8.74E-5 0.36812 8.74E-5 0.36812 3.80E-4 0.36812 8.74E-5 8.74E-5 

F14 6.39E-5 1.83E-4 1.83E-4 1.83E-4 1.83E-4 6.39E-5 1.83E-4 0.16197 1.83E-4 1.83E-4 

F15 1 6.39E-5 6.39E-5 1 6.39E-5 1 6.39E-5 0.36812 6.39E-5 6.39E-5 

F16 0.52052 1.83E-4 1.83E-4 0.96985 1.83E-4 0.16197 1.83E-4 0.12122 0.85010 1.83E-4 

F17 1.04E-4 0.02525 0.00151 0.28718 1.25E-4 1.73E-4 0.03990 0.00106 0.96974 0.12960 

F18 0.27303 1.83E-4 1.83E-4 1.83E-4 1.83E-4 0.14047 3.29E-4 1.82E-4 0.00579 0.00131 

F19 1.83E-4 1.83E-4 1.83E-4 2.46E-4 1.83E-4 1.83E-4 1.83E-4 1.83E-4 6.39E-5 1.83E-4 

F20 0.1858 1.83E-4 1.31E-4 0.18421 1.83E-4 0.12122 1.83E-4 0.00283 0.14046 8.74E-5 

F21 6.39E-5 6.39E-5 6.39E-5 1.83E-4 1.83E-4 1.83E-4 1.82E-4 1.11E-4 6.39E-5 1.49E-4 

F22 0.02574 0.00218 0.34452 0.38467 0.03756 0.02574 1.82E-4 0.00100 0.52052 5.66E-4 

F23 1.83E-4 1.83E-4 1.83E-4 1.83E-4 1.83E-4 1.83E-4 1.83E-4 1.83E-4 6.39E-5 1.83E-4 

F24 6.39E-5 6.39E-5 0.00610 1.11E-4 8.74E-5 1.81E-4 6.39E-5 3.11E-4 6.39E-5 6.39E-5 

F25 6.39E-5 6.39E-5 0.00294 1.63E-4 1.83E-4 1.83E-4 1.10E-4 3.97E-4 6.39E-5 2.03E-4 

F26 6.39E-5 7.80E-4 0.02963 0.03734 0.01725 1.83E-4 0.00211 0.00406 6.39E-5 9.18E-4 

F27 6.39E-5 6.39E-5 0.00141 1.32E-4 1.83E-4 1.83E-4 6.39E-5 6.39E-5 6.39E-5 6.39E-5 
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3.10. Evaluation of IICO on CEC2014 function 

CEC functions have complex mathematical structures. They are more difficult to find the 

optimal value than the benchmark functions. In this section, the comparison of the algorithms on the 

CEC2014 test functions is performed. These algorithms include two state-of-the-art algorithms, 

LSHADE [34] and LSHADE-SPACMA [35]. The results are shown in Table 12. 

Table 12. CEC2104 test results. 

 IICO ICO HHO LSHADE LSHADE-SPACMA 

F28 

Best 

Worst 

Mean 

Std. 

 

458.0157 

895.7601 

576.1347 

111.8281 

 

456.6196 

1.0645e+03 

588.2630 

131.3821 

 

400.0376 

496.1323 

431.6983 

23.2622 

 

400 

434.7803 

428.1711 

13.3871 

 

400 

434.7803 

428.0843 

13.5576 

F29 

Best 

Worst 

Mean 

Std. 

 

517.7725 

520.5204 

520.1231 

0.3776 

 

518.4564 

520.1594 

519.9954 

0.2897 

 

520.0037 

520.3373 

520.1203 

0.0929 

 

501.7420 

520.1743 

518.4621 

4.8766 

 

500.5866 

520.1129 

518.3436 

5.1409 

F30 

Best 

Worst 

Mean 

Std. 

 

604.2333 

607.6096 

606.4195 

0.6766 

 

604.3164 

608.5105 

606.5850 

0.9208 

 

603.8481 

610.3561 

607.2116 

1.4511 

 

600.0001 

602.4061 

600.4229 

0.6116 

 

600 

601.6936 

600.3684 

0.5003 

F31 

Best 

Worst 

Mean 

Std. 

 

701.5993 

796.0747 

734.9033 

18.7059 

 

703.7027 

807.5509 

737.1079 

19.9049 

 

700.3113 

701.5392 

700.7617 

0.2443 

 

700 

700.1106 

700.0393 

0.0261 

 

700.0002 

700.0861 

700.0282 

0.0203 

F32 

Best 

Worst 

Mean 

Std. 

 

1.2001e+03 

1.2007e+03 

1.2003e+03 

0.1288 

 

1.2001e+03 

1.2004e+03 

1.2002e+03 

0.0682 

 

1.2003e+03 

1.2015e+03 

1.2006e+03 

0.2549 

 

1.2000e+03 

1.2002e+03 

1.2001e+03 

0.0391 

 

1.2001e+03 

1.2002e+03 

1.2002e+03 

0.0401 

F33 

Best 

Worst 

Mean 

Std. 

 

1.3003e+03 

1.3034e+03 

1.3014e+03 

0.9532 

 

1.3003e+03 

1.3034e+03 

1.3014e+03 

0.9575 

 

1.3002e+03 

1.3010e+03 

1.3006e+03 

0.2074 

 

1.3000e+03 

1.3002e+03 

1.3001e+03 

0.0422 

 

1.3000e+03 

1.3002e+03 

1.3001e+03 

0.0430 

F34      

Best 1.4003e+03 1.4003e+03 1.4001e+03 1.4001e+03 1.4001e+03 

Worst 1.4211e+03 1.4205e+03 1.4013e+03 1.4003e+03 1.4004e+03 

Continued on next page 
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Mean 1.4095e+03 1.4076e+03 1.4003e+03 1.4002e+03 1.4002e+03 

Std. 5.0227 4.5588 0.2629 0.0722 0.0975 

F35 

Best 

Worst 

Mean 

Std. 

 

1.6026e+03 

1.6037e+03 

1.6032e+03 

0.2732 

 

1.6026e+03 

1.6036e+03 

1.6032e+03 

0.2747 

 

1.6024e+03 

1.6040e+03 

1.6033e+03 

0.3063 

 

1.6013e+03 

1.6034e+03 

1.6022e+03 

0.4347 

 

1.6009e+03 

1.6029e+03 

1.6019e+03 

0.4306 

It can be seen that LSHADE and LSHADE-SPACAM, as the winners of the CEC competition, 

have superior performance on CEC2014 test functions. The results of IICO are similar to those of 

these two algorithms except for F28 and F31. From the results, IICO does not have much 

improvement compared to ICO. 

4. Solving engineering design problems 

IICO was applied to three famous engineering design problems to test its accuracy and 

efficiency, such as gear train design and welded beam design. To handle constraints, a static penalty 

function method is adopted. In the penalty function method, the fitness function is defined as the sum 

of the objective function and a penalty term which depends on the constraint violation [36]. The 

penalty coefficient is a constant for all constraints, which can penalize the solution that violate 

constraints. 

The following subsections present the results of using the algorithms in each problem. 

Moreover, each algorithm runs 30 times independently. The number of function evaluations is 

� × 2000. 

4.1. Gear train design 

The objective of this problem is to find the optimal number of tooth for four gears of a train to 

minimize the gear ratio [37]. There are four variables in this problem. Since the values of each 

variable are integers, all results are rounded to integers. This problem is defined as follows: 

��� ∙ �(�) = �
1

6.931
−

����

����
�

�

 

�. �.∙ 12 ≤ ��, ��, ��, �� ≤ 60                          (30) 

The results obtained by IICO and other algorithms are presented in Table 13. The table shows 

that IICO has better fitness value in solving the problem compared with the original ICO algorithm. 

IICO is also better than other algorithms. 
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Table 13. Results on gear train design problem. 

Algorithm 
Optimal solution 

���� 
�� �� �� �� 

IICO 49 19 21 58 1.1787E-25 

ICO 54 13 26 47 8.1821E-16 

AOA 48 13 13 25 1.0977E-10 

EO 41 13 20 46 7.7582E-12 

HHO 31 14 12 40 2.5704E-14 

PSO 58 29 12 42 1.5514E-19 

SCA 13 17 53 12 7.3005E-10 

4.2. Welded beam design 

The welded beam is a common engineering optimization problem with an objective to find an 

optimal set of the dimensions ℎ = ��, � = ��, � = ��, and � = �� such that the fabrication cost of 

the beam is minimized. It’s a continuous optimization problem. The cost of the welded beam is 

formulated as follows: 

��� ∙ �(�) = 1.10471��
��� + 0.04811����(14 + ��) 

�. �.  ∙ ��(�) = �(�) − ���� ≤ 0 

∙ ��(�) = �(�) − ���� ≤ 0 

∙ ��(�) = �� − �� ≤ 0 

∙ ��(�) = 0.10471��
� + 0.04811����(14 + ��) − 5 ≤ 0 

∙ ��(�) = 0.125 − �� ≤ 0 

∙ ��(�) = �(�) − ���� ≤ 0 

∙ ��(�) = � − ��(�) ≤ 0                            (31) 

The related variables and constants are expressed as follows: 

�(�) = �(��)� + 2�����
��

2�
+ (���)�, 

�� =
�

√2����

, ��� =
��

�
, � = �(� + �� 2⁄ ), 

� = �
��

�

4
+

(�� + ��)�

4
, 

� = 2 �√2���� �
��

�

12
+

(�� + ��)�

4
��, 



10311 

Mathematical Biosciences and Engineering  Volume 19, Issue 10, 10275-10315. 

�(�) =
6��

����
�, 

�(�) =
4���

���
���

, 

��(�) =
4.013����

���
�

36
��

�1 −
��

2�
�

�

4�
�, 

� = 6000, � = 14, � = 30 × 10�, 

� = 12 × 10�, 

���� = 13000, ���� = 30000, ���� = 0.25 

The range of the variables is as follows: 

0.1 ≤ �� ≤ 2, 0.1 ≤ �� ≤ 10, 0.1 ≤ �� ≤ 10, 0.1 ≤ �� ≤ 2 

There have been many meta-heuristic algorithms applied to this problem, such as GAS, EO, GA, 

HS. The results are shown in Table 14. Apparently, IICO is not the best, while it is a big 

improvement over ICO. 

Table 14. Best solutions for the welded beam design problem. 

Algorithm 
Optimal solution 

���� 
�� �� �� �� 

IICO 0.1601 4.5519 9.0114 0.2068 1.7928 

ICO [31] 0.204 7.1773 9.0367 0.20573 2.2241 

GSA [18] 0.1821 3.85697 10 0.20237 1.879952 

EO [3] 0.2057 3.4705 9.0366 0.2057 1.7249 

GA [38] N/A N/A N/A N/A 1.8245 

HS [39] 0.2442 6.2231 8.2915 0.2433 2.3807 

WOA [18] 0.20539 3.48429 9.03742 0.20627 1.730499 

4.3. Pressure Vessel design 

The pressure vessel design is an engineering optimization problem with the objective to 

minimize the total cost of material, forming and welding. There are four variables in the problem 

containing thickness of shell �� = ��, thickness of head �� = ��, inner radius � = ��, and length 

of shell � = ��. �� and �� are integer multiples of 0.0625 inch, which are the available thickness 

of rolled steel plates, and � and � are continuous. The structure of the problem is described below. 

��� �(�) = 0.6224������ + 1.7781����
� + 3.1661��

��� + 19.84��
��� 

subject to four constraints 
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 �� = −�� + 0.0193�� ≤ 0, 

 �� = −�� + 0.00954�� ≤ 0, 

  �� = −���
��� −

�

�
���

� + 1296000 ≤ 0, 

�� = �� − 240 ≤ 0                              (32) 

where 0 ≤ ��, �� ≤ 99 and 10 ≤ ��, �� ≤ 200. 

Table 15. Best solutions for the pressure vessel design problem. 

Algorithm 
Optimal solution 

���� 
�� �� �� �� 

IICO 0.7857 0.38847 40.7103 194.6561 5899.637 

ICO [31] 0.78168 0.38639 40.5017 197.4812 5891.383 

GSA [18] 1.125 0.625 55.9886 84.4542 8538.836 

EO [3] 0.8125 0.4375 42.0984 176.6365 6059.7143 

GA [38] 0.8125 0.4345 40.3239 200 6288.745 

PSO [40] 0.8125 0.4375 42.0912 176.7465 6061.078 

WOA [18] 0.8125 0.4375 42.0982 176.6389 6059.741 

Meta-heuristic algorithms have been widely used to solve this problem. Table 15 shows the 

results of the comparison. In the existing literature, the minimum values obtained by ICO, GSA, EO, 

GA, PSO, and WOA are 5891.383, 8538.836, 6059.7143, 6288.745, 6061.078 and 6059.741 

respectively. Of these, ICO has the best results. IICO obtains the minimum cost of 5899.637. It is 

slightly worse than the results of ICO, while better than the other five algorithms. The adaptive 

parameter strategy speeds up the process of an algorithm from exploration to exploitation, which 

means that the exploration time of the algorithm is reduced. Although OBL has the effect of 

enhancing population diversity in the exploration phase, it may obtain relatively poor results when 

dealing with some complex problems. Therefore, the results of IICO are slightly worse than ICO. 

5. Discussion and conclusions 

In this paper, an improved intelligent chaotic clonal optimizer based on adaptive parameter 

strategy (IICO) is proposed. The improvement introduces the opposition-based learning (OBL) 

strategy to enhance the solution accuracy and the diversity of the population. The adaptive parameter 

strategy can effectively prevent from the stagnation of the global optimal update and accelerate the 

convergence speed of the algorithm. The experiment results of twenty-seven benchmark functions 

and three engineering optimization problems show that IICO has better comprehensive performance. 

And it’s superior to other algorithms in terms of solution accuracy and convergence speed. Although 

the adaptive parameter strategy prevents the stagnation of the optimal value update, it also reduces 

the time of exploration. This is not a problem when dealing with benchmark functions. However, 

when solving some complex problems, the results are not desired. For example, in the above 

experiments, IICO is no better than ICO when addressing CEC test functions and the third 

engineering optimization problem. Solving this problem will be a future research direction. At the 

same time, meta-heuristic algorithms have a wide range of applications in the field of UAVs. Some 
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research work is also underway. In the future, the application of IICO to the UAV path planning 

problem will be considered. 
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