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Abstract: Coinfection is the process of an infection of a single host with two or more pathogen
variants or with two or more distinct pathogen species, which often threatens public health and the
stability of economies. In this paper, we propose a novel two-strain epidemic model characterizing
the co-evolution of coinfection and voluntary vaccination strategies. In the framework of evolutionary
vaccination, we design two game rules, the individual-based risk assessment (IB-RA) updated rule, and
the strategy-based risk assessment (SB-RA) updated rule, to update the vaccination policy. Through
detailed numerical analysis, we find that increasing the vaccine effectiveness and decreasing the
transmission rate effectively suppress the disease prevalence, and moreover, the outcome of the SB-
RA updated rule is more encouraging than those results of the IB-RA rule for curbing the disease
transmission. Coinfection complicates the effects of the transmission rate of each strain on the final
epidemic sizes.
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1. Introduction

Many infectious diseases, such as novel coronavirus pneumonia (COVID-19), Ebola and
monkeypox, are caused by pathogen variants that can be spread among people and which endanger
human life and threaten national security. With the increase of the convenience of modern logistics,
some extinct diseases recur, and some re-surging epidemics emerge. Therefore, how to effectively
curtail the disease spread has been a major concern of the whole modern society.
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Vaccines can boost the production of competent antibodies by stimulating the immune system and
lower the morbidity and mortality rates. Hence, vaccination plays a crucial role in preventing and
controlling outbreaks of the diseases. Specific immunity induced by vaccination effectively fights
against the invasion of viruses, bacteria and other pathogens. With the advancement of science and
technology, more and more vaccines have been developed to effectively resist infectious diseases and
radically eradicate the diseases, such as smallpox, diphtheria, varicella, etc.

Facing an emerging disease, it is sometimes possible to take a voluntary vaccination strategy to
curb its prevalence. In this case, everyone is inclined to either get vaccinated or not. Therefore, the
onset of an epidemic depends not only on the transmission mechanisms of an infectious disease, but
also on the choices of potential vaccine recipients. For a bounded rationality, they will evaluate the
payoff from vaccination, including the side effects of vaccines and the potential risk if they do not
take the vaccine, to decide to get vaccinated or not [1]. A myriad of studies has shown that voluntary
vaccination policies cannot radically eliminate the outbreak of an epidemic because of the behavior-
disease-vaccination interactions, which may form a feedback loop [2–5]. When a disease breaks out
and causes lots of deaths, most people would like to receive a vaccination for preventing the disease
infection. Once the vaccination coverage reaches a certain level and produces herd immunity, the
disease will be effectively controlled. As a consequence, the non-vaccinated have no motivation to get
vaccinated and lead to the resurgence of the epidemic.

To further study how individuals’ behaviors influence infectious diseases, researchers have
employed the evolutionary game theory to set up co-evolutionary models of infectious diseases and
human behaviors [6–14]. Indeed, such models provide useful tools to understand the effects of human
behaviors on the development of an epidemic. For instance, Kuge and Tanimoto simultaneously
proposed a susceptible-infected-recovered (SIR) epidemic model to consider the effects of innate
immunity from the treatment and specific immunity from vaccination [15]. Alam et al. adopted an
SIR epidemic model to find that imperfect immunization attenuates the rate of virus transmission and
gives a second protection to the vaccinated even though they do not receive perfect vaccine
protection [16]. Later, Alam coupled the vaccination evolutionary game and an SEIR/V model to
study the effects of two control strategies: isolation and quarantine. It was found that the effects of
isolation are better than those of quarantine [17]. Arefin et al, based on evolutionary game theory,
proposed a two-strain model to evaluate the trade-off of the evolutionary mutation [18]. Kabir et al.
combined the SIR model with unawareness and awareness to study the effect of information
dissemination on preventing the transmission of infectious diseases [19]. Huang et al. proposed a
mathematical model based on complex networks to investigate the co-evolution of epidemic
transmission and individuals’ behaviors [20].

Most infectious diseases are caused by a single pathogenic strain, but in reality, the disease may be
caused by different variants of the pathogen, such as the variants of COVID-19 represented by more
than 5 serotypes: alpha, beta, gamma, delta and omicron [21]. Influenza can be categorized by three
serotypes: A, B and C. Such multi-strains interact with each other, and some trade-off mechanisms
have been identified that result in the coexistence of pathogens in epidemic models. Coinfection is
one such trade-off mechanism, and it is defined as a process of the single host infected by two or more
pathogenic strains. Evidences has shown that coinfection is common in HIV (human
immunodeficiency virus) infection, with combined infections with TB, hepatitis and malaria. Most
importantly, co-infection by variants of a pathogen often leads to more mortality and brings a huge
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challenge to public health. Therefore, it is necessary to create appropriate approaches to evaluate the
effects of coinfection. Many researchers have used infectious disease models to analyze the impacts
of coinfection on epidemic spread. Gao et al. showed that coinfection leads to the coexistence of
muti-strain mechanisms [22]. In [23], Elaiw et al. proposed a single-host SARS-CoV-2/HIV
co-infection model, and they showed that weak CD4+ T cell immunity in co-infected patients can
cause severe SARS-CoV-2 infections from a cellular perspective. Hezam et al. proposed the
co-infection phenomenon between COVID-19 and cholera to evaluate the combinations of the best
policies for curbing such two diseases [24]. Newman and Ferrario studied a co-infection model on a
contact network and showed that the results on scale-free networks are in agreement with those results
on large wired networks [25]. Osman and Makinde built a listeriosis and anthrax coinfection model,
and they studied the effects on each strain and coinfected strain by varying exposure rates [26].
Martcheva and Pilyugin used an age-structured epidemic model to characterize the coinfection
phenomena [27]. Through detailed analysis, they showed that coinfection produces rich dynamics,
including backward bifurcation and Hopf bifurcation. Li et al. proposed a multiscale system taking
into account for interplays of within and between systems [28]. On an intra-host scale, the two strains
compete with each other, and the one with a larger basic reproduction number dominates. On a
population scale, co-infection results in the coexistence of the two strains. Sanz et al. proposed a
two-strain epidemic model with coinfection on complex networks [29].

In most of the reviewed existing epidemic models with coinfection, they have neglected the effects
of individual vaccination behaviors on the evolution of the epidemic infection. In this paper, we couple
the evolutionary vaccination behaviors and epidemic models to examine the effect of the co-infection
mechanism on the development of an epidemic. The aim of this paper is to explore the co-evolution of
flu infection and uptaking vaccination strategies of individuals.

This paper is organized as follows: In Section 2, we design a game theoretical-compartmental
epidemic model with coinfection. In Section 3, we study the dynamics of the model through a detailed
analysis. Finally, in Section 4, we end with a brief discussion.

2. The model formulation

We assume that an outbreak of an epidemic happens at two distinct time scales. One is the local
time scale (tlocal), and the other is the global time scale (tglobal). On the first time scale, the period
goes through the onset to the end of the epidemic. On the last time scale, individuals taking vaccines
dynamically evolves along with periodical outbreaks of the epidemic.

2.1. The epidemic model

Similar to [18], we classify the total population into eight categories: S (tlocal) is the proportion
of susceptible individuals at time t, V(tlocal) is the proportion of vaccinated individuals at time tlocal,
I1S (tlocal) is the proportion of susceptible individuals infected by strain one at time tlocal, I1V(tlocal) is
the proportion of vaccinated individuals infected by strain one at time tlocal, I2S (tlocal) is the proportion
of susceptible individuals infected by strain two at time tlocal, I2V(tlocal) is the proportion of vaccinated
individuals infected by strain two at time tlocal, J(tlocal) is the proportion of individuals infected by strain
one and strain two at time tlocal, and R(tlocal) is the proportion of recovered individuals at time tlocal.

We assume that individuals initially infected by strain 1 can be re-infected by strain 2, and they
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Figure 1. Schematic diagram of the S VI1I2JR (susceptible-vaccinated-infected with strain
1-infected with strain 2-coinfected-recovered) epidemic model.

move to the co-infection class (J(tlocal)). Similarly, individuals initially infected by strain 2 can be
re-infected by strain 1, and they move to the co-infection class (J(tlocal)). Since the vaccine is not fully
effective, we assume that its efficacy values for strain 1 and strain 2 are the coefficients e1 and e2.
Susceptibles (S (tlocal)), vaccinated individuals (V(tlocal)), susceptibles infected by strain 2 (I2S (tlocal))
and vaccinated individuals infected by strain 2 (I2V(tlocal)) can become individuals infected by strain 1
at transmission rate β1. Susceptibles (S (tlocal)), vaccinated individuals (V(tlocal)), susceptibles infected
by strain 1 (I1S (tlocal)) and vaccinated individuals infected by strain 1 (I1V(tlocal)) can become ones
infected by strain 2 at a transmission rate β2. Individuals infected by strain 1 (I1S (tlocal), I1V(tlocal))
recover at rate γ1, and then they move to the recovery class (R(tlocal)). Individuals infected by strain 2
(I2S (tlocal), I2V(tlocal)) recover at a rate of γ2, and then they move to the recovery class (R(tlocal)). It is
assumed that co-infected individuals (J(tlocal)) take a longer time to recover than individuals infected
by one of the strains alone (γ3 < min{γ1, γ2}). A schematic diagram of our model is presented in Figure
1. The framework of a two-strain epidemic model with coinfection takes the following form.

dS (tlocal)
dt

= − β1S (tlocal) (I1 (tlocal) + J (tlocal)) − β2S (tlocal) (I2 (tlocal) + J (tlocal)) ,

dV (tlocal)
dt

= − β1 (V (tlocal) − e1V (x, 0)) (I1 (tlocal) + J (tlocal))

− β2 (V (tlocal) − e2V (0)) (I2 (tlocal) + J (tlocal)) ,
dI1S (tlocal)

dt
=β1S (tlocal) (I1 (tlocal) + J (tlocal)) − β2I1S (tlocal) (I2 (tlocal) + J (tlocal)) − γ1I1S (tlocal) ,

dI1V (tlocal)
dt

=β1 (V (tlocal) − e1V (0)) (I1 (tlocal) + J (tlocal))

− β2I1V (tlocal) (I2 (tlocal) + J (tlocal)) − γ1I1V (tlocal) ,
dI2S (tlocal)

dt
=β2S (tlocal) (I2 (tlocal) + J (tlocal)) − β1I2S (tlocal) (I1 (tlocal) + J (tlocal)) − γ2I2S (tlocal) , (2.1)

dI2V (tlocal)
dt

=β2 (V (tlocal) − e2V (0)) (I2 (tlocal) + J (tlocal))
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− β1I2V (tlocal) (I1 (tlocal) + J (tlocal)) − γ2I2V (tlocal) ,
dJ (tlocal)

dt
=β2I1S (tlocal) (I2 (tlocal) + J (tlocal)) + β2I1V (tlocal) (I2 (tlocal) + J (tlocal))

+ β1I2S (tlocal) (I1 (tlocal) + J (tlocal)) + β1I2V (tlocal) (I1 (tlocal) + J (tlocal)) − γ3J (tlocal) ,
dR (tlocal)

dt
=γ1I1S (tlocal) + γ1I1V (tlocal) + γ2I2S (tlocal) + γ2I2V (tlocal) + γ3J (tlocal) .

Define
I1 (tlocal) = I1S (tlocal) + I1V (tlocal) , I2 (tlocal) = I2S (tlocal) + I2V (tlocal) .

To satisfy the biological significance, all parameters are positive, and they are chosen from Table 1.
The total population is given by

S (tlocal) + V (tlocal) + I1 (tlocal) + I2 (tlocal) + J (tlocal) + R (tlocal) = 1.

The initial values satisfy

S (0) = 1 − x > 0,V(0) = x ≥ 0, I1(0) = 0, I2(0) = 0, J(0) = 0,R(0) = 0.

Table 1. Summary of the parameters of model (2.1).

Parameters Description Value Source
β1 The transmission rate for strain 1 0.5 day−1 Assumed
β2 The transmission rate for strain 2 0.7 day−1 Assumed
γ1 Recovery rate after infection by strain 1 1/11 day−1 [30]
γ2 Recovery rate after infection by strain 2 1/9 day−1 [30]
γ3 Recovery rate after infection by strain 1 and strain 2 1/14 day−1 Assumed
e1 Effectiveness of vaccination at protecting against strain 1 0.61 [31]
e2 Effectiveness of vaccination at protecting against strain 2 0.33 [31]

In fact, in model 2.1, strain 1 can be considered as influenza A (H1N1) virus, and strain 2 is
associated with influenza A (H3N2) virus. As we know, an influenza quadrivalent vaccine can protect
against four different influenza viruses. In addition, all people over 6 months of age need to get an
annual flu shot for slowing down influenza transmission.

2.1.1. The final epidemic size

The final epidemic size is the proportion of the population that is infected at the end of the
epidemic. Since all the infected individuals finally become the recovered ones at the end of the
disease, the proportion of recovered individuals at the final stage of the epidemic ((tlocal = ∞)) is the
final size of the epidemic, denoted by R(∞). Similarly, we have the following.

• HV is a collective term referring to individuals who choose to get vaccinated before the outbreak,
but they are not infected by any strain during the epidemic, represented by HV(∞).
• I1V is a collective term referring to individuals who choose to get vaccinated before the outbreak,

and they are infected by strain 1 during the epidemic, represented by I1V(∞).
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• I2V is a collective term referring to individuals who choose to get vaccinated before the outbreak,
and they are infected by strain 2 during the epidemic, represented by I2V(∞).
• IV is another collective term referring to individuals who choose to get vaccinated before the

outbreak, and they are co-infected by strains 1 and 2 during the epidemic, represented by IV(∞).
• SFR is a collective term referring to individuals who are not vaccinated before the outbreak, and

they are not infected by any strain during the epidemic, represented by S FR(∞).
• FFR1 is a collective term referring to individuals who are not vaccinated before the outbreak, but

they are infected by strain 1 during the epidemic, represented by FFR1(∞).
• FFR2 is a collective term referring to individuals who are not vaccinated before the outbreak, but

they are infected by strain 2 during the epidemic, represented by FFR2(∞).
• FFR is a collective term referring to individuals who are not vaccinated before the outbreak, but

they are infected by both strain 1 and strain 2 during the epidemic, represented by FFR(∞).

2.1.2. The reproduction number

Based on the next generation matrix [32], the reproduction number associated with each strain is
defined by

Ri =
βi (1 − eix)
γi

, i = 1, 2.

Hence, the basic reproduction number is

R0 = max {R1,R2} .

When R0 < 1, system (2.1) has only a disease-free equilibrium (DFE), which means that neither
strain colonizes the host, and the disease becomes extinct. When R1 > 1,R2 < 1, it follows from the
competitive exclusion principle that strain 1 is dominant, and strain 2 is eliminated. Similarly, when
R2 > 1,R1 < 1, strain 2 is dominant, and strain 1 is eradicated. When R1 > 1,R2 > 1, the two strains
coexist, and the two strains both invade the host.

2.2. The decision-making stage

Although the extermination of smallpox served as a perfect example of completely eliminating a
disease by vaccines, there are still many diseases that cannot be radically eradicated in a region. There
is a paradox in immuno-epidemiology: While vaccination leads to herd immunity, individuals who
have not been vaccinated are indirectly protected against the disease with no incentive to take vaccines,
and they don’t pay any costs. These are called free riders. From a personal payment perspective, free
riders are not required to pay any costs associated with the epidemic.

Next, we analyze the payoffs of different types of people. The cost of the vaccinated from direct
costs and side-effects is denoted by CV . The payoff of potential infection from the risk of death and
suffering is denoted by CI . Thus, the relative payoff of vaccination is Cr = CV/CI . We assume that the
payoff of the vaccinated is less than the that of the non-vaccinated, and 0 < Cr ≤ 1. Here, we divide
the relative payoffs of the population into eight categories (see Table 2). We can obtain the average
social payoff π, the average vaccinated payoff ⟨πV⟩, and the average unvaccinated payoff ⟨πNV⟩.

π = − CrHV (∞) − (Cr + 1) (I1V (∞) + I2V (∞)) − (Cr + 2) IV (∞)

− (FFR1 (∞) + FFR2 (∞) + 2FFR (∞)) ,
(2.2)
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⟨πV⟩ = − (CrHV (∞) + (Cr + 1) (I1V (∞) + I2V (∞)) + (Cr + 2) IV (∞)) /x, (2.3)

⟨πNV⟩ = − (FFR1 (∞) + FFR2 (∞) + 2FFR (∞)) / (1 − x) . (2.4)

Table 2. Fractions of four types of individuals existing in a population at equilibrium.

State/Strategy Healthy Infected with strain 1 Infected with strain 2
Coinfected with strain 1

and strain 2
Vaccination (V) πHV = −Cr πI1V = −Cr − 1 πI2V = −Cr − 1 πIV = −Cr − 2
Non-vaccination (NV) πS FR = 0 πFFR1 = −1 πFFR2 = −1 πFFR = −2

2.2.1. Strategy adaptation

Unlike adopting static game-theoretic strategies, we assume that the information about the epidemic
is limited, which implies that at the end of each cycle of the epidemic, individuals update their strategies
for the next period depending on their neighbors’ payoffs. For the sake of convenience, we employ the
individual-based risk assessment (IB-RA) strategy proposed by Fu et al. [33] and the strategy-based
risk assessment (SB-RA) strategy proposed by Fukuda et al. [34] to derive the evolutionary game-
theoretical model.

1) Individual-based risk assessment (IB-RA) model
To explore the role played by individual imitative behavior and group structure in vaccination,

Fu et al. [33] proposed an evolutionary game approach. Individual i randomly selects one of his or
her neighbours j to imitate, and he or her would like to imitate one who acquired higher benefits in
the previous epidemic course. The probability of individual i adopting the strategy of individual j is
assumed to be given in the Fermi type [26-29], which takes the form of

P(S i ← S j) =
1

1 + exp[−(π j − πi)/κ]
, (2.5)

where S i denotes the strategy adopted by individual i. πi denotes the payoff by individual i during
the previous epidemic. κ denotes selection intensity. The larger the value of κ, the more likely the
individual is to switch his behaviors. For example, the probability that a healthy vaccinator (HV) will
imitate a successful free-rider (SFR) is formulated by

P (HV ← S FR) =
1

1 + exp[−(0 − (−Cr))/κ]
.

Other cases are shown in the appendix.
2) Strategy-based risk assessment (SB-RA) model
Fukuda et al. modified the uptaken IB-RA rule from the payoff of an individual to an average one.

The transfer probability for individual i is taken in the form of

P(S i ← S j) =
1

1 + exp[−(
〈
π j

〉
− πi)/κ]

, (2.6)
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where
〈
π j

〉
denotes the average payoff for individuals who adopt strategy S j. For example, the

probability that a healthy vaccinator (HV) imitates non-vaccinators is

P(HV ← NV) =
1

1 + exp[−(⟨πNV⟩ − (−Cr))/κ]
.

Similarly, other cases are shown in the appendix.

2.3. Evolutionary dynamics

The vaccination dynamics corresponding to different imitative behaviors can be derived from the
imitation probabilities mentioned above. The global dynamics of an individual behavior in the IB-RA
framework at the global time scale (tglobal) is given by

dx
dtglobal

=HV (∞) · S FR (∞) · (P (S FR← HV) − P (HV ← S FR))

+ HV (∞) · FFR1 (∞) · (P (FFR1 ← HV) − P (HV ← FFR1))

+ HV (∞) · FFR2 (∞) · (P (FFR2 ← HV) − P (HV ← FFR2))

+ HV (∞) · FFR (∞) · (P (FFR← HV) − P (HV ← FFR))

+ I1V (∞) · S FR (∞) · (P (S FR← I1V) − P (I1V ← S FR))

+ I1V (∞) · FFR1 (∞) · (P (FFR1 ← I1V) − P (I1V ← FFR1))

+ I1V (∞) · FFR2 (∞) · (P (FFR2 ← I1V) − P (I1V ← FFR2))

+ I1V (∞) · FFR (∞) · (P (FFR← I1V) − P (I1V ← FFR))

+ I2V (∞) · S FR (∞) · (P (S FR← I2V) − P (I2V ← S FR))

+ I2V (∞) · FFR1 (∞) · (P (FFR1 ← I2V) − P (I2V ← FFR1))

+ I2V (∞) · FFR2 (∞) · (P (FFR2 ← I2V) − P (I2V ← FFR2))

+ I2V (∞) · FFR (∞) · (P (FFR← I2V) − P (I2V ← FFR))

+ IV (∞) · S FR (∞) · (P (S FR← IV) − P (IV ← S FR))

+ IV (∞) · FFR1 (∞) · (P (FFR1 ← IV) − P (IV ← FFR1))

+ IV (∞) · FFR2 (∞) · (P (FFR2 ← IV) − P (IV ← FFR2))

+ IV (∞) · FFR (∞) · (P (FFR← IV) − P (IV ← FFR)) .

(2.7)

The global dynamics of individual behavior in the SB-RA framework at the global time scale (tglobal)
is taken in the form of

dx
dtglobal

=S FR (∞) · V (∞) · P (S FR← V) + FFR1 (∞) · V (∞) · P (FFR1 ← V)

+ FFR2 (∞) · V (∞) · P (FFR2 ← V) + FFR (∞) · V (∞) · P (FFR← V)

− HV (∞) · NV (∞) · P (HV ← NV) − I1V (∞) · NV (∞) · P (I1V ← NV)

− I2V (∞) · NV (∞) · P (I2V ← NV) − IV (∞) · NV (∞) · P (IV ← NV) .

(2.8)
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3. Diagram analyses

Due to the complexity of the system, we have conducted numerical simulations to show the
dynamics of the model. We focus on how the parameters affect the dynamics. Similar to [18], we first
investigated the influence of vaccine effectiveness on the game-theoretic epidemic system in the
frameworks of the IB-RA and SB-RA rules. Meanwhile, we investigated the effects of the
transmission rate of each strain on the evolutionary game system by adopting such two rules.

3.1. The effects of vaccine effectiveness values e1 and e2

The top and bottom panels of Figure 2 respectively show the influence of e1 and e2 on the
reproduction number of Strain 1 (R1), the reproduction number of Strain 2 (R2), final epidemic size
(FES), vaccination coverage (VC) and social average payment (ASP) in the frameworks of the IB-RA
and SB-RA rules. In Figure 2, the horizontal coordinate represents the effectiveness of the vaccine
against Strain 1 and the vertical coordinate indicates the effectiveness of the vaccine against Strain 2.
First, we have noted that there exists a triangular region in the lower left corners of subplots of Figure
2. In such regions, the efficacy of vaccines is not high enough to curtail the two strains, a large
number of people will be infected, and fewer people will take vaccines. As a consequence, it will
cause a huge socioeconomic burden. With the increase of the vaccine effectiveness against Strain 1,
the reproduction number associated with strain 1 is monotonically decreasing. Similarly, the
reproduction number with respect to strain 2 monotonically decreases as e2 increases (see Figure
2b-*). This phenomenon suggests that improving the efficacy of immunity from vaccines is in favor
of controlling the disease spread. From Figure 2c-*, 2d-* and 2e-*, we have concluded that the
efficacies of vaccines associated with the two strains are equal and high, and this leads to the best
response for curbing the disease transmission. Comparing the results by adopting the IB-RA and
SB-RA strategies, we found that the SB-RA strategy is more effective in preventing the disease.

3.2. The effects of transmission rates β1 and β2

The top and bottom panels of Figure 3 show the effects of β1 and β2 on the reproduction number of
strain 1 (R1), the reproduction number of strain 2 (R2), final size (FES), vaccine coverage (VC), and
social average payment (ASP) corresponding to the IB-RA and SB-RA rules, respectively. In
Figure 3, the horizontal coordinate represents the transmission rate of strain 1, and the vertical
coordinate represents the transmission rate of strain 2.

In Figure 3a-*, the reproduction number associated with strain 1 monotonically increases as the rate
of transmission of strain 1 increases. A familiar trend was observed for the reproduction number with
respect to strain 2 in Figure 3b-*. Furthermore, the reproduction number associated with strain 2 is
not only dependent on β2, but it is influenced by β2. Figure 3c-* displays the regions of disease-free
equilibrium (DFE), the dominance of strain 1, the dominance of strain 2 and the coexistence area (see
Figure 3c-*), which is substantially different when compared with the results of [18]. Comparing the
results of the IB-RA and SB-RA updated rules, we have seen that that the epidemic, by adopting the
SB-RA strategy, has a larger final size, a less vaccine coverage, and a greater economic burden on
society.
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1e

2e

R1 R2 Final epidemic size Average social payoffVaccination coverage

Figure 2. The effects of the efficacy of vaccines (e1, e2) on the reproduction number with
respect to each strain (a-*,b-*), the final epidemic size (c-*), the vaccination coverage (d-*)
and social average payoff (e-*) in the IB-RA and SB-RA updated rules.

DFE

2β

1β

Strain 1
dominant

Strain 1
dominant

Strain 2 dominant

DFE

Strain 2 dominant

Coexistence of strain 1 and strain2

Coexistence of strain 1 and strain2

R1 R2 Final epidemic size Average social payoffVaccination coverage

Figure 3. The effects of transmission rates (β1, β2) on the reproduction number associated
with each strain (a-*,b-*), the final epidemic size (c-*), the vaccination coverage (d-*) and
social average payoff (e-*) in IB-RA and SB-RA updated rules.
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4. Conclusions and discussion

This work aims to study the co-evolution of a two-strain epidemic with coinfection and the evolution
of game-theoretical vaccination behaviors. We adopted the IB-RA and the SB-RA updated rules to
uptake the individuals’ vaccination strategies. Through numerical analysis, we have found that co-
infection deeply aggravates the spread of disease, and the basic reproduction number is closely related
with both β1 and β2. Similarly, those biomass, such as the epidemic final size, the average social
payoff, etc. strongly depend on the efficacy of each strain ϵ j( j = 1, 2). This is substantially different
from those outcomes of traditional epidemic models with only a single strain. We have shown that
higher vaccine effectiveness and lower transmission rate are encouraged in curbing infectious diseases
under the IB-RA and SB-RA updated rules, which are consistent with those results in [18]. Comparing
with those results, adopting SB-RA updated rules has a better effect on reducing the epidemic final size
and lowering the payoff of society.

Due to the introduction of the coinfection mechanism, there exists four scenarios: the region of the
eradication of the disease, the region of strain 1 dominating, the area of strain 2 dominating and the
area of the coexistence. The closer the transmission rates of the two strains are, the heavier the social
burden will be, even if a huge proportion of people would like to get vaccinated. All these findings are
significant guidance for the control of epidemics with coinfection by two strains.
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Appendix

1. Transition probabilities for IB-RA update rule

P (HV ← S FR) =
1

1 + exp [− (0 − (−Cr)) /κ]
,

P (HV ← FFR1) =
1

1 + exp [− (−1 − (−Cr)) /κ]
,

P (HV ← FFR2) =
1

1 + exp [− (−1 − (−Cr)) /κ]
,

P (HV ← FFR) =
1

1 + exp [− (−2 − (−Cr)) /κ]
,

P (I1V ← S FR) =
1

1 + exp [− (0 − (−Cr − 1)) /κ]
,

P (I1V ← FFR1) =
1

1 + exp [− (−1 − (−Cr − 1)) /κ]
,

P (I1V ← FFR2) =
1

1 + exp [− (−1 − (−Cr − 1)) /κ]
,

P (I1V ← FFR) =
1

1 + exp [− (−2 − (−Cr − 1)) /κ]
,

P (I2V ← S FR) =
1

1 + exp [− (0 − (−Cr − 1)) /κ]
,

P (I2V ← FFR1) =
1

1 + exp [− (−1 − (−Cr − 1)) /κ]
,

P (I2V ← FFR2) =
1

1 + exp [− (−1 − (−Cr − 1)) /κ]
,

P (I2V ← FFR) =
1

1 + exp [− (−2 − (−Cr − 1)) /κ]
,

P (IV ← S FR) =
1

1 + exp [− (0 − (−Cr − 2)) /κ]
,

P (IV ← FFR1) =
1

1 + exp [− (−1 − (−Cr − 2)) /κ]
,

P (IV ← FFR2) =
1

1 + exp [− (−1 − (−Cr − 2)) /κ]
,

P (IV ← FFR) =
1

1 + exp [− (−2 − (−Cr − 2)) /κ]
,

P (S FR← HV) =
1

1 + exp [− (−Cr − 0) /κ]
,

P (S FR← I1V) =
1

1 + exp [− (−Cr − 1 − 0) /κ]
,

P (S FR← I2V) =
1

1 + exp [− (−Cr − 1 − 0) /κ]
,

P (S FR← IV) =
1

1 + exp [− (−Cr − 2 − 0) /κ]
,

P (FFR1 ← HV) =
1

1 + exp [− (−Cr − (−1)) /κ]
,

P (FFR1 ← I1V) =
1

1 + exp [− (−Cr − 1 − (−1)) /κ]
,

P (FFR1 ← I2V) =
1

1 + exp [− (−Cr − 1 − (−1)) /κ]
,

P (FFR1 ← IV) =
1

1 + exp [− (−Cr − 2 − (−1)) /κ]
,

P (FFR2 ← HV) =
1

1 + exp [− (−Cr − (−1)) /κ]
,

P (FFR2 ← I1V) =
1

1 + exp [− (−Cr − 1 − (−1)) /κ]
,

P (FFR2 ← I2V) =
1

1 + exp [− (−Cr − 1 − (−1)) /κ]
,

P (FFR2 ← IV) =
1

1 + exp [− (−Cr − 2 − (−1)) /κ]
,

P (FFR← HV) =
1

1 + exp [− (−Cr − (−2)) /κ]
,

P (FFR← I1V) =
1

1 + exp [− (−Cr − 1 − (−2)) /κ]
,

P (FFR← I2V) =
1

1 + exp [− (−Cr − 1 − (−2)) /κ]
,

P (FFR← IV) =
1

1 + exp [− (−Cr − 2 − (−2)) /κ]
.
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2. Transition probabilities for SB-RA update rule

P (HV ← NV) =
1

1 + exp [− (⟨πNV⟩ − (−Cr)) /κ]
,

P (I1V ← NV) =
1

1 + exp [− (⟨πNV⟩ − (−Cr − 1)) /κ]
,

P (I2V ← NV) =
1

1 + exp [− (⟨πNV⟩ − (−Cr − 1)) /κ]
,

P (IV ← NV) =
1

1 + exp [− (⟨πNV⟩ − (−Cr − 2)) /κ]
,

P (S FR← V) =
1

1 + exp [− (⟨πV⟩ − (0)) /κ]
,

P (FFR1 ← V) =
1

1 + exp [− (⟨πV⟩ − (−1)) /κ]
,

P (FFR2 ← V) =
1

1 + exp [− (⟨πV⟩ − (−1)) /κ]
,

P (FFR← V) =
1

1 + exp [− (⟨πV⟩ − (−2)) /κ]
.
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