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Abstract: Recent research has showen that deep reinforcement learning (DRL) can be used to design
better heuristics for the traveling salesman problem (TSP) on the small scale, but does not do well
when generalized to large instances. In order to improve the generalization ability of the model when
the nodes change from small to large, we propose a dynamic graph Conv-LSTM model (DGCM)
to the solve large-scale TSP. The noted feature of our model is the use of a dynamic encoder-decoder
architecture and a convolution long short-term memory network, which enable the model to capture the
topological structure of the graph dynamically, as well as the potential relationships between nodes.
In addition, we propose a dynamic positional encoding layer in the DGCM, which can improve the
quality of solutions by providing more location information. The experimental results show that the
performance of the DGCM on the large-scale TSP surpasses the state-of-the-art DRL-based methods
and yields good performance when generalized to real-world datasets. Moreover, our model compares
favorably to heuristic algorithms and professional solvers in terms of computational time.

Keywords: dynamic graph Conv-LSTM model; traveling salesman problem; deep reinforcement
learning; dynamic positional encoding; learning heuristics

1. Introduction

The traveling salesman problem (TSP) is a well-known combinatorial optimization problem (COP),
whereby the given are n cities and (n − 1)n/2 non-negative integers denoting the distances between all
pairs of cities. The objective of a TSP is to find a closed tour with the shortest length that visits all
cities only once and returns to the origin city [1]. The TSP is an NP-hard problem [2], even in the
symmetric two-dimensional Euclidean version, which is this work’s focus. Even though the TSP is
very undesirable because of the computational time, many heuristics and exact algorithms are known
to handle the problem. So for some instances of tens of thousands of cities, we can solve for the TSP
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approximation; even for the problems with millions of cities, we can approximate it within a small
fraction of 1% [3]. Nevertheless, there is no perfect strategy for solving the TSP completely. Exact
algorithms [4], such as branch-and-bound and dynamic programming, have the theoretical guarantee of
finding the optimal solutions, but computational complexity increases exponential with increases in the
number of nodes. Approximation algorithms [5], such as those based on local search and linear pro-
gramming, can quickly yield near-optimal solutions within polynomial time, but they may only apply
to specific problems. In practice, heuristic algorithms [6], such as ant colony optimization and particle
swarm optimization, are the most commonly applied approaches for solving TSP within an acceptable
running time, especially for large-scale TSP. However, designing heuristics is not straightforward as
it requires a lot of trials. The quality of TSP solutions is highly dependent on one’s knowledge of
problem-specific expert and hand-crafted features.

The practice of applying machine learning to solve TSP has a long history. For example, as far back
as the 1980s, the Hopfield neural network [7] has been used to solve TSP. Recently, there has been a
growing trend toward applying deep reinforcement learning (DRL) and graph neural networks (GNNs)
to automatically discover faster heuristic algorithms to solve TSP [8, 9]. Instead of applying experts to
manually design heuristics and rules, neural networks learn these heuristics and rules by imitating the
best solver or by DRL. Compared to manual algorithm designs, people believe it is feasible to apply
DRL and GNNs in the decision-making or heuristic algorithms to solve TSP. Even though heuristic
algorithms operate well on TSP, once the problem statement changes slightly, they need to be revised.
In contrast, DRL-based methods have the potential to find useful features that may be hard to specify
by human algorithm designers, allowing it to develop a better solution [10]. The model policies can be
parameterized by neural networks and trained by DRL to obtain more robust algorithms for TSP.

Once the training is completed, the model can directly output the solution of the TSP, yielding a
faster solution. Most of these DRL-based methods follow the encoder-decoder structure and learn-
ing construction heuristics, their architecture can be roughly classified as either: (1) an autoregressive
model, which builds the solution set step by step, or (2) a non-autoregressive model, wherein all solu-
tions are generated at one time. Particularly, the encoder maps the information of the nodes into feature
representation; the decoder then generates an output that predicts the probability of selecting the next
node at every construction step. To improve solution quality, DRL-based methods need to be used in
combination with some traditional algorithms in the inference phase, algorithms such as greedy, beam
search, 2-opt and sampling [11]. However, scale is still an issue for the current DRL-based methods,
and generalization ability will be affected when there is a big difference in data distribution between
test and training instances.

In this paper, motivated by the recent progress of graph pointer network (GPN) architecture for
solving the large-scale TSP [12], we propose a novel policy approach that can achieve excellent per-
formance with generalization ability for a reasonable computational cost. The contributions of this
work are three-fold. First, we propose a dynamic graph convolutional long short-term memory (here-
after referred to as Conv-LSTM) model (DGCM) with dynamic encoder-decoder architecture to train
construction policies at different construction steps. It employs GNNs and a Conv-LSTM network to
encode node information and an attention mechanism (AM) as a decoder. Second, to improve the solu-
tion quality of trained construction policies, we propose a dynamic positional encoding (DPE) layer in
the DGCM which is used in the decoder structure. It can make the nodes satisfy translation invariance
during the embedding process. Further, the decoder stage will get more location information to facili-
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tate selection of the next node, thereby increasing the quality of the solution. Finally, we empirically
show that the DGCM is a state-of-the-art DRL-based method solver for the large-scale TSP, and that
it also demonstrates superior performance to heuristic algorithms and professional solvers in a short
inference time. The experimental results concretely show that the DGCM performs significantly better
than GPN and obviously decreases the optimality gap.

The remainder of this paper is structured as follows. Section 2 gives a brief overview of recent rele-
vant work. Sections 3 and 4 describe the DGCM model for TSP and the training method, respectively.
The experimental results are given in Section 5. Section 6 concludes this paper.

2. Literature review

When using heuristic algorithms for TSP, the entire distance matrix must be recalculated and the
system must be re-optimized from scratch, which is impractical, especially for the large-scale TSP. In
contrast, the DRL framework does not require an explicit distance matrix, and only one feed-forward
pass of the network will update the routes based on the new data generated by environmental interac-
tions. Vinyals et al. [13] improved the sequence-to-sequence (Seq2Seq) model [14] and proposed a
pointer network with an long short-term memory (LSTM) network as the encoder and an AM as the
decoder. It can effectively solve small-scale TSP. Bello et al. [15] used reinforcement learning (RL)
based on a pointer network to solve TSP within 100 nodes.

GNNs, as a powerful tool, can effectively handle non-Euclidean data. Applying GNNs as their basis,
Dai et al. [16] proposed a graph embedding network for large-scale COP. The network parameters are
trained by a deep Q-learning algorithm that solves the large-scale TSP. Partial solutions are embedded
as graphs, and the deep neural network estimates the value of each graph. Joshi et al. [17] proposed
an efficient graph convolution network technique for TSP. This method ignores the sequential nature
of TSP, and the training efficiency may be low. Ma et al. [12] introduced a GPN model that is trained
using RL for tackling large-scale TSP. The GPN generalizes well from small-scale to larger-scale TSP,
but the DGCM outperforms the GPN on both small and larger TSP instances.

The transformer is different from the previous structure, which does not require recursion but is
entirely dependent on the AM to describe the global dependency between input and output. Applying
the transformer as the basis, Kool et al. [18] applied an AM model to solve TSP for the first time.
Specifically, the TSP is converted to the Seq2Seq model, explicitly simulating the sequential induc-
tion bias of TSP by selecting one node at a time. Wu et al. [19] proposed a direct policy approach
that parameterizes the policy model by using the self-attention mechanism to obtain the solution of
the TSP in the model training phase. An immediate shortcoming of the AM model is that it does not
take into account the underlying symmetry of TSP. Xin et al. [20] proposed a multi-decoder atten-
tion model (MDAM) model to solve the multi-objective routing problems and added an embedding
glimpse which improves the overall optimization performance of the model in the encoding. Kwon
et al. [21] proposed a policy optimization with multiple optima (POMO) framework that entails the
use of DRL to train multiple initial nodes of multi-head attention (MHA) models to solve different
problems, including TSP. Further, to address the drawback of incomplete node information that is
associated with the traditional positional encoding technique, Ma et al. [22] proposed a dual-aspect
collaborative transformer (DACT) model and a cyclic positional encoding method to solve TSP with
dynamically and cyclically changing nodes. For the initial solution instability problem, Kool et al.
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[23] integrated DRL, a transformer and dynamic programming and proposed a deep policy dynamic
programming (DPDP) model to solve TSP. Bresson and Laurent [24] use the same transformer en-
coder but the decoder architecture is different. It constructs the query using all cities in a partial tour
with a self-attention module. Hudson et al. [25] proposed a hybrid data-driven approach for solving
TSP based on GNNs and guided local searches. This method enhances the generalization ability of
the model. Xin et al. [26] proposed a new algorithm NeuroLKH that combines deep learning with
the strong conventional heuristic Lin-Kernighan-Helsgaun (LKH) to solve TSP. Traditional methods
combined with RL enhance the performance of the LKH algorithm.

Those models can learn to choose appropriate solutions for a TSP from the vast potential solutions
of the combinatorial space. Therefore, in view of the poor generalization ability of the model and the
large deficit of practical solutions for the large-scale TSP, we propose the DGCM model to solve the
large-scale TSP efficiently and provide an effective strategy for solving COP.

3. Deep reinforcement model for TSP

The selection of nodes emphasizes environmental factors ; it is naturally similar to the behavior
selection of DRL that will affect the decision. The DGCM model consists of an encoder, decoder and
training, as shown in Figure 1. We combine GNNs, a Conv-LSTM network and search strategies to
make it easier for the model to a handle large-scale TSP with up to 1000 nodes. DRL is often an elegant
alternative to a poorly researched problem in the absence of a standard solution. Since TSP typically
require sequential decisions to minimize problem specific cost functions, they can be elegantly fed into
the DRL framework, which trains agents to maximize the reward function (the negative value of the
loss function). Hence, DRL algorithms are used to train the parameters θ and input instance s; the
probability of the solution pθ(at | s) can be decomposed by the chain rule as

pθ(at | s) =
N∏

t=1

pθ(at | s, a1:t−1). (3.1)

Figure 1. Diagram of DGCM frame.
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3.1. GNNs and Conv-LSTM based encoder

In this work, similar to [12], we also use the vectors pointing from the current node to all other
nodes as the embedding, which we refer to as the vector context. The vector context is constructed
incrementally by the embedding. At different construction steps, the state of the instance is changed,
and the feature embedding of each node should be updated. For the current node xi, suppose Xi =

[XT
1 , . . . , X

T
i ] ∈ RN×2 is a matrix with identical rows xi. We define Ẋi = X − Xi as the vector context.

The encoder includes a node encoder derived from the Conv-LSTM and a graph encoder based on
GNNs. For the node encoder, each current node coordinate xi is embedded in a higher dimensional
vector x̃i ∈ Rd, where d is the hidden dimension. Since the LSTM networks in previous works did
not take spatial correlation into account and contained a large amount of redundant spatial data , we
use a Conv-LSTM network to extract the spatial and temporal characteristics in the encoding structure.
The core essence of Conv-LSTM is still the same as LSTM, the output of the previous layer is used
as the input of the next layer. The difference is that with the addition of the convolution operation,
not only can we obtain the temporal relationships, but we can also extract the spatial features like the
convolution layer. In this way, the spatio-temporal characteristics can be obtained, and the calculation
for switching between states can be replaced by convolution. We follow the Conv-LSTM formula in
[27]. This is expressed as follows

it = σ(Wxi ∗ xt +Whi ∗ ht−1 +Wci ⊙Ct−1 + bi), (3.2)

ft = σ(Wx f ∗ xt +Wh f ∗ ht−1 +Wci ⊙Ct−1 + b f ), (3.3)

Ct = ft ⊙Ct−1 + it + tan⊙(Wxc ∗ xt +Whc ∗Ct−1 + bi), (3.4)

ot = σ(Wxo ∗ xt +Who ∗ ht−1 +Wco ⊙Ct−1 + bo), (3.5)

ht = ot ⊙ (Ct), (3.6)

where it, ft and ot respectively denote the input gate, forget gate and output gate. Here it, ft and ot are all
three-dimensional tensors, and their last two dimensions respectively represent the spatial information
of rows and columns (the first dimension is the temporal dimension). xt represents a one-dimensional
vector or scalar, and ht can be given a different dimension. Ct determines how much information this
output takes from this input and is leftover from the last one. The weighted parameter metrices are
Wxi ∼ Wco, which conduct a linear transformation between the vectors. bi ∼ bo are the intercept
parameters. The operator ⊙ is the Hadamard product, and ∗ denotes convolution.

For the graph encoder, each node is related to its neighbor nodes, and they will abstract as an
issue between the set of nodes and edges. We use graph embedding (GE) layers to encode all node
coordinates x = [xT

1 , . . . , x
T
N]T . Therefore, all feature vectors can be derived from the aggregation

operation of GNNs in GE layers. In this way, the network can effectively capture the topological
structure of the graph and the potential relationship between nodes, so that more information can be
represented. And encoder information embedding will have better performance. The expression of the
GE structure is described as

xl = γxl−1ϕ + (1 − γ)ψθ(
xl−1

|N(i)|
), (3.7)
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where xl ∈ RN×dl , γ is a trainable parameter that adjusts the weight matrix of eigenvalues, ϕ ∈ RN×dl ,
ψθ : RN×dl−1 → RN×dl is the aggregation function [28] and N(i) is the adjacency set of Node i.

GNNs essentially reduce the search space of the search algorithm. The key to the strong general-
ization ability of the model is to successfully transfer the learning strategy to a larger graph so that
the prediction results of the encoder can still have generalization ability when the TSP changes from
small to large. We consider a TSP that is characterized by a complete graph with symmetry. In order
to maintain the global properties of the decoding structure and weight distribution of attention, xl is
homogenized which makes the aggregated attribute information uniformly embedded in the context
vector. Here the expression of the GE structure is described as

X̄ =
L∑

l=1

xl. (3.8)

3.2. Attention and DPE-based decoder

Compared with the previous method, this dynamic construction method can be similar to the idea
of the divide-and-conquer method. The problem is decomposed into several sub-problems to learn
the hierarchical strategy, and then the strategies of the sub-problems are combined to form the global
optimal strategy, which implicitly leads to a better generalization effect for the larger problem instances.
The structure of this new solution is different from the original solution, and decoding based on the
same embedding for all the construction steps may lead to poor performance. To address it, we propose
the DPE technique to learn the effective location information in the decoder structure. In the process of
embedding, the node coordinates can satisfy translation invariance. Meanwhile, the high-level neural
network can extract more task-related features. Here, the DPE of each node i is defined as

DPEt,i =


sin(2π fit + 2π

ωdi ), i is odd

cos(2π fit + 2π
ωdi ), i is even

(3.9)

where

fi =
10000

d
2i

2π
(3.10)

ωd =

 3[d/3]+1
d (N − N

1
[d/2] ) + 1

[d/2] , if d < [ d
2 ]

N , otherwise
(3.11)

DPEt,i ∈ Rd, t is the location of the node and d = 128 is the embedding dimension; i ∈ {1, 2, . . . , n} and
the angular frequency ωd is decreasing along the dimension to make the wavelength longer within the
range N [22].

Similar to [18], the vector context is computed by an AM and outputs the pointer vector ui. Masking
technology that ensures that the visited nodes cannot be accessed again can be understood as the output
of the next visited city node with a high probability. The AM and pointer vector ui are defined as

u( j)
i =

{
C · tanh(Wrr j +Wqq), if j , πt′ ∀t′ < t

−∞ , otherwise
(3.12)
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where u( j)
i is the j-th entry of the vector ui, Wr and Wq are trainable matrices, q is a query vector from the

hidden variable of the Conv-LSTM algorithm and r j is a reference vector containing the information
on the context of all cities.

Given the node embedding ui by the attention decoder, we aggregate them by max-pooling to get
GE. In this way, the global graph information of a solution is effectively fused into its nodes. Figure 2
shows that the dynamic encoder-decoder architecture and inference can be applied to solve TSP. The
distribution policy overall candidate nodes are given by

πθ(ai | si) = pi = softmax(max(ui)). (3.13)

Figure 2. Diagram of dynamic encoder-decoder architecture for TSPs.

3.3. DRL training with multiple loss optimization

The entire encoder-decoder architecture is trained in an end-to-end manner, and the model can be
trained through DRL to produce near-optimal solutions. In order to measure the difference distribution
between partial solutions and the greedy policy πg

θ , we add Kullback-Leibler (KL) divergence loss to the
baseline of the REINFORCE algorithm [29]. By using KL divergence, we can bring the greedy policy
π

g
θ infinitely closer to the real solution, so that the prediction is more accurate. Here KL divergence

loss is expressed as

DKL =

N∑
i=1

πθ(ai | si) log(πθ(ai | si)/πθ(ai | si)). (3.14)

During training, routing is drawn from a distribution s and the total training objective is defined as

Jθ = Eπ∼pθ(J(θ | s)). (3.15)

We sample solution trajectories as
i and adopt a policy gradient to find a parameter θ. In order to

maximize the expected return J and circumvent non-differentiability of hard-attention, the DGCM has
recourse to the well-known REINFORCE algorithm [29] learning rule. The gradient of J(θ) can be
expressed by

∇θJ(θ) =
1
N

N∑
i=1

(R(as
i | si) − R(ag

i | si))∇θ log pθ(ai | si)). (3.16)

The model can learn the parameter θ of the actor network through a random strategy. The gradient of
the above formula is calculated and updated; then, the optimal strategy Pi is obtained through iterative
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training. We use a dual loss control model for convergence and training rewards. The update rule can
be expressed by

θ ← θ + α∇θJ(θ) + β∇θDKL(θ), (3.17)

where α is the learning rate and β is the coefficient of KL loss.
The training algorithm is described in Algorithm 1. The algorithm terminates once a pre-defined

maximum number of iterations is reached.

Algorithm 1 Multiple loss optimization algorithm
Require: a differentiable policy parameterization πθ(a | s, θ), number of epochs B, steps per epoch T ,

training set S
Ensure: policy πθ

1: initialize policy network parameter θ,ϕ
2: repeat epoch=1,. . .,B do
3: for step=1,. . .,T do
4: si ← SampleInput(S) for i ∈ 1, . . . , B
5: R(as

i | si)← SampleRollout(si) for i ∈ 1, . . . , B
6: R(ag

i | si)← GreedyRollout(si) for i ∈ 1, . . . , B
7: ∇θJ(θ)← 1

N

∑N
i=1(R(as

i | si) − R(ag
i | si))∇θ log pθ(ai | si))

8: Compute ∇θDKL(θ)
9: θ ← θ + α∇θJ(θ) + β∇θDKL(θ)

10: end for
11: until a pre-defined maximum number of iterations is reached

4. Numerical studies

4.1. Experimental environment and hyperparameters

In each epoch, the training data are generated randomly in the unit square [0, 1]×[0, 1]; the instances
used in our experiments were symmetrical TSP with 20, 50 and 100 nodes, respectively. We call them
TSP20, TSP50 and TSP100, respectively. The DGCM model is executed on a single GPU Tesla K80.
Note that 100 epochs require, on average 3, 12 and 36 h for TSP20, TSP50 and TSP100, respectively.
We trained with TSP50 instances and generalize to large-scale TSP. In the testing phase, we adopted
greedy and 2-opt inferencing methods to improve solution quality. We report the objective value, gap
and runtime metrics of the TSP separately. To ensure the fairness of the experiment, we set the same
hyperparameters based on [12]. Due to GPU memory limitations, we set the training batch size to a
uniform 256. The experiments entailed the use of the hyperparameters shown in Table 1.

4.2. Parameter tuning

The relevant parameters of the DRL model are critical to the quality of the solution. The optimal
values after the optimization will be used in the numerical experiments that followed. In this study, the
GE operation aggregation point feature was used to test the effects of different layers of GE operation
on the model performance on TSP with 20, 50 or 100 nodes. After several tunings, as shown in Table 2,
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Table 1. Hyperparameters used for training.

Parameter Value Parameter Value
Epoch 100 Optimizer Adma
Batch size 256 Learning rate 10−3

GE layers 3 Learning rate decay 0.96
Training instances 2500 Test instances 1000

the parameters with the optimal target values were selected. We found that, as the number of GE layers
increases, the inference time increases accordingly due to the increase in network parameters. How-
ever, the GE operation becomes progressively less effective above three layers. The reasonableness of
the parameter settings for these experiments have also been indirectly verified.

Table 2. GE layer parameter tuning.

TSP20 TSP50 TSP100

Parameter Obj Gap Time Obj Gap Time Obj Gap Time
GE layers (1) 3.85 0.52% 0.5 s 5.73 0.70% 2 s 7.82 0.77% 13 s
GE layers (2) 3.84 0.39% 0.8 s 5.71 0.43% 2 s 7.79 0.45% 15 s
GE layers (3) 3.83 0.00% 1 s 5.70 0.17% 3 s 7.79 0.38% 16 s
GE layers (4) 3.84 0.26% 2 s 5.72 0.62% 5 s 7.80 0.51% 20 s
GE layers (5) 3.84 0.41% 3 s 5.72 0.67% 6 s 7.81 0.71% 23 s

Note: bold is the best result and the precision is 10−3. The Obj is the objective value, same as below.

4.3. Experiments for small-scale TSP

Professional solving tools, such as the Concorde [30] and LKH algorithms[31], were used to calcu-
late the optimal solution of the TSP. Concorde and LKH algorithms were run on an Intel Core i5-9300H
CPU. In Table 3, we compare the performance of our model on small-scale TSP with other baselines.
The baseline models include professional solving tools, traditional algorithms and DRL-based meth-
ods. Traditional solvers like Gurobi [32] and OR-Tools [33] still outperform DRL-based solvers in
terms of performance and generalization. However, they can only provide weaker solutions or would
take very long to solve the TSP. Although it took 3 h in the training phase, the DGCM only takes 1 s in
the inferencing phase to get the suboptimal solution of TSP20. Once the model training is completed,
it can be generalized to solve large-scale TSP. For the optimal gap of TSP50/100, our model is inferior
to POMO [21], DACT [22] and DPDP [23] but surpasses other current DRL-based models. In all
small-scale TSP distances, the overall performance of our model is superior to traditional algorithms
except for professional solvers. The 2-opt inference method resulted in an optimal gap of 0.21% for
TSP20, 0.51% for TSP50 and 0.76% for TSP100; it is shown that the combined use of the DGCM
and 2-opt method can reduce the optimal gap even further. Compared with the GPN model [12], the
performance of the DGCM was notably improved for TSP20 (6.14%), TSP50 (5.96%) and TSP100
(13.74%).
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Table 3. Experiments for small-scale TSP.

TSP20 TSP50 TSP100

Model Obj Gap Time Obj Gap Time Obj Gap Time
Concorde 3.83 0.00% 5 min 5.69 0.00% 13 min 7.76 0.00% 1 h
Gurobi* 3.83 0.00% 7 s 5.69 0.00% 2 min 7.76 0.00% 17 min
OR-Tools* 3.86 0.94% 1 min 5.85 2.87% 5 min 8.06 3.86% 23 min
LKH 3.83 0.00% 42 s 5.69 0.00% 6 min 7.76 0.00% 25 min
2-opt 3.95 3.31% 1s 6.11 7.38% 7 s 8.50 9.53% 33 s
Farthest insertion 3.89 1.56% 1 s 5.97 4.92% 2 s 8.34 7.47% 10 s
Nearest neighbor 4.48 16.9% 1 s 6.94 21.9% 3s 9.68 24.7% 7s
AM (greedy)* 3.85 0.34% 1 s 6.94 5.80% 2s 8.12 4.53% 6 s
AM (sampling)* 3.84 0.08% 5 min 5.80 5.73% 24 min 7.94 2.26% 1 h
Coast* 3.83 0.00% 15 min 5.71 0.35% 29 min 7.83 0.87% 41 min
Wu* 3.83 0.00% 1 min 5.70 0.26% 1.5 h 7.87 1.42% 2 h
POMO 3.83 3.42% 1 s 5.69 0.08% 16 s 7.78 0.26% 1 min
DACT 3.83 0.00% 10 min 5.70 0.18% 1 h 7.77 0.19% 2.5 h
MDAM (BS) 3.83 0.00% 3 min 5.70 0.18% 14 min 7.79 0.39% 44 min
DPDP* — — — — — — 7.77 0.13% 3 h
Hudson* 3.83 0.00% 10 s 5.69 0.07% 10 s 7.81 0.69% 10 s
GPN 3.89 1.61% 1 s 6.03 5.97% 3 s 8.87 14.3% 6 s
DGCM (greedy) 3.89 1.56% 1 s 5.99 5.25% 2s 8.63 11.2% 8s
DGCM (2-opt) 3.83 0.00% 1 s 5.70 0.17% 3 s 7.79 0.38% 16 s

Note: bold is the best among learning based methods. Results with * are reported from others papers. The precision is 10−3.

4.4. Experiments for large-scale TSP

Regarding the results in Table 4, the current DRL-based methods have poor generalization abil-
ity and give worse results than heuristics. The generalization ability of the DGCM was better by an
order of magnitude. We observe that for TSP250/500/750/1000, our model surpasses the current DRL-
based models on path length. The advantage of our model is shorter time as compared with traditional
algorithms, which allows it to perform significantly better than DRL-based methods and obviously
decreases the routing cost. The running time of the large-scale TSP was also shortened, compared
with some traditional algorithms. In terms of the tradeoff between time and routing cost, the DGCM
performs better than GPN and other baseline methods. The DGCM with dynamic encoder-decoder
architecture can explore structural features dynamically and exploit hidden structure information ef-
fectively at different construction steps. The key of the DGCM is to distribute the computational
solutions in different construction steps, while the DPE takes into account the hidden and dynamic
node structure information. Hence, more structured information can be represented and lead to bet-
ter performance. To directly express the superiority of the result, we take the LKH algorithm as the
benchmark. Even though our model is not as effective in terms of optimization, it demonstrated good
generalization performance and still has the potential to be an effective solution method. Compared

Mathematical Biosciences and Engineering Volume 19, Issue 10, 9730–9748.



9740

with the GPN model [12], the performance of the DGCM was notably improved for TSP250 (8.37%),
TSP500 (7.19%), TSP750 (7.81%) and TSP1000 (8.55%).

Table 4. Experiments for large-scale TSP.

TSP250 TSP500 TSP750 TSP1000

Model Obj Time Obj Time Obj Time Obj Time
LKH 11.893 9792 s 16.524 23070 s 20.129 36840 s 23.130 50680 s
Concorde 11.89 1894 s 16.55 13902 s 20.10 32993 s 23.11 47804 s
OR Tools* 12.289 5000 s 17.449 5000 s 22.395 5000 s 26.477 5000 s
Nearest Insertion 14.928 25 s 20.791 60 s 25.291 115 s 28.973 136 s
2-opt 13.026 303 s 18.600 1363 s 22.668 3296 s 26.111 6153 s
Farthest Insertion 13.026 33 s 18.288 160 s 22.342 454 s 25.741 945 s
PN* 14.249 29 s 21.409 280 s 27.382 782 s 32.714 3133 s
S2V-DQN* 13.097 476 s 18.428 1508 s 22.550 3182 s 26.046 5600 s
AM* 14.032 2 s 24.789 14 s 28.281 42 s 34.055 136 s
GPN (Greedy)* 13.765 32 s 19.829 111 s 24.679 232 s 28.929 393 s
GPN (2-opt)* 12.971 214 s 18.361 974 s 22.519 2278 s 26.013 4410 s
DGCM (Greedy) 13.348 29 s 19.206 98 s 23.980 184 s 28.138 305 s
DGCM (2-opt) 12.639 198 s 17.898 847 s 21.956 1986 s 25.400 3964 s

Note: bold is the best among learning based methods. Results with * are reported from others papers. The precision is 10−3.

4.5. Comparison of model generalization ability and convergence

More specifically, we trained the DGCM on TSP20/50/100 and used their models to predict on
TSP250/500/750/1000. Once the training was completed, the DGCM directly output the solution of
the TSP, confirming faster solving capability. The DGCM can generalize and solve any similarly sized
problem. The comparison results for the generalization ability of TSP are shown in Table 5. The results
of numerical experiments show that our model can achieve excellent performance with generalization
ability for a reasonable computational cost, and that the results will improve if we increase the size of
the TSP instances used for training. The mutual generalization ability of small-scale and large-scale
TSP indicated good performance.

Table 5. Comparison of generalization ability on TSP.

TSP250 TSP500 TSP750 TSP1000

Model Obj Time Obj Time Obj Time Obj Time
Ours (TSP20) 14.764 42 s 22.201 121 s 28.431 223 s 34.072 385 s
Ours (TSP50) 13.369 29 s 19.240 98 s 23.980 184 s 28.183 305 s
Ours (TSP100) 12.906 25 s 18.807 84 s 23.118 169 s 26.806 284 s

The convergence comparison between TSP20 and TSP50 given by Figures 3 and 4 show that our
model can converge stably within 200 batches. For TSP20, the final training effect of the double loss
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algorithm is slightly better. For TSP50, the training effect of the multiple loss algorithm was obviously
superior; as compared with the single REINFORCE algorithm and GPN model, the multiple loss
algorithm exhibited a faster convergence rate and better convergence effect during the training process.

Figure 3. Convergence of TSP20.

Figure 4. Convergence of TSP50.

4.6. Ablation experiments

DPE is used for cyclic encoding dynamic sequencing so that the initial node coordinates can satisfy
the translation invariance during the process of embedding. To demonstrate the importance of the DPE
technique, we further evaluated the effectiveness of the DGCM. For the ablation study on small-scale
and large-scale TSP, we have excluded the 2-opt inference technique here since it is an independent
technique applicable to the inferencing phase. The results are summarized in Tables 6 and 7. We can
observe that both the DGCM and DPE consistently improve the quality of the learned construction
policy for dynamic encoder-decoder architecture. The results of numerical experiments also show that
DPE has little effect on inferencing time.
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Table 6. DGPN structure ablation results for small-scale TSP.

TSP20 TSP50 TSP100

Model Obj Gap Time Obj Gap Time Obj Gap Time
GPN (not DPE-greedy) 4.07 6.35% 1 s 6.06 6.47% 3 s 8.89 14.5% 6 s
GPN (DPE Greedy) 3.89 1.61% 1 s 6.03 5.97% 3 s 8.87 14.3% 6 s
DGCM (not DPE-greedy) 3.90 1.82% 1 s 6.03 5.97% 2 s 8.65 11.5% 7 s
DGCM (DPE Greedy) 3.88 1.31% 1 s 5.98 5.09% 2 s 8.52 9.79% 8 s

Table 7. DGPN structure ablation results for large-scale TSP.

TSP250 TSP500 TSP750 TSP1000

Model Obj Time Obj Time Obj Time Obj Time
GPN (not DPE-greedy) 13.784 29 s 19.850 101 s 24.704 208 s 28.996 339 s
GPN (DPE Greedy) 13.695 33 s 19.742 105 s 24.599 212 s 28.871 346 s
DGCM (not DPE-greedy) 13.365 25 s 19.240 89 s 23.992 168 s 28.149 281 s
DGCM (DPE Greedy) 13.348 27 s 19.206 85 s 23.980 184 s 28.138 305 s

4.7. Test on real-world datasets

In a real-world application, most real-world instances of TSP would have hundreds or thousands
of nodes, and the optimal solution would not be computationally efficient. We further verified that
our model can use synthetic data for training and performs fairly well on an instance of the public
benchmark TSPlib [34], which contains examples of real-world problems.

We report the results on 30 instances with sizes between 50 and 200 for TSPlib. In Table 8, we find
that our model generalizes well from the training model to the real-world dataset , and that it reduced
the overall average gap to 0.76%. Though trained on uniform distribution, our model outperforms,
GPN [12], AM [18], Wu et al. [19], POMO [21], DACT [22], Hudson et al. [25] and OR-Tools
[33] algorithms in terms of the gap in all instances. Given the advantages of our model, it was able
to achieve the new state-of-the-art generalization performance among existing DRL-based models on
TSPlib benchmark instances with various sizes and distributions. Finally, to ensure the effectiveness of
the experiment, we visualized the construction of four tours using DGCM+2-opt. The tours of eil51,
KroA100, ch130 and KroB200 are shown in Figures 5–8, respectively. The DGCM model selected
each node in the instance more accurately and constructed a shorter route than the the GPN model,
which indirectly reflects the effectiveness of the model in this paper.
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Table 8. Generalization of DGCM on TSPlib benchmark dataset.

Instance Opt. OR-Tools* Ma et al. AM* Wu et al.* POMO* DACT* Hudson et al.* Ours

eil51 426 436 435 436 438 426 426 426 427
berlin52 7542 7945 7655 7717 8020 7544 7544 7552 7550
st70 675 683 695 691 706 677 677 680 675
eil76 538 561 556 564 575 546 550 539 540
pr76 108,159 111104 110654 111605 109668 129758 108191 108201 108290
rat99 1211 1232 1505 1483 1419 1301 1220 1217 1216
KroA100 21282 21448 21585 44385 25196 22229 21377 21436 21284
KroB100 22141 23006 22979 35921 26563 23432 22196 22173 22196
KroC100 20749 21583 21826 31290 25343 22108 20923 21103 20821
KroD100 21294 21639 21481 34775 24771 23155 21319 21415 21301
KroE100 22068 22598 22489 28596 26903 23385 22139 22336 22137
rd100 7910 8189 8211 8169 7915 7910 7910 7946 7914
eil101 629 664 656 668 658 642 647 630 640
lin105 14379 14824 14669 53308 18194 16104 14478 14466 14439
pr107 44303 45072 45985 208531 53056 46811 45991 46247 44660
pr124 59030 62519 60338 183858 66010 59201 59751 59475 59562
bier127 118282 122733 121856 210394 142707 189914 121192 120586 119023
ch130 6110 6284 6589 6329 7120 6125 6228 6325 6179
pr136 96772 102213 103260 103470 105618 97798 101165 100049 96981
pr144 58537 59282 59686 225172 71006 59005 59995 60633 58624
ch150 6528 6729 6982 6902 7916 6582 6608 6665 6585
KroA150 26524 27592 28956 44854 31244 30012 27561 27315 27536
KroB150 26130 27572 29450 45374 31407 29192 26867 26981 26830
pr152 73682 75834 74562 106180 85616 76710 76327 75980 74231
u159 42082 45778 45964 124951 51327 43002 43409 42511 43251
rat195 2323 2389 2452 3798 2913 2998 2439 2361 2330
d198 15780 15963 16520 78217 17962 23036 17161 16533 15896
KroA200 29368 29741 31204 62013 35958 35242 29735 29963 29812
KroB200 29437 30516 30265 54570 36412 35636 31103 30199 29805
Avg.Gap 0 3.34% 4.95% 22.83% 15.56% 10.06% 2.07% 1.53% 0.76%

Note: results with * are reported from others papers. Bold indicates that the corresponding method is the best among all learning
based ones.
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Figure 5. Comparison of GPN and DGCM model visualization on eil51.

Figure 6. Comparison of GPN and DGCM model visualization on KroA100.
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Figure 7. Comparison of GPN and DGCM model visualization on ch130.

Figure 8. Comparison of GPN and DGCM model visualization on KroB200.

5. Conclusions and future research

In this paper, we have proposed a novel DGCM to learn construction heuristics for large-scale
TSP that is trained by DRL. It employs a dynamic encoder-decoder architecture and a Conv-LSTM
network to train construction policies at different construction steps. A DPE layer is included in the
DGCM; it empowers the decoders with more location information embeddings. The experimental
results show that the optimization of our model on TSP surpasses current DRL methods and some
traditional algorithms. The solutions of large-scale TSP close to those achieved by professional solving
tools with reasonable time. Moreover, the DGCM model generalizes well to TSP of different sizes and
even to real-world datasets. In addition, the performance of the DGCM is better than that of the GPN
on small-scale and large-scale TSP.

The motivation for using DRL to solve COP may not be to outperform classical methods after
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sufficient research. Neural networks can be used as a general tool to solve previously unencountered
NP-hard problems, especially those for which it is difficult to design heuristic algorithms. In the future,
we will adopt DRL-based methods to solve more types of COP. Further, we hope that the DGCM can
be extended to solve some of the complex variations of TSP in the real world by hybridization with
operational research methods such as TSP with time windows, thereby opening a new era for COP.
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