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Abstract: In this paper, the T-S fuzzy observer-based adaptive tracking control of the biological
system with stage structure is studied. First, a biological model with stage structure is established, and
its stability at the equilibrium points is analyzed. Considering the impact of reducing human activities
on the biological population, an adaptive controller is applied to the system. Since it is difficult to
measure density directly, a fuzzy state observer is designed, which is used to estimate the density
of biological population. At the same time, the density of predators can track the desired density
through the adjustment of adaptive controller. The stability of the biological system is guaranteed, and
the observer error and tracking error are shown to converge to zero. Finally, the effectiveness of the
proposed adaptive control method is verified by numerical simulation.
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1. Introduction

For a biological system, the biological individual development has a trend from infancy to maturity
in the natural state. The corresponding structural and functional characteristics will also change
significantly. When studying biological dynamic systems, researchers often assumed that there was
little difference between infancy and maturity [1]. However, because different stages of the biological
population have different viabilities, this characteristic will affect the population density to a certain
extent. The biological model with stage structure is closer to reality. The prey-predator model with
stage structure was studied in [2–4]. In addition, the equilibrium attraction and biological control
were studied for this model in [4]. The dynamics of biological systems with stage structure were
studied in [5].
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From the above research, it can be seen that the exploration of biological systems with stage
structure is deepening. Many studies have been done to analyze the stability of biological systems,
which is also an important property in biological systems. However, considering the impact of
external factors on the density of a biological population, it is necessary to explore the prey-predator
model from multiple perspectives. For example, due to the threat posed by the spread of COVID-19,
we need to implement a lockdown policy immediately. The sudden outbreak led many countries to
implement lockdown policies [6–9]. To a certain extent, it limits human behavior and has a certain
impact on the density of the biological population. Therefore, it is natural to study the effects of
reducing human behavior on biological populations. In order to ensure the sustainable development of
the biological environment under human intervention, intelligent control is needed to manage the
prey-predator population.

In recent years, more and more people have begun to study adaptive control methods, and the
research results are constantly emerging. By continuously monitoring the controlled object and
adjusting the control parameters according to its changes, the adaptive control method can make the
system run in the optimal or suboptimal state. Applying adaptive control to biological systems has
important implications for managing population density. The problem of epidemic outbreak with
adaptive gain was studied in [10], and a nonlinear robust adaptive integral sliding mode controller was
proposed. On the basis of reference [10, 11] not only studied the adaptive control of the influenza
model but also studied the sliding mode control of the influenza model with uncertainty. For an active
suspension system, an adaptive control method was proposed in [12], and a fault-tolerant controller
was also designed for actuator faults. Aiming at the problems of unknown faults and actuator sticking
in [13], a solution was proposed by combining the adaptive fault-tolerant control and boundary
vibration method. Different from [12, 13], an observer-based adaptive centralized control algorithm
was proposed using adaptive backstepping control design technology. The adaptive control problem
of a multiple-input multiple-output uncertain nonlinear system was studied in [14]. Same as in [14], a
new adaptive fuzzy controller was proposed by using backstepping technology to study the finite time
tracking problem of a nonlinear pure feedback system in [15]. In [16], an event-triggered adaptive
control strategy was proposed in order to solve the tracking control problem of a strict feedback
system with uncertainty in a fixed time. For uncertain nonlinear systems with time-varying
disturbance, a sliding mode control strategy based on an adaptive reaching law was proposed in [17].
For a nonlinear system with uncertainty and external disturbance, a new adaptive fuzzy sliding mode
controller was proposed in [18]. In the autopilot system, in order to improve the control performance,
an adaptive controller was designed in [19]. Taking the same approach, an adaptive fuzzy control
scheme using fuzzy logic system was designed in [20]. It can be seen that adaptive control can be
widely used in aerospace and mechanical systems. Applying adaptive control to biological systems,
the research on adaptive control of biological systems is relatively rare, which is an important reason
for our research.

Many physical controlled objects can be portrayed using nonlinear systems in real life. For a
stochastic nonlinear system, the classical quadratic function was used to construct an adaptive
tracking controller in [21]. The problem of adaptive tracking control for a class of uncertain switched
nonlinear systems was studied in [22]. Based on backstepping and Lyapunov functions, an adaptive
tracking controller was proposed. An adaptive tracking control was developed based on fuzzy
approximation technology and event-triggered for a nonlinear system with uncertainty in [23]. A
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novel event-triggered tracking controller was designed by introducing a fuzzy logic system to
approximate the unknown nonlinear term in [24]. A new speed curve optimization tracking control
method was proposed in [25], and a sliding mode controller was designed for the speed curve tracking
problem under bounded disturbance. The tracking control problem of a nonlinear system was studied
in [26], which introduced an adaptive control strategy and constructed an adaptive tracking controller
using a new Lyapunov Krasovskii functional. An adaptive sliding mode control scheme based on
backstepping was proposed in [27] to make the tracking error converge to zero in the presence of
uncertain nonlinearity and disturbance. Based on the backstepping design, an adaptive control
strategy was proposed to offset the error in [28]. Applying the adaptive tracking control to the
biological system not only ensures the stability of the system, but also ensures the tracking
performance.

The purpose of this paper is to control the density of predators to track a desired density through an
adaptive tracking controller, which is undoubtedly a very meaningful and challenging work. Adaptive
controllers for observer-based nonlinear systems were designed in [29, 30]. Due to the difficulty of
measuring density involved in this paper, the T-S fuzzy method is used to construct a fuzzy observer,
which is used to estimate the population density in biological system. An adaptive tracking controller is
designed to make sure the density of predators can track the desired density. The main contributions of
this paper are as follows: 1) A fuzzy state observer is designed, which can effectively observe the state
of the system. In biological systems, it is difficult to accurately determine the density of a biological
population, and an observer is required to estimate the biological population density. 2) An adaptive
controller is designed, which can guarantee the effective tracking of predator population density. This
is convenient for people to accurately grasp the density of predators, and it is conducive to the stability
of ecological balance.

This paper is organized as follows. In Section 2, a biological system with stage structure is
established, and its stability is analyzed. In Section 3, a fuzzy state observer is designed to estimate
the density of biological population. Then, an adaptive controller is proposed. In Section 4, the
validity of the observer, and the stability and tracking convergence of the biological system under the
regulation of the controller are verified. Finally, a numerical simulation is carried out to support
viewpoints in this paper.

Notations: The superscript T of a matrix represents its matrix transpose. det (·) stands for the
determinant of a square matrix. Re (c) means the real part of a complex number c. ‖.‖ represents
Euclidean norm.

2. Model establishment

Based on [31], the following system is established:
ẋ1 (t) = ax2 (t) − b1x1 (t) − βx1 (t) − s1x2

1 (t) − σx1 (t) y (t)

ẋ2 (t) = βx1 (t) − b2x2 (t)

ẏ (t) = σx1 (t) y (t) − b3y (t) − s2y2 (t) ,
(2.1)

where x1 (t) and x2 (t) represent the juveniles, density and adults, density of the prey population at
time t, respectively; y (t) represents the density of the predator population at time t; a represents the
birth rate of the juvenile population, and β represents the transformation rate from the juvenile
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population to the adult population; b1, b2, b3 represent the mortality rates of the juvenile prey
population, adult prey population and predator population, respectively; s1, s2 represent the
intraspecific competition intensities of the prey adult population and predator population in order to
compete for food, respectively; σ represents the predation rate of the predator population to the prey
population.

In system (2.1), all constants involved are positive. Considering the limitations of the actual
ecological environment, the juveniles and adults density of the prey population and the density of the
predator cannot exceed the maximum carrying capacity of the environment. The state variables and
parameters meet the following conditions:

0 < x1 < x1 max, 0 < x2 < x2 max, 0 < y < ymax,

where x1 max, x2 max, ymax represent the maximum environmental carrying capacities of the juvenile prey
population, adult prey population and predator population, respectively.

It can be seen that system (2.1) has four equilibrium points P1 (0, 0, 0), P2 (x12, x22, y2),
P3 (x13, x23, 0), P4

(
0, 0,−b3

s2

)
, where

x12 =
aβs2 − b1b2s2 − b2βs2 + b2b3σ

b2σ2 + b2s1s2

x22 =
β (aβs2 − b1b2s2 − b2βs2 + b2b3σ)

b2
(
b2σ2 + b2s1s2

)
y2 =

aβσ − b2b3s1 − b1b2σ − b2βσ

b2σ2 + b2s1s2

x13 =
aβ − b1b2 − b2β

b2s1

x23 =
aβ2 − b1b2β − b2β

2

b2
2s1

Because −b3
s2
< 0, and the biological population density involved in this paper is positive, the

equilibrium points P1, P2, P3 are considered. At the equilibrium points P2, P3, in order to ensure the
existence of biological populations, the following conditions should be satisfied:

x12 > 0, x22 > 0, y2 > 0, x13 > 0, x23 > 0

that is, aβσ − b2b3s1 − b1b2σ − b2βσ > 0, aβ − b1b2 − b2β > 0.

Theorem 2.1. 1) System (2.1) is unstable at the equilibrium points P1 (0, 0, 0).
2) System (2.1) is stable at the equilibrium points P2 (x12, x22, y2) when the following inequality holds.

− σx12 + b3 + 2s2y2 > 0
σ2x12y2 − aβ > 0
σ2x12y2 − aβ (−σx12 + b3 + 2s2y2) > 0

3) System (2.1) is stable at the equilibrium point P3 (x13, x23, 0) when the following inequality holds. − σx13 + b3 > 0
b2 (b1 + β + 2s1x13) − aβ > 0
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Proof. The Jacobian matrix of system (2.1) is

J =


−b1 − β − 2s1x1 − σy a −σx1

β −b2 0
σy 0 σx1 − b3 − 2s2y


It can be obtained that the characteristic polynomial of system (2.1) at the equilibrium point

P1 (0, 0, 0) is

det (λE − J)
∣∣∣P1 =

∣∣∣∣∣∣∣∣∣
λ + b1 + β −a 0
−β λ + b2 0
0 0 λ + b3

∣∣∣∣∣∣∣∣∣
= (λ + b3)

[
(λ + b1 + β) (λ + b2) − aβ

]
= (λ + b3)

[
λ2 + (b1 + b2 + β) λ + b2 (b1 + β) − aβ

]
Since b1 + b2 + β > 0, b2 (b1 + β) − aβ < 0, it can be obtained that the system is unstable at the

equilibrium point P1 (0, 0, 0).
It can be obtained that the characteristic polynomial of the system at the equilibrium point

P2 (x12, x22, y2) is

det (λE − J)
∣∣∣P2 =

∣∣∣∣∣∣∣∣∣
λ + Φ1 −a σx12

−β λ + b2 0
−σy2 0 λ + Φ2

∣∣∣∣∣∣∣∣∣
= (λ + Φ2)

[
(λ + Φ1) (λ + b2) − aβ

]
+ σ2x12y2 (λ + b2) ,

where Φ1 = b1 + β + 2s1x12 + σy2,Φ2 = −σx12 + b3 + 2s2y2. Integrating the above formula, we have

λ3 + Υ1λ
2 + Υ2λ + Υ3 = 0,

where

Υ1 = b2 + Φ1 + Φ2

Υ2 = b2 (Φ1 + Φ2) + Φ1Φ2 + σ2x12y2 − aβ

Υ3 = b2Φ1Φ2 + σ2x12y2 − aβΦ2

Since −σx12 + b3 + 2s2y2 > 0, σ2x12y2 − aβ > 0, σ2x12y2 − aβ (−σx12 + b3 + 2s2y2) > 0, we have
Reλ1 < 0,Reλ2 < 0,Reλ3 < 0, and Υ1 > 0,Υ2 > 0,Υ3 > 0,Υ1Υ2 − Υ3 > 0. According to the
Routh-Hurwitz theorem [32], system (2.1) is stable at the equilibrium point P2 (x12, x22, y2).

Similarly, it can be obtained that the characteristic polynomial of the system at equilibrium point
P3 (x13, x23, 0) is

det (λE − J)
∣∣∣P2 =

∣∣∣∣∣∣∣∣∣
λ + Ω1 −a σx13

−β λ + b2 0
0 0 λ + Ω2

∣∣∣∣∣∣∣∣∣
= (λ + Ω2)

[
(λ + Ω1) (λ + b2) − aβ

]
Mathematical Biosciences and Engineering Volume 19, Issue 10, 9709–9729.
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= (λ + Ω2)
[
λ2 + (b2 + Ω1) λ + b2Ω1 − aβ

]
where Ω1 = b1 + β + 2s1x13,Ω2 = −σx13 + b3.

Since −σx13 + b3 > 0, b2 (b1 + β + 2s1x13) − aβ > 0, according to the Routh-Hurwitz theorem [32],
system (2.1) is stable at the equilibrium point P3 (x13, x23, 0). �

From a developmental perspective, we should adopt some appropriate strategies to control the
density of the biological population and avoid the loss of biological population diversity. The
following assumptions are proposed:

Assumption 2.1. The predator population mainly preys on the juvenile population x1 (t), and the capture
of the adult population x2 (t) by predators can be ignored.

Assumption 2.2. Considering that reducing human activities will have a certain impact on the
population of predators, u (t) indicates that human activities are constrained at time t.

Under the above assumptions, the following biological system is established.
ẋ1 (t) = ax2 (t) − b1x1 (t) − βx1 (t) − s1x2

1 (t) − σx1 (t) y (t)

ẋ2 (t) = βx1 (t) − b2x2 (t)

ẏ (t) = σx1 (t) y (t) − b3y (t) − s2y2 (t) + u (t)
(2.2)

System (2.2) is obtained by applying control in the third equation of (2.1). When u (t) = 0, it implies
that the biological system has not been interfered with by human behavior.

3. Main results

3.1. Observer design

In real life, the direct measurement of density is difficult, so the density of biological population
must be estimated by introducing a fuzzy state observer. The T-S fuzzy method is used to construct an
observer to estimate the state of the system.

For the design of the observer, we recall the following lemma.

Lemma 3.1. In [33]: Given constant matrices Q and S , the symmetric constant matrices Z, J with
J > 0, and a time-varying matrix L (t) with appropriate dimension, the following matrix inequality
holds

QL (t) S + (QL (t) S )T
≤ Z

if L (t) satisfies LT (t) L (t) ≤ J.

System (2.2) can be rewritten as

˙̂x (t) = Ax̂ (t) + BU (t) (3.1)

where

A =


−b1 − β − s1x1 a −σx1

β −b2 0
σy 0 −s2y − b3

 , x̂ (t) =
[

x1 (t) x2 (t) y (t)
]T

Mathematical Biosciences and Engineering Volume 19, Issue 10, 9709–9729.
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B =


0 0 0
0 0 0
0 0 1

 ,U (t) =
[

1 1 u (t)
]T

Let

Γ1 (t) = −b1 − β − s1x1 (t) ,Γ2 (t) = −σx1 (t) ,Γ3 (t) = σy (t) ,Γ4 (t) = −s2y (t) − b3;

we have

max Γ1 (t) = −b1 − β − s1xmin
1 (t) ,min Γ1 (t) = −b1 − β − s1xmax

1 (t) ,
max Γ2 (t) = −σxmin

1 (t) ,min Γ2 (t) = −σxmax
1 (t) ,

max Γ3 (t) = σymax (t) ,min Γ3 (t) = σymin (t) ,
max Γ4 (t) = −s2ymin (t) − b3,min Γ4 (t) = −s2ymax (t) − b3.

Using the principle of maximum and minimum, Γ1 (t) ,Γ2 (t) ,Γ3 (t) ,Γ4 (t) can be expressed as

Γ1 (t) = µ11 (Γ1 (t)) max Γ1 (t) + µ12 (Γ1 (t)) min Γ1 (t) ,
Γ2 (t) = µ21 (Γ2 (t)) max Γ2 (t) + µ22 (Γ2 (t)) min Γ2 (t) ,
Γ3 (t) = µ31 (Γ3 (t)) max Γ3 (t) + µ32 (Γ3 (t)) min Γ3 (t) ,
Γ4 (t) = µ41 (Γ4 (t)) max Γ4 (t) + µ42 (Γ4 (t)) min Γ4 (t) ,

where µi1 + µi2 = 1, i = 1, 2, 3, 4 are used to denote the membership function. The fuzzy rules can be
found in the Appendix.

Let Γ(t) = [Γ1(t) Γ2(t) Γ3(t) Γ4(t)]T ,
Γ1(t) ∈ [min Γ1(t),max Γ1(t)],Γ2(t) ∈ [min Γ2(t),max Γ2(t)], Γ3(t) ∈ [min Γ3(t),max Γ3(t)],
Γ4(t) ∈ [min Γ4(t),max Γ4(t)]. ki j(Γ j (t)) represents the grade of membership of Γ j (t) in the fuzzy set
ki j. Using the standard fuzzy blending method, we have

Ri (Γ (t)) =

4∏
j=1

ki j(Γ j (t))

16∑
i=1

4∏
j=1

ki j(Γ j (t))
≥ 0,

16∑
i=1

Ri (Γ (t)) = 1.

Then, system (3.1) can be rewritten as

˙̂x (t) =

16∑
i=1

Ri (Γ (t)) (Ai x̂ (t) + BiU (t)). (3.2)

Let
16∑
i=1

Ri (Γ (t)) Ai,
16∑
i=1

Ri (Γ (t)) Bi be Ā, B̄, respectively. Then, system (3.2) can be rewritten as

˙̂x (t) = Āx̂ (t) + B̄U (t) . (3.3)

Mathematical Biosciences and Engineering Volume 19, Issue 10, 9709–9729.
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In order to facilitate the design of the observer, adding the output vector Y to system (3.3), we have ˙̂x (t) = Āx̂ (t) + B̄U (t)

Y (t) = Cx̂ (t)
, (3.4)

where C is a matrix with appropriate dimension. For system (3.4), an observer of the following form
is designed  ˙̃x (t) = Āx̃ (t) + B̄U (t) + G

(
Y (t) − Ỹ (t)

)
Ỹ (t) = Cx̃ (t)

, (3.5)

where x̃ (t) =
[
x̃1 (t) x̃2 (t) ỹ (t)

]T
represents the state estimate of x̂ (t), Ỹ (t) represents the output

vector of the observer,
(
Ā −GC

)T (
Ā −GC

)
≤ J, and J > 0 is a symmetric constant matrix.

By Lemma 3.1, we can have (
Ā −GC

)
+

(
Ā −GC

)T
≤ Z,

where Z is a symmetric constant matrix. By choosing the matrices G,C such that all characteristic
values of Z have negative real parts less than −$ ($ > 0).

The observer error ς (t) can be obtained as ς (t) = x̂ (t) − x̃ (t). From (3.4) and (3.5), the observer
error system can be obtained:

ς̇ (t) = ˙̂x (t) − ˙̃x (t)

= Āx̂ (t) + B̄U (t) − Āx̃ (t) − B̄U (t) −G
(
Y (t) − Ỹ (t)

)
=

(
Ā −GC

)
ς (t) .

(3.6)

3.2. Controller design

Set yd (t) as the desired density of the predator population. The goal of our proposed adaptive control
strategy is to steer the state variable y (t) to track the desired density.

Assumption 3.1. The desired density yd (t) is bounded and satisfies

0 < yd (t) < ymax.

Remark 1. Assumption 3.1 is reasonable, because yd (t) represents the actual biological meaning.

It can be obtained from system (2.2):

u (t) = ẏ (t) − σx1 (t) y (t) + b3y (t) + s2y2 (t) . (3.7)

Let e (t) = y (t) − yd (t) represent the error between the predator population and the desired density.
By introducing a variable ϕ (t) = ẏd (t) − θe (t) without considering ẏ (t), where θ > 0 is a positive
constant, we have

ϕ (t) − σx1 (t) y (t) + b3y (t) + s2y2 (t) = ϕ (t) + X (x1, y) δ, (3.8)

Mathematical Biosciences and Engineering Volume 19, Issue 10, 9709–9729.
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where X is a vector about x1, y. δ is a vector containing parameters, which can be obtained from (3.8).

X =
[
−x1y y y2

]
, δ =

[
σ b3 s2

]T

The adaptive controller can be designed as

u (t) = ẏd (t) − θe (t) − σx̃1 (t) ỹ (t) + b3ỹ (t) + s2ỹ2 (t) + λ̂ (t) sgn (e (t)) , (3.9)

where x̃1 (t) and ỹ (t) represent estimates of biological population density x1 (t) and y (t), respectively.
In addition, λ̂ (t) denotes the adaptive law to ensure the stability of the system when the model is
uncertain.

Design an update law λ̂ (t)
˙̂λ (t) = −εe (t), (3.10)

where ε is a positive constant, representing the update rate of tracking error e (t).
Therefore, (3.9) can be rewritten as

u (t) = ẏd (t) − θe (t) + X̃ (x̃1, ỹ) δ + λ̂ (t) sgn (e (t)) , (3.11)

where X̃ =
[
−x̃1ỹ ỹ ỹ2

]
.

Remark 2. Furthermore, in order to avoid the undesired chatter in the controller (3.11), the sign
function can be replaced by an approximately continuous alternative in the implementation. We
consider the tangent hyperbolic function tanh (ρe (t)) or the smoothing function sat

(
e
χ

)
instead of

sgn (e (t)), where

sat
(

e
χ

)
=

{
sgn (e (t)) , |e| ≥ χ

e
χ
, |e| < χ

ρ, χ are two constants. Besides, we can also avoid chattering by adding a low-pass filter at the output
of the controller to eliminate high-frequency signals at the control input.

4. Stability analysis

In this section, a Lyapunov function is used to prove the effectiveness of the proposed observer and
controller.

Firstly, using the proposed adaptive controller, (3.7) is substituted into (3.9):

ẏ − ẏd (t) + θe (t) = −σ (x̃1 (t) ỹ (t) − x1 (t) y (t)) + b3 (ỹ (t) − y (t)) + s2

(
ỹ2 (t) − y2 (t)

)
+ λ̂ (t) sgn (e (t))

. (4.1)

Equation (4.1) can be rewritten as

ẏ − ẏd (t) + θe (t) = X̂ (x̂1, ŷ) δ + λ̂ (t) sgn (e (t)), (4.2)

where X̂ (x̂1, ŷ) = X̃ (x̃1, ỹ) − X (x1, y) =
[
x̃1 (t) ỹ (t) − x1 (t) y (t) ỹ (t) − y (t) ỹ2 (t) − y2 (t)

]T
represents

the error vector, which is bounded.
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Since ė (t) = ẏ (t) − ẏd (t), it can be obtained that

ė (t) = −θe (t) + X̂ (x̂1, ŷ) δ + λ̂ (t) sgn (e (t)). (4.3)

Since the parameter vector δ is bounded, and the estimation error X̂ (x̂1, ŷ) of the state variable is
bounded,it can be assumed that there is a positive constant γ such that X̂ (x̂1, ŷ) δ is bounded, that is∣∣∣X̂ (x̂1, ŷ) δ

∣∣∣ ≤ γ. (4.4)

Next, the Lyapunov function is established as

V (t) =
1
2

[
e2 (t) +

1
ε

(
λ̂ (t) + γ

)2
+ ςTς

]
(4.5)

It can be seen from (4.5) that the Lyapunov function is a positive definite function. Substitute (3.6)
into (4.5), and the time derivative of (4.5) can be obtained:

V̇ (t) = e (t) ė (t) +
1
ε

˙̂λ (t)
(
λ̂ (t) + γ

)
+

1
2
ςT

[(
Ā −GC

)T
+

(
Ā −GC

)]
ς. (4.6)

Substitute (4.3) into the above equation to obtain

V̇ (t) = −θe2 (t) + e (t) X̂ (x̂1, ŷ) δ + e (t) λ̂ (t) sgn (e (t)) +
1
ε

˙̂λ (t)
(
λ̂ (t) + γ

)
+

1
2
ςT

[(
Ā −GC

)T
+

(
Ā −GC

)]
ς

. (4.7)

Since e (t) sgn (e (t)) = |e (t)|, substitute (3.10) into (4.7), and we have

V̇ (t) = −θe2 (t) + e (t) X̂ (x̂1, ŷ) δ + λ̂ (t) |e (t)| − e (t)
(
λ̂ (t) + γ

)
+

1
2
ςT

[(
Ā −GC

)T
+

(
Ā −GC

)]
ς

. (4.8)

Substitute (4.4) into (4.8), and we can get

V̇ (t) ≤ −θe2 (t) + |e (t)| γ + λ̂ (t) |e (t)| − |e (t)|
(
λ̂ (t) + γ

)
−$‖ς (t)‖2 (4.9)

This can be obtained by integrating the above formula.

V̇ (t) ≤ −θe2 (t) −$‖ς (t)‖2 (4.10)

Since θ,$ are two positive constants, V̇ (t) ≤ 0.

Theorem 4.1. The proposed observer can effectively estimate the state of the system. The designed
adaptive controller ensures the tracking convergence. When t → ∞, ς (t) → 0, e (t) → 0. That is the
predator population will converge to the desired density, y (t)→ yd (t).
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Proof. According to Barbalat’s Lemma [34], when t ≥ 0, if κ is a uniformly continuous function,
lim
t→∞

∫ t

0
κ (τ) dτ exists and is limited, and we have lim

t→∞
κ (t) = 0.

Suppose ψ (t) = θe2 (t) +$‖ς (t)‖2 ≥ 0, and (4.10) can be rewritten as

V̇ (t) ≤ −θe2 (t) −$‖ς (t)‖2 = −ψ (t) . (4.11)

Integrate (4.11) from 0 to t → ∞ to obtain

V (∞) − V (0) ≤ −lim
t→∞

∫ t

0
ψ (τ) dτ

that is,

lim
t→∞

∫ t

0
ψ (τ) dτ ≤ V (0) − V (∞) , (4.12)

V̇ (t) ≤ 0 is known from (4.10), and V (∞) − V (0) ≤ 0 can be obtained after integrating it, so
V (0) − V (∞) ≥ 0. Combined with (4.12), lim

t→∞

∫ t

0
ψ (τ) dτ exists and is limited, and lim

t→∞

∫ t

0
ψ (τ) dτ is

positive due to ψ (t) ≥ 0. From Barbalat’s Lemma

lim
t→∞

ψ (t) = 0,

that is,
lim
t→∞

(
θe2 (t) +$‖ς (t)‖2

)
= 0. (4.13)

Since θ,$ are two positive constants, e2 (t) ≥ 0, ‖ς (t)‖2 ≥ 0, and it can be seen from (4.13) that
when t → ∞, e (t) → 0, ς (t) → 0. Therefore, the proposed adaptive controller can track the desired
density of the predator population, that is, y (t)→ yd (t). �

5. Simulation

In recent years, human activities have seriously damaged the ecological environment. People have
gradually realized the importance of protecting the ecological environment. In some of the latest
research, it can be seen that human activities have led to the destruction of the ecological environment
of a large number of biological species. Among them, Lampetra japonica is affected by soil erosion,
and the living environments of spawning grounds and young fish are damaged. In addition, water
pollution affects the living environment. So, its resources are quite small and in a vulnerable state.
Therefore, it is urgent to reduce the impact on biological population density by controlling human
behavior. In this paper, considering the survival of Lampetra japonica, the following parameters are
selected according to its actual situation:

a = 0.25, β = 0.19, σ = 0.6, s1 = 0.05,
s2 = 0.06, b1 = 0.09, b2 = 0.07, b3 = 0.07.

Then, the biological system can be obtained as
ẋ1 (t) = 0.25x2 (t) − 0.09x1 (t) − 0.19x1 (t) − 0.05x2

1 (t) − 0.6x1 (t) y (t)

ẋ2 (t) = 0.19x1 (t) − 0.07x2 (t)

ẏ (t) = 0.6x1 (t) y (t) − 0.07y (t) − 0.06y2 (t)
. (5.1)
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Considering the actual situation of the biological system, it follows that

x1 (t) ∈ [0, 3] , x2 (t) ∈ [0, 6] , y (t) ∈ [0, 10] .

At this time,

aβσ − b2b3s1 − b1b2σ − b2βσ = 0.016495 > 0, aβ − b1b2 − b2β = 0.0279 > 0.

When u (t) = 0, we have four equilibrium points of system (5.1) and take the positive equilibrium
point as P2 = (0.1816, 0.4929, 0.6492).

After adding the controller, the system is
ẋ1 (t) = 0.25x2 (t) − 0.09x1 (t) − 0.19x1 (t) − 0.05x2

1 (t) − 0.6x1 (t) y (t)

ẋ2 (t) = 0.19x1 (t) − 0.07x2 (t)

ẏ (t) = 0.6x1 (t) y (t) − 0.07y (t) − 0.06y2 (t) + u (t)
.

Then, we have
max Γ1 (t) = −0.28,min Γ1 (t) = −0.43,
max Γ2 (t) = 0,min Γ2 (t) = −1.8,
max Γ3 (t) = 6,min Γ3 (t) = 0,
max Γ4 (t) = −0.07,min Γ4 (t) = −0.67.

So, the fuzzy model is

˙̂x (t) =

16∑
i=1

Ri (Γ (t)) (Ai x̂ (t) + BiU (t)),

where

A1 =


−0.28 0.25 0
0.19 −0.07 0

6 0 −0.07

 , A2 =


−0.28 0.25 0
0.19 −0.07 0

6 0 −0.67

 , A3 =


−0.28 0.25 0
0.19 −0.07 0

0 0 −0.07

 ,
A4 =


−0.28 0.25 0
0.19 −0.07 0

0 0 −0.67

 , A5 =


−0.28 0.25 −1.8
0.19 −0.07 0

6 0 −0.07

 , A6 =


−0.28 0.25 −1.8
0.19 −0.07 0

6 0 −0.67

 ,
A7 =


−0.28 0.25 −1.8
0.19 −0.07 0

0 0 −0.07

 , A8 =


−0.28 0.25 −1.8
0.19 −0.07 0

0 0 −0.67

 , A9 =


−0.43 0.25 0
0.19 −0.07 0

6 0 −0.07

 ,
A10 =


−0.43 0.25 0
0.19 −0.07 0

6 0 −0.67

 , A11 =


−0.43 0.25 0
0.19 −0.07 0

0 0 −0.07

 , A12 =


−0.43 0.25 0
0.19 −0.07 0

0 0 −0.67

 ,
A13 =


−0.43 0.25 −1.8
0.19 −0.07 0

6 0 −0.07

 , A14 =


−0.43 0.25 −1.8
0.19 −0.07 0

6 0 −0.67

 , A15 =


−0.43 0.25 −1.8
0.19 −0.07 0

0 0 −0.07

 ,
A16 =


−0.43 0.25 −1.8
0.19 −0.07 0

0 0 −0.67

 , Bi =


0 0 0
0 0 0
0 0 1

 , i = 1, 2, . . . , 16.
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The membership function can be obtained:

µ11 =
100Γ1 (t) + 43

15
, µ12 =

−28 − 100Γ1 (t)
15

, µ21 =
5Γ2 (t) + 9

9
, µ22 =

−5Γ2 (t)
9

,

µ31 =
Γ3 (t)

6
, µ32 =

6 − Γ3 (t)
6

, µ41 =
100Γ4 (t) + 67

60
, µ42 =

−7 − 100Γ4 (t)
60

.

Let

Q =


0.2 0.1 1
0.1 0.2 10
1 10 0.2

 ,G =


−2.0797 0.5029 −1.2395
0.2227 0.3810 0.5019
1.7537 −1.4476 4.5462

 ,C =


−1 −3 10
−3 −2 0.5
10 0.5 −5


The observer error can be obtained as

ς̇ (t) =


−38.32 −19 −64.4
−78.04 −27.13 −7.5
−63.5 −36 −144.33

 ς (t) .

When t < 100, set the desired density of the predator population as yd (t) = 0.3. The tracking error
is e (t) = y (t) − 0.3. When t ≥ 100, set yd (t) = 0.75. Then, the tracking error is e (t) = y (t) − 0.75. Let
θ = 0.15, and then the adaptive controller is u (t) = −0.15

[
y (t) − 0.3

]
− 0.6x̃1 (t) ỹ (t) + 0.07ỹ (t) + 0.06ỹ2 (t) + λ̂ (t) sgn

[
y (t) − 0.3

]
, t < 100

u (t) = −0.15
[
y (t) − 0.75

]
− 0.6x̃1 (t) ỹ (t) + 0.07ỹ (t) + 0.06ỹ2 (t) + λ̂ (t) sgn

[
y (t) − 0.75

]
, t ≥ 100

.

If the parameter of the designed adaptive update law is ε = 0.09, the adaptive update law is ˙̂λ (t) = −0.09
[
y (t) − 0.3

]
, t < 100

˙̂λ (t) = −0.09
[
y (t) − 0.75

]
, t ≥ 100.

The initial values are as follows: x1 (0) = 1.9, x2 (0) = 2.05, y (0) = 5.03.
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Figure 1. The state response without control.
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Figure 2. The state response with control.

Figure 1 shows the state response without control. It can be seen that the density of the biological
species is divergent and unstable. Figure 2 shows the state response of the biological population after
applying the controller. It can be seen that the biological model converges and tends to be stable with
control. It can be verified that the designed adaptive controller is effective.

Figure 3 shows the tracking error between the predator population density and the desired density.
It can be seen that the error almost converges to 0, which can be confirmed by the enlarged subgraph.
Figure 4 shows the trajectory of y tracking the desired density yd with control. It can be seen that y can
track well the desired density yd under the regulation of the adaptive controller.
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Figure 3. Tracking error after applying controller.
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Figure 4. Trajectory of y (t) and yd (t).
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Figure 5. Adaptive controller.

The trajectory of the adaptive controller is shown in Figure 5. Figure 6 shows the observer error.
From the above figures, it can be verified that under the action of the proposed controller and update
law, the biological system can remain stable, and the density of predators can well follow the desired
density. In other words, under the regulation of the adaptive controller designed in this paper, the
ecosystem of Lampetra japonica will maintain natural balance and benign conditions. The adaptive
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controller designed in this paper can stabilize the ecosystem of Lampetra japonica. Lampetra japonica
is small in size, inhabits the river all its life and has no migratory habit. Due to the influence of human
activities, its population is small and in a vulnerable situation. This may lead to the destruction of
the ecological balance. According to the data, lampetra japonica has been listed in the second level of
China’s national key protected wildlife list. In this case, we need to reduce human activities. Therefore,
a controller is applied to the third differential equation in (2.1). Through the adaptive controller, we
study the effect of limiting human activities on the density of Lampetra japonica, and we make the
density of Lampetra japonica able to track the given density. The adaptive controller also ensures the
stability of the whole ecosystem.

0 20 40 60 80 100

Time

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Figure 6. Observer error.

6. Conclusions

In this paper, an adaptive tracking control scheme has been investigated for a biological model with
stage structure. A state observer is constructed by the T-S fuzzy method, and an adaptive tracking
controller is designed on this basis. The proposed control scheme not only guarantees the stability of
the biological model but also ensures that the predator density can track a desired density. Finally, a
simulation example is given to illustrate the effectiveness of the results. From the biological point of
view, the proposed adaptive tracking control method can appropriately adjust the biological population
density to stabilize the whole biological system. At the same time, it can realize effective tracking
and finally achieve the sustainable development of biological resources. Therefore, our results have a
far-reaching impact on the study of biological population density.
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Appendix

The fuzzy rules are given as follows:
Rule 1: If Γ1 (t) is µ11 (Γ1 (t)), Γ2 (t) is µ21 (Γ2 (t)), Γ3 (t) is µ31 (Γ3 (t)), Γ4 (t) is µ41 (Γ3 (t)), then

˙̂x (t) = A1 x̂ (t) + B1U (t).
Rule 2: If Γ1 (t) is µ11 (Γ1 (t)), Γ2 (t) is µ21 (Γ2 (t)), Γ3 (t) is µ31 (Γ3 (t)), Γ4 (t) is µ42 (Γ3 (t)), then

˙̂x (t) = A2 x̂ (t) + B2U (t).
Rule 3: If Γ1 (t) is µ11 (Γ1 (t)), Γ2 (t) is µ21 (Γ2 (t)), Γ3 (t) is µ32 (Γ3 (t)), Γ4 (t) is µ41 (Γ3 (t)), then

˙̂x (t) = A3 x̂ (t) + B3U (t).
Rule 4: If Γ1 (t) is µ11 (Γ1 (t)), Γ2 (t) is µ21 (Γ2 (t)), Γ3 (t) is µ32 (Γ3 (t)), Γ4 (t) is µ42 (Γ3 (t)), then

˙̂x (t) = A4 x̂ (t) + B4U (t).
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Rule 5: If Γ1 (t) is µ11 (Γ1 (t)), Γ2 (t) is µ22 (Γ2 (t)), Γ3 (t) is µ31 (Γ3 (t)), Γ4 (t) is µ41 (Γ3 (t)), then
˙̂x (t) = A5 x̂ (t) + B5U (t).

Rule 6: If Γ1 (t) is µ11 (Γ1 (t)), Γ2 (t) is µ22 (Γ2 (t)), Γ3 (t) is µ31 (Γ3 (t)), Γ4 (t) is µ42 (Γ3 (t)), then
˙̂x (t) = A6 x̂ (t) + B6U (t).

Rule 7: If Γ1 (t) is µ11 (Γ1 (t)), Γ2 (t) is µ22 (Γ2 (t)), Γ3 (t) is µ32 (Γ3 (t)), Γ4 (t) is µ41 (Γ3 (t)), then
˙̂x (t) = A7 x̂ (t) + B7U (t).

Rule 8: If Γ1 (t) is µ11 (Γ1 (t)), Γ2 (t) is µ22 (Γ2 (t)), Γ3 (t) is µ32 (Γ3 (t)), Γ4 (t) is µ42 (Γ3 (t)), then
˙̂x (t) = A8 x̂ (t) + B8U (t).

Rule 9: If Γ1 (t) is µ12 (Γ1 (t)), Γ2 (t) is µ21 (Γ2 (t)), Γ3 (t) is µ31 (Γ3 (t)), Γ4 (t) is µ41 (Γ3 (t)), then
˙̂x (t) = A9 x̂ (t) + B9U (t).

Rule 10: If Γ1 (t) is µ12 (Γ1 (t)), Γ2 (t) is µ21 (Γ2 (t)), Γ3 (t) is µ31 (Γ3 (t)), Γ4 (t) is µ42 (Γ3 (t)), then
˙̂x (t) = A10 x̂ (t) + B10U (t).

Rule 11: If Γ1 (t) is µ12 (Γ1 (t)), Γ2 (t) is µ21 (Γ2 (t)), Γ3 (t) is µ32 (Γ3 (t)), Γ4 (t) is µ41 (Γ3 (t)), then
˙̂x (t) = A11 x̂ (t) + B11U (t).

Rule 12: If Γ1 (t) is µ12 (Γ1 (t)), Γ2 (t) is µ21 (Γ2 (t)), Γ3 (t) is µ32 (Γ3 (t)), Γ4 (t) is µ42 (Γ3 (t)), then
˙̂x (t) = A12 x̂ (t) + B12U (t).

Rule 13: If Γ1 (t) is µ12 (Γ1 (t)), Γ2 (t) is µ22 (Γ2 (t)), Γ3 (t) is µ31 (Γ3 (t)), Γ4 (t) is µ41 (Γ3 (t)), then
˙̂x (t) = A13 x̂ (t) + B13U (t).

Rule 14: If Γ1 (t) is µ12 (Γ1 (t)), Γ2 (t) is µ22 (Γ2 (t)), Γ3 (t) is µ31 (Γ3 (t)), Γ4 (t) is µ42 (Γ3 (t)), then
˙̂x (t) = A14 x̂ (t) + B14U (t).

Rule 15: If Γ1 (t) is µ12 (Γ1 (t)), Γ2 (t) is µ22 (Γ2 (t)), Γ3 (t) is µ32 (Γ3 (t)), Γ4 (t) is µ41 (Γ3 (t)), then
˙̂x (t) = A15 x̂ (t) + B15U (t).

Rule 16: If Γ1 (t) is µ12 (Γ1 (t)), Γ2 (t) is µ22 (Γ2 (t)), Γ3 (t) is µ32 (Γ3 (t)), Γ4 (t) is µ42 (Γ3 (t)), then
˙̂x (t) = A16 x̂ (t) + B16U (t) .
In the above,

A1 =


max Γ1 (t) a max Γ2 (t)

β −b2 0
max Γ3 (t) 0 max Γ4 (t)

 , A2 =


max Γ1 (t) a max Γ2 (t)

β −b2 0
max Γ3 (t) 0 min Γ4 (t)

 ,
A3 =


max Γ1 (t) a max Γ2 (t)

β −b2 0
min Γ3 (t) 0 max Γ4 (t)

 , A4 =


max Γ1 (t) a max Γ2 (t)

β −b2 0
min Γ3 (t) 0 min Γ4 (t)

 ,
A5 =


max Γ1 (t) a min Γ2 (t)

β −b2 0
max Γ3 (t) 0 max Γ4 (t)

 , A6 =


max Γ1 (t) a min Γ2 (t)

β −b2 0
max Γ3 (t) 0 min Γ4 (t)

 ,
A7 =


max Γ1 (t) a min Γ2 (t)

β −b2 0
min Γ3 (t) 0 max Γ4 (t)

 , A8 =


max Γ1 (t) a min Γ2 (t)

β −b2 0
min Γ3 (t) 0 min Γ4 (t)

 ,
A9 =


min Γ1 (t) a max Γ2 (t)

β −b2 0
max Γ3 (t) 0 max Γ4 (t)

 , A10 =


min Γ1 (t) a max Γ2 (t)

β −b2 0
max Γ3 (t) 0 min Γ4 (t)

 ,
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A11 =


min Γ1 (t) a max Γ2 (t)

β −b2 0
min Γ3 (t) 0 max Γ4 (t)

 , A12 =


min Γ1 (t) a max Γ2 (t)

β −b2 0
min Γ3 (t) 0 min Γ4 (t)

 ,
A13 =


min Γ1 (t) a min Γ2 (t)

β −b2 0
max Γ3 (t) 0 max Γ4 (t)

 , A14 =


min Γ1 (t) a min Γ2 (t)

β −b2 0
max Γ3 (t) 0 min Γ4 (t)

 ,
A15 =


min Γ1 (t) a min Γ2 (t)

β −b2 0
min Γ3 (t) 0 max Γ4 (t)

 , A16 =


min Γ1 (t) a min Γ2 (t)

β −b2 0
min Γ3 (t) 0 min Γ4 (t)

 .
Bi = B, i = 1, 2, . . . , 16.
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