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Abstract: The year 2020 brought about a pandemic that caught most of the world population by
surprise and wreaked unimaginable havoc before any form of effective reaction could be put in place.
COVID-19 is proving to be an epidemic that keeps on having an upsurge whenever it looks like it is
being curbed. This pandemic has led to continuous strategizing on approaches to quelling the surge.
The recent and welcome introduction of vaccines has led to renewed optimism for the population at
large. The introduction of vaccines has led to the need to investigate the effect of vaccination among
other control measures in the fight against COVID-19. In this study, we develop a mathematical model
that captures the dynamics of the disease taking into consideration some measures that are easier to
implement majorly within the African context. We consider quarantine and vaccination as control
measures and investigate the efficacy of these measures in curbing the reproduction rate of the disease.
We analyze the local stability of the disease-free equilibrium point. We also perform sensitivity analysis
of the effective reproduction number to determine which parameters significantly lowers the effective
reproduction number. The results obtained suggest that quarantine and a vaccine with at least 75%
efficacy and reducing transmission probability through sanitation and wearing of protective gears can
significantly reduce the number of secondary infections.
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1. Introduction

Some millennia ago, epidemics were mainly of interest to historians. The last 95 years has re-
sulted in a dramatic turn in events. From the outbreak of the Spanish flu in 1918–1919 [1], to herpes
and legionnaires disease in the early 70s to the discovery of acquired immunodeficiency syndrome
(AIDS) and Ebola, the world has witnessed highly contagious diseases that have threatened human
existence [2]. A complete historical account of outbreaks was documented by Brauer [1]. According
to Velevan and Meyer [3], coronaviruses were initially identified in 1966 by Tyrell et al. [4]. Recently,
according to Guarner [5], the world has witnessed the emergence of three coronaviruses that have led
to outbreaks, causing troubling worldwide health and economic concerns. The first two are the severe
acute respiratory syndrome (SARS) and the Middle East respiratory syndrome coronavirus (MERS-
CoV) that both have case fatality rates of about 9.5 and 35%, respectively. The most recent disease
currently ravaging the world population is COVID-19. Though the virus was recognized in December
2019 [6], the first official case was reported on the 7th of January 2020. Due to several factors, the
spread of the virus has been rapid. It has led the leadership of the World Health Organization (WHO)
Emergency Committee to declare the infection a pandemic and a global health emergency [3]. A slight
solace is that COVID-19 fatality rate is at 2 − 3%, unlike the other coronaviruses.

The use of mathematical models in aiding effective decision making in public health and clin-
ical medicine has been acknowledged by Porgo et al. [7]. Several modelling frameworks are often
proposed to understand the spread of diseases within a population and develop short- and long-term
control strategies [8]. One of such is the use of mathematical models, which are often deployed to
capture the dynamics of the disease at different stages [9]. Several authors such as Kassa et al. [10],
Ndairou et al. [11], Zhang et al. [12] among others have come up with several models that fully cap-
ture the different transmission modes of the COVID-19 infection and inculcated several intervention
strategies. Their results show that mathematical models are imperative in the fight against the spread
of the disease.

Given that COVID-19 was officially reported in January 2020 and months later, several countries
are yet to experience the peak of the disease and vaccine has been unavailable, it is imperative to
consider the influence of several non-pharmaceutical interventions. Several scientists such as Zhang et
al. [12] evaluated interventions like social distancing, school closures, isolation and quarantine. While
their studies revealed the positive influence of these measures on reducing the spread, their findings do
not represent the situation worldwide. Based on statistics provided by Bargain and Ulugbek [13] and
Olopade et al. [14], among others, several countries have more than half the population living below the
poverty line. It is also important to note that some of these countries are densely and highly populated.

In light of the above observation, it is essential to consider various mitigation factors in poverty-
ravaged countries where most of the population live below the poverty line, where unemployment is
rife, and a high number of people share a small space and limited facilities exist. In such countries,
the disparity in wealth means only a small percentage of the population can afford to execute all the
mitigation processes comfortably without being a risk to others. Taking South Africa as a case in
point, which this study will focus on, 14% of the population lives in an informal settlement, and there
is an unemployment rate of 29% with a significant percentage having menial employment [15]. A
rigorous study conducted by Garba et al. [16] within the South African context found that if all the
control measures implemented by the government were put in place early and for a sustained period,
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the disease would subsequently die out, which is excellent. The downside, however, is that a particular
set of the population, especially the unemployed and the low-income earners, would find it even harder
to survive economically.

The study by Stiegler and Bouchard [15] found that the phased approach used by the government
worked, but given that the study was conducted in May 2020 and 6 months later, South Africa went
into a second wave means that the strategy needs revisiting. Based on the respondents reported in the
study, it is clear that people’s attitude to the government response to the COVID-19 situation differs
for the middle-class and poor respondents. Furthermore, Arndt et al. [17] conducted a study focusing
on the impact of government response on food security. They found that the mitigation approach of
distancing directly impacted the wage income, particularly for low-skilled workers, and suggested that
the initial lockdown policies had a detrimental impact on the food security of low-income households.
These studies highlight the need to construct a model that focuses on measures that can help curb
the spread of the virus while allowing unemployed and low-income earners to go about their daily
business. Therefore, there is a need to apply a two-pronged approach to curb the spread of COVID-19.
Therein lies the objective of this study.

We aim to construct a model that caters for non-pharmaceutical measures and also takes into
consideration the impact of vaccination in anticipation of the arrival of vaccines and the significant
number of people against vaccination (see Megget [18] and De Roo et al. [19]). We also investigate the
potential impact of vaccine efficacy on the reproduction number. We carry out the stability analysis of
the disease-free equilibrium point and sensitivity of the effective reproduction number to the model’s
parameters. We investigate the impact of combining both pharmaceutical and non-pharmaceutical
measures in curbing the spread of the infection.

2. Mathematical models

In this section, we propose a mathematical model of the dynamics of COVID-19 and mitigation
measures. This model assumes that the total population N(t) is divided into seven classes; namely, the
susceptible class S (t), the vaccinated class S v(t), the exposed class E(t), the quarantined class Q(t), the
infected class I(t), the hospitalized class H(t) and recovered class R(t). We assume that the susceptible
class is vaccinated at a rate φ and the vaccine has an efficacy rate (1 − σ), where σ = 0 indicates
a failed vaccination and σ = 1 depicts a perfectly effective vaccination. The vaccine is assumed to
dwindle at a constant rate ρ, such that individuals that are vaccinated have immunity for a period
of 1/ρ time unit. It is assumed that individuals who have failed vaccination may become exposed
and inadvertently become infected at a lower infection rate βζ(1 − σ)IS v/N than individuals from the
susceptible population who are unvaccinated, who become infected at a rate βζIS/N, where β is the
probability of transmission and ζ is the effective contact rate. Individuals exposed to the virus are
kept in quarantine at a rate ν and those who show clinical symptoms are hospitalized and treated for
COVID-19 symptoms at a constant rate b, with a recovery rate τ. However, quarantined individuals
who show no symptoms during the fourteen-day incubation period rejoin the susceptible compartment
at a rate ω, while individuals who show clinical symptoms progress to the infected class at p. We
considered natural death and assumed that the mortality rate is µ, while COVID-19 related mortality
rate is δ.
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Figure 1. Transition diagram of the COVID-19 dynamics.

The system of differential equations describing the model is derived using the assumptions men-
tioned above and the flow diagram in Figure 1, and are expressed as follow:

Ṡ = Π − (φ + µ)S + ρS v + ωQ + ηR −
βζIS

N
(2.1a)

Ṡ v = φS − ρS v −
βζ(1 − σ)IS v

N
− µS v (2.1b)

Ė =
βζS I

N
+
βζ(1 − σ)IS v

N
− (ν + α + µ)E (2.1c)

Q̇ = νE − (p + ω + µ) Q (2.1d)
İ = αE + pQ − (b + δ + µ) I (2.1e)

Ḣ = bI − (τ + δ + µ) H (2.1f)
Ṙ = τH − (η + µ) R, (2.1g)

with the initial conditions

S (0) ≥ 0, S v(0) ≥ 0, E(0) ≥ 0,Q(0) ≥ 0, I(0) ≥ 0,H(0) ≥ 0,R(0) ≥ 0. (2.2)
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Parameter estimation and model fitting
We use the daily number of COVID-19 infections reported in South Africa to estimate some of

the parameter values in the system of Eq (2.1). Figure 2 shows the trend of the daily number of new
infections reported [20]. We consider two stages, the first stage represents the onset of the disease
and the phase when mitigation strategies were first implemented. The second stage represents the
stage when the implementation of mitigation strategies was at its peak. We use the genetic algorithm
optimization technique to estimate the parameters. For both stages, we consider Eq (2.1) without the
vaccinated component or the vaccination parameters, such that the model reduces to

Ṡ = Π − µS + ωQ + ηR −
βζS I

N
, Ė =

βζS I
N
− (ν + α + µ)E,

Q̇ = νE − (p + ω + µ)Q, İ = αE + pQ − (b + δ + µ)I,
Ḣ = bI − (τ + δ + µ)H, Ṙ = τH − (η + µ)R. (2.3)

For the first stage, we consider the COVID-19 data from 05/03/2020 until 17/07/2020, and the
second stage from 17/07/2020 to 24/10/2020. To estimate the parameters for the first stage, given that
there were very few known cases, we assumed that the initial number of exposed individuals is 20,
that is E(0) = 20. The infected class initial value I(0) is 5, the number of cases reported on the 5th of
March 2020. The recruitment rate Π is evaluated using µN, where N = 58.56×106 is South Africa total
population and µ = 1/(63.86 × 365) is the natural mortality rate [21]. The initial values of the Q and R
components are assumed to be zero, and S (0) = N −E(0)− I(0). For the second stage, the components
initial values are taken to be the terminal values of the first stage. Figure 3 shows the curves of the
daily number of infections simulated by model (2.3) and the reported data. In Table 1, we present the
estimated parameter values in both stages. Because the implementation of mitigation strategies was at
its peak, contact rate and transmission probability in the second stage are lower than the corresponding
values in the first stage.
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Figure 2. Trend of daily number of new infections in South Africa from 05/03/2020 to
24/10/2020.
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Figure 3. Comparison of the daily numbers of infection simulated in the model and the
numbers reported for the first and second stages.

Table 1. Description of parameters and range of values used in simulation.

Parameter Description 1st stage 2nd stage

β Probability of transmission during contact 0.0122 0.0059
ζ Contact rate between an infected and susceptible individual 8.51 5.6242
α Progression rate from exposed to infected 0.2254 0.1056
ν Rate of quarantine of exposed individuals 0.1988 0.0024
p Rate of progression from quarantine to infected 0.3835 0.1132
ω Rate at which quarantined individuals are confirmed noninfectious 0.1997 0.9383
η Rate of progression from recovery back to susceptible 0.5646 0.2321
b Rate of hospitalization of infected individuals 0.0191 0.0577
τ Average recovery rate 0.0482 0.0590
δ Disease–induced death rate 0.0053 0.0293

3. Mathematical analysis

This section presents some theoretical results wherein we obtain the disease-free equilibrium point
and analyze its local stability. We prove that the model Eq (2.1) is well-posed, bounded, and its
solutions are positive, and then proceed to obtain the effective reproduction number at the disease-free
equilibrium point.

3.1. Positivity and boundedness

Theorem 1. Assume that {S (0) ≥ 0, S v(0) ≥ 0, E(0) ≥ 0,Q(0) ≥ 0, I(0) ≥ 0,H(0) ≥ 0,R(0) ≥ 0} are
the initial values of the solutions of equations (2.1). The solution set

{S (t), S v(t), E(t),Q(t), I(t),H(t),R(t)}

are all non-negative for all t ≥ 0, provided all parameters are positive.
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Proof. By continuous dependence of the solutions on initial conditions, we only need to show the
solution set is positive, given that the initial conditions are positive. From Eq (2.1d), and by using the
method of integrating factor, we have

Q(t) = e−(p+ω+µ)t
[
Q(0) + ν

∫ t

0
e(p+ω+µ)rE(r)dr

]
≥ 0. (3.1)

Similarly, from Eq (2.1f)

H(t) = e−(τ+δ+µ)t
[
H(0) + b

∫ t

0
e(τ+δ+µ)rI(r)dr

]
≥ 0. (3.2)

Similar approach can be used for the other equations, and this guarantees the positivity of the
solutions. Therefore, the system is positively invariant in R7

+.

Theorem 2. The model (2.1) is well-posed, and the solution is bounded and invariant in the region

Λ =

{
(S , S v, E,Q, I,H,R) ∈ R7

+ : N(t) ≤
Π

µ

}
. (3.3)

Proof : We know that

Ṅ = Ṡ + Ṡ v + Ė + Q̇ + İ + Ḣ + Ṙ (3.4)
= Π − µN − δ (I + H) . (3.5)

Assume that there is no disease-induced death, then

Ṅ = Π − µN. (3.6)

Therefore,

N(t) =
Π

µ

(
1 − e−µt) + N(0)e−µt ≤

Π

µ
, (3.7)

where N(0) is the initial value of the total population. Equation (3.7) implies that the model is well-
posed, and solutions are bounded in Λ.

3.2. Disease-free equilibrium

Assume that there are no infectious individuals at the disease-free state, then E0 = I0 = 0. Conse-
quently, Q0 = H0 = R0 = 0, and

S 0 =
(ρ + µ) Π

µ (φ + ρ + µ)
, S 0

v =
Πφ

µ (φ + ρ + µ)
. (3.8)

Therefore, the disease-free equilibrium point is obtained as

ξ0 =

(
(ρ + µ) Π

µ (φ + ρ + µ)
,

Πφ

µ (φ + ρ + µ)
, 0, 0, 0, 0, 0

)
. (3.9)
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3.3. Effective reproduction number

For the study of the stability properties of the model (2.1), we will use the effective reproduction
number, which is the average number of secondary cases produced by one infected individual during
its entire infectious period in an otherwise uninfected population [22]. From a mathematical viewpoint,
the value of the effective reproduction number associated with the epidemiological models (2.1a) to
(2.1g) can be computed as the spectral radius of the next–generation matrix (see Heesterbeek and
Dietz [22] and Van den Driessche and Watmough [23] for more details). We do this by decomposing
the infectious compartments of the model into F − V, and finding the next-generation matrix FV−1

at the disease-free equilibrium point. F and V are respectively the Jacobian of the matrices F and V
defined as:

F =


βζS I

N +
βζ(1−σ)S vI

N
0
0
0

 , V =


(ν + α + µ) E

−νE + (p + ω + µ) Q
−αE − pQ + (b + δ + µ)I
−bI + (τ + δ + µ)H

 . (3.10)

Therefore,

F =


0 0 βζS 0

N +
βζ(1−σ)S 0

v
N 0

0 0 0 0
0 0 0 0
0 0 0 0

 , V =


ν + α + µ 0 0 0
−ν p + ω + µ 0 0
−α −p b + δ + µ 0
0 0 −b τ + δ + µ

 , (3.11)

and the next generation matrix (NGM) is obtained as

NGM =
βζ(S 0 + (1 − σ)S 0

v)
N


α(p+ω+µ)+pν

(ν+α+µ)(p+ω+µ)(b+δ+µ)
p

(p+ω+µ)(b+δ+µ)
1

b+δ+µ
0

0 0 0 0
0 0 0 0
0 0 0 0

 . (3.12)

The effective reproduction number is the spectral radius of the next generation matrix. In this case,
the spectral radius of NGM is the matrix’s only non-zero eigenvalues. Thus, the effective reproduction
number of the epidemiological model (2.1) is obtained as follow:

Rvac =
βζ(S 0 + (1 − σ)S 0

v)
N

α(p + ω + µ) + pν
(ν + α + µ)(p + ω + µ)(b + δ + µ)

=
βζ(ρ + µ + (1 − σ)φ)

(φ + ρ + µ)
α(p + ω + µ) + pν

(ν + α + µ)(p + ω + µ)(b + δ + µ)
. (3.13)

The linear relationship between the reproduction number and the probability of transmission is
quite apparent. We can decompose the effective reproduction number into two parts such that
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Rvac = Ri + Rq, (3.14)

where

Ri =
βζ(ρ + µ + (1 − σ)φ)α

(φ + ρ + µ)(ν + α + µ)(b + δ + µ)
,

Rq =
βζ(ρ + µ + (1 − σ)φ)pν

(φ + ρ + µ)(ν + α + µ)(p + ω + µ)(b + δ + µ)
.

 (3.15)

Ri represents the contribution of individuals who are exposed and subsequently become infected
to the spread of the infection. In contrast, Rq represents the contribution of individuals who progressed
to the infected compartment from quarantine to the spread of the disease. We can define the effective
reproduction number in terms of the basic reproduction number R0 without vaccination as

Rvac = R0

[
1 −

σφ

(φ + ρ + µ)

]
, (3.16)

where

R0 = Ri0 + Rq0 =
βζα

(ν + α + µ)(b + δ + µ)
+

βζpν
(ν + α + µ)(p + ω + µ)(b + δ + µ)

. (3.17)

Given the positivity of the parameters, 1− σφ/(φ + ρ + µ) < 1, and it corresponds to the vaccine admin-
istration rate. If R0 is less than unity, we can easily see that Rvac < 1. However, if R0 is greater than
one, it is imperative to ask if the administration of a vaccine would make Rvac < 1. In that case, the
vaccination rate must satisfy the following inequality

φ >
(R0 − 1)(ρ + µ)
R0(σ − 1) + 1

, (3.18)

for which R0(σ − 1) + 1 > 0, which implies that the vaccine efficacy rate σ must be greater than
1 − 1/R0. This simply means that; given the critical vaccination rate φc defined as

φc =
(R0 − 1)(ρ + µ)
R0(σ − 1) + 1

. (3.19)

There is a region in the domain of the parameters where we can make the effective reproduction
number less than one. We illustrate this using the parameter values estimated from the model fitting
process. We calculate the basic reproduction number from the two stages and present them in Table 2.
The values obtained in Table 2 show that strict implementation of the mitigation strategies significantly
reduces the basic reproduction number. In the shaded region in Figure 4, Rvac < 1. By assuming that
vaccinated individuals are immune for 365 days, we can see that with about 75% vaccine efficacy
and a good vaccination rate, it is possible to make the effective reproduction number less than unity.
This implies that if a reoccurrence of stage 1 happens in South Africa, utilizing non-pharmaceutical
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measures, such as quarantine and reducing contact rate, combined with a vaccine that has 75% efficacy,
the rate of secondary infection can be kept to the minimum.

Table 2. Estimated values of the basic reproduction number.

Ri0 Rq0 R0

1st Stage 2.2567 1.3087 3.5655
2nd Stage 0.3743 9.2179 × 10−4 0.3743
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Figure 4. Feasibility region of the vaccination and vaccine efficacy rates. In the shaded
region, Rvac < 1.

3.4. Local stability of the disease-free equilibrium point

Theorem 3. The disease-free equilibrium point is asymptotically stable whenever Rvac < 1 and unsta-
ble otherwise.

Proof. Evaluating the linearized Jacobian at the disease-free equilibrium point, we have

J(ζ0) = F(ζ0) − V(ζ0)

=


−k1 0 A 0
ν −k2 0 0
α p −k3 0
0 0 b −k4

 , (3.20)
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where
A =

βζ(ρ + µ + (1 − σ)φ)
(φ + ρ + µ)

, k1 = ν + α + µ,

k2 = p + ω + µ, k3 = b + δ + µ, k4 = τ + δ + µ

 (3.21)

are non-negative. To show that the disease–free equilibrium point is locally asymptotically stable,
we must show that the eigenvalues of J(ζ0) have negative real part if Rvac < 1. The characteristics
polynomial of the Jacobian J(ζ0) is given as

λ0κ
4 + λ1κ

3 + λ2κ
3 + λ3κ + λ4 = 0, (3.22)

where
λ0 = 1,
λ1 = k1 + k2 + k3 + k4,

λ2 = k1k2 + k2k3 + k1k4 + k2k4 + k3k4 + k1k3(1 − Rvac + Ri),
λ3 = k1k2k4 + k2k3k4v + k1k2k3(1 − Rvac) + k1k3k4(1 − Rvac + Rq),
λ4 = k1k2k3k4(1 − Rvac).


(3.23)

To show that the disease-free equilibrium point is locally asymptotically stable, it suffices to prove,
by the Routh–Hurwitz stability criterion for fourth–order polynomials, that λ0 > 0, λ1 > 0, λ4 >

0, λ1λ2 − λ0λ3 > 0 and (λ1λ2 − λ0λ3) λ3 − λ
2
1λ4 > 0. These conditions are satisfied whenever Rvac < 1

as shown in Appendix A.1. Therefore, the disease-free equilibrium point is locally asymptotically
stable. �

3.5. Global stability of the disease-free equilibrium point

This section uses the application of the Lyapunov function to establish the global stability of the
disease-free equilibrium.

Definition 1. Given the dynamical system, Ẋ = G(X), with equilibrium point, X∗, such that G : Rn 7→

Rn. We define a continuous scalar function L : Rn 7→ Rn. L is said to be positive definite if the
conditions

L(X∗) = 0, L(X) > 0 ∀ X , X∗,

are satisfied. If L(X)→ ∞ as ‖X‖ → ∞, then L(X) is radially unbounded [24].

Theorem 4 (Lyapunov’s Stability Theorem). The equilibrium point, X∗, is globally stable if L(X) is a
Lyapunov function such that L̇(X) < 0 for all X , X∗.

An extension of the Lyapunov stability theorem is the LaSalle invariance principle which partially
states that, given a dynamical system Ẋ = G(X) with equilibrium, X∗, such that G(X∗) = 0, X∗ is
globally stable if there is a continuously differentiable Lyapunov function which satisfies

L̇(X∗) ≤ 0 ∀ {t, X} ∈ Rn
+.

This allows us to define an invariant set
{
X ∈ Rn

+ st L̇ = 0
}
, such that the only maximal compact

set in the invariant set is the equilibrium point, X∗. See Martcheva [24] for the proof of this theorem.
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Theorem 5.The disease free equilibrium point, ξ0, is globally asymptotically stable wheneverRvac < 1.

Proof. To prove this theorem, we define a Lyapunov function

L = E + ι1Q + ι2I + ι3H, (3.24)

where the constants, ι1, ι2 and ι3, are to be determined. Differentiating Eq (3.24) with respect to time
and substituting Ė, Q̇, İ, Ḣ from Eq (2.1), we have

L̇ =

(
βζS
N

+
βζ(1 − σ)S v

N
− ι2k3 + ι3b

)
I + (ι1ν + ι2α − k1) E + (ι2 p − ι1k2) Q − ι3k4H. (3.25)

If the coefficients of E,Q and H are equated to zero, we obtain the following positive values for
ι1, ι2 and ι3

ι1 =
pk1

pν + αk2
, ι2 =

k1k2

pν + αk2
, ι3 = 0.

Therefore, we can define a Lyapunov, L, for the disease-free equilibrium point, ξ0, as follow

L = E +

(
pk1

pν + αk2

)
Q +

(
k1k2

pν + αk2

)
I. (3.26)

Differentiating Eq (3.26) with respect to t and substituting Ė, Q̇, İ from Eq (2.1) gives

L̇
(
ξ0

)
=

(
βζ(ρ + µ)

(φ + ρ + µ)
+
βζ(1 − σ)φ
(φ + ρ + µ)

−
k1k2k3

pν + αk2

)
I

=
k1k2k3

pν + αk2

(
A

pν + αk2

k1k2k3
− 1

)
I

=
k1k2k3

pν + αk2
(Rvac − 1) I < 0, (3.27)

whenever Rvac < 1.
Furthermore, L̇(ξ0) = 0 ⇐⇒ (E = Q = I = H = 0). Therefore, the singleton set {ξ0} is

the only compact set in the invariant set
{
(S , S v, E,Q, I,H,R) ∈ R7

+ st L̇ = 0
}
, and thus by the LaSalle

invariance principle, the disease-free equilibrium, ξ0, is globally asymptotically stable if Rvac < 1.
�

4. Numerical simulation

This study deals with a model for the dynamics of COVID-19 with vaccination. Numerical simu-
lations were carried out for the system of equations (2.1) with the range of parameter values detailed in
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Table 1. The parameter values were sampled using the Latin Hypercube Sampling, and these samples
were used to carry out a series of numerical simulations for the model. 2500 values were sampled for
each parameter. A partial rank correlation analysis was carried out between the sampled values of the
parameters and the values of important response variables, such as the effective reproduction number,
the cumulative vaccinated population, the cumulative infected population and the cumulative hospital-
ized population. In Table 3, the partial rank correlation coefficient (PRCC) for each response variable
for the parameters are presented. The PRCC values show the important parameters in the dynamics
of the administration of control and preventive measures on the infection rate of COVID-19. We note
here that the parameters with large PRCC values, that is > 0.5 or < −0.5 and p-value ≤ 0.05 are the
most significant parameters. The closer the PRCC value is to positive or negative unity, the higher their
influence on the measured variable. The sign of the PRCC value indicates the qualitative relationship
between the parameter and the response function. A positive sign means a direct relationship between
the parameter and measured variable, while a negative sign indicates otherwise.

Table 3. Partial rank correlation coefficients and p-values for some model parameters using
the effective reproduction number, the total number of vaccinated, infected and hospitalized
individuals as response functions.

Parameter Rvac S v I H

PRCC p–value PRCC p–value PRCC p–value PRCC p–value

φ −0.1042 1.7873 × 10−7 +0.9707 0 −0.8662 0 −0.7929 0
ρ +0.0498 0.0128 −0.5982 1.6397 × 10−242 −0.0030 0.8804 −0.0012 0.9521
σ −0.7947 0 −0.1075 7.1819 × 10−8 +0.7479 0 +0.5923 1.2269 × 10−236

β +0.8235 0 −0.5412 3.0486 × 10−190 +0.2514 2.3928 × 10−37 +0.2749 1.2788 × 10−44

ζ +0.6997 0 −0.4745 1.5210 × 10−140 +0.2418 1.3614 × 10−34 +0.2520 1.6151 × 10−37

α +0.1531 1.3854 × 10−14 −0.1959 4.8709 × 10−23 +0.2082 6.9136 × 10−26 +0.1597 9.4106 × 10−16

ν −0.1892 1.4066 × 10−21 −0.0128 0.5211 −0.0108 0.5906 −0.0109 0.5871
p +0.1779 3.0789 × 10−19 −0.0466 0.0197 +0.0717 0.0003 +0.0399 0.0463
ω −0.1368 6.5155 × 10−12 +0.0095 0.6365 −0.0542 0.0067 −0.0444 0.0263
η +0.0150 0.4532 −0.0191 0.3407 −0.0092 0.6444
b −0.4419 5.1498 × 10−120 +0.0878 1.1065 × 10−5 −0.1865 5.3180 × 10−21 +0.4852 8.2726 × 10−148

τ +0.0148 0.4589 +0.0229 0.2517 −0.6461 1.7811 × 10−295

δ −0.4767 4.9407 × 10−142 −0.0652 0.0011 −0.1944 1.0256 × 10−22 −0.2167 5.884 × 10−28

In Table 4, we ordered the PRCC values of each measured function for each parameter in de-
scending order of ranking. For the effective reproductive number, it can be seen that the top three
ranked parameters are the probability of transmission, vaccine efficacy rate, and effective contact rate.
In contrast, the bottom-ranked parameter is the vaccination waning rate. The two highest-ranked pa-
rameters for the cumulative vaccinated population are the vaccination rate and the vaccine waning rate.
In contrast, the lowest-ranked parameter is the rate at which quarantined individuals are confirmed
non-infectious, which is insignificant in the dynamics of the vaccinated population. Amongst the top-
most ranked parameters in the infected compartment is the vaccination rate and effective contact rate.
This show how significant pharmaceutical measures such as vaccination and non-pharmaceutical mea-
sures like reducing contact between infected and susceptible individuals can affect the dynamics of
the infected individuals in South Africa and inadvertently affect the dynamics of the hospitalized com-
partment. The results in Table 4 show that the degree of efficacy of a vaccine would be significant in
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the dynamics of the rate of infection of COVID-19, as this parameter is highly ranked and statistically
significant for each response function. For instance, the vaccine efficacy rate is second in significance
to the transmission probability for the effective reproduction number. This indicates that the efficacy
of the anticipated vaccine would be as significant or, to some extent, more important than the rate of
administration of the vaccine.

Table 4. Ranking of the parameters from the most to least significant parameter using the
partial rank correlation coefficients as metric.

Rvac S v I H
Ranking Significant? Ranking Significant? Ranking Significant? Ranking Significant?

β true φ true φ true φ true

σ true ρ true σ true τ true

ζ true β true β true σ true

δ true ζ true ζ true b true

b true α true α true β true

ν true σ true δ true ζ true

p true b true b true δ true

α true δ true p true α true

ω true p true ω true ω true

φ true η false τ false p true

ρ true τ false η false ν false

ν false ν false η false

ω false ρ false ρ false

Sensitivity analysis of Rvac

We use sensitivity analysis to determine the relative importance of each parameter in the effective
reproduction number. We define the sensitivity index for any parameter, say x, as

Γx
Rvac

=
∂Rvac

∂x
x
Rvac

. (4.1)

Therefore, the sensitivity indexes of the parameters with respect to effective reproduction number
are given as follow:

Γ
β

Rvac
= 1, Γ

ρ

Rvac
=

σφρ

(−σφ + µ + φ + ρ)(φ + ρ + µ)
, ΓσRvac

=
−φσ

(−φσ + µ + φ + ρ)
,

Γ
φ

Rvac
= −

(µ + ρ)σφ
(−φσ + µ + φ + ρ)(φ + ρ + µ)

, ΓωRvac
= −

νpω
(µα + νp + pα + αω)(p + ω + µ)

,

Γ
p
Rvac

=
(µ + ω)νp

(µα + νp + pα + αω)(p + ω + µ)
, Γb

Rvac
= −

b
b + δ + µ

, Γδ
Rvac

= −
δ

b + δ + µ
,

ΓνRvac
=

ν(νp − να − αω)
(µα + νp + pα + αω)(ν + α + µ)

, ΓαRvac
=

(µ2 + µν + µp + µω + νω)α
(µα + νp + pα + αω)(ν + α + µ)

,

Mathematical Biosciences and Engineering Volume 19, Issue 1, 1058–1077.



1072

Γ
ζ

Rvac
= 1.

A positive sensitivity index, on the one hand, of the model output Rvac for any parameter, say x,
implies that a percentage increase/decrease in x will result in a Γ% increase/decrease in Rvac. On the
other hand, a negative sensitivity index implies that a percentage increase/decrease in parameter x will
lead to a Γ% decrease/increase in x. Rvac grows at the same proportion with the transmission probability
and effective contact rate. In contrast, control parameters such as hospitalization rate, quarantine rate,
vaccination rate and vaccination efficacy rate are inversely proportional to the reproduction number.
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Figure 5. Contour plot of Rvac as a function of effective contact rate (ζ) and transmission
probability (β).

The sensitivity indexes in Table 5 are arranged in descending order of magnitude, placing the most
significant parameter at the top. In this case, we used the parameter values obtained from fitting the
model and assumed that a vaccine with 75% efficacy, giving immunity for 365 days, is administered
at a 50% ratio. The table shows that the vaccine’s efficacy, σ, is the most significant parameter. The
obtained sensitivity index of Rvac for σ indicates that a 1% increase in the vaccine effectiveness will
lead to an approximately 3% decrease in the number of secondary infections. Other control measures,
such as limiting the contact rate between the susceptible and infected population, maximizing the
treatment of infected individuals, and isolating exposed individuals, are also pivotal in minimizing
the number of secondary infections. We already know that if there is no vaccination and using the
values in Table 5, we obtain a basic reproduction number of 3.5655. However, including vaccination
and vaccine efficacy significantly reduces the reproduction number to 0.9062. Figure 5 presents the
effective reproduction number as a function of transmission probability (β) and contact rate (ζ). The
figure shows the significance of the transmission probability in bringing the effective reproduction
number below unity. It shows that a drastic reduction in the transmission probability to about 0.05,
which can be facilitated by personal hygiene, sanitation and wearing of a mask, can significantly reduce
the infection rate as seen in Figure 5b. In Figure 6a, the reproduction number is plotted as a function
of vaccination rate and vaccine efficacy. Again, we can see in Figure 6a that a vaccine with about
75% efficacy can reduce the reproduction number to less than 1, while Figure 6b shows the importance
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of combining both pharmaceutical and non-pharmaceutical approaches in reducing the spread of the
virus.
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Figure 6. Plots of Rvac as a function of vaccination rate (φ) and vaccine efficacy (σ), and as
a function of vaccination rate (φ) and transmission probability (β).

5. Conclusions

In this study, a model describing the transmission of COVID-19 with the implementation of phar-
maceutical and non-pharmaceutical mitigation measures was proposed. To contextualize the South
African situation, emphasis has been placed on more adaptable measures like personal hygiene, sanita-
tion, wearing of mask, social distancing, and vaccination. The disease-free equilibrium point analysis
was obtained, and the local stability analysis of the point was performed. We obtained the reproduction
number at the disease-free equilibrium point and further analyzed the sensitivity of the reproduction
number to some of the parameters considered in the model.

The results obtained indicate that, in the South African context, a vaccine with at least 75% effi-
cacy coupled with other non-pharmaceutical measures that minimize the probability of infection such
as personal hygiene and protective gear can significantly decrease the rate of secondary infection. The
importance of quarantine and isolation of exposed individuals has been established in studies. Still, we
have also established the importance of adhering to measures that mitigate the risk of infection even if
they have contact with an exposed or infected individual.

As we await the production and administration of the vaccine for the general public, the results
of this study indicate that control measures such as personal hygiene, use of protective gear, limiting
physical and social interactions should be adhered to to reduce the transmission of the virus.
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Table 5. Sensitivity index of parameters that are related to the effective reproduction number.

Parameter Nominal value Source Sensitivity index
σ 0.75 Assumed −2.9347
β 0.0122 Fitted +1
ζ 8.51 Fitted +1
b 0.0191 Fitted −0.7814
δ 0.0053 Fitted −0.2168
p 0.3835 Fitted +0.1257
ω 0.1997 Fitted −0.1257
α 0.2254 Fitted +0.1016
ν 0.1988 Fitted −0.0306
φ 0.5 Assumed −0.0162
ρ 1/365 Assumed +0.0160
µ 1/(63.86 × 365) Re f [21]
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A. Appendix

A.1. Routh-Hurwitz criterion for the characteristics polynomial (3.22)

In this section, we show the positivity of the sequence of determinants of the principal sub-
matrices of the Hurwitz matrix of the characteristics polynomial (3.22). That is, given the polynomial
(3.22)

λ0κ
4 + λ1κ

3 + λ2κ
3 + λ3κ + λ4 = 0,

where

λ0 = 1,
λ1 = k1 + k2 + k3 + k4,

λ2 = k1k2 + k2k3 + k1k4 + k2k4 + k3k4 + k1k3(1 − Rvac + Ri),
λ3 = k1k2k4 + k2k3k4v + k1k2k3(1 − Rvac) + k1k3k4(1 − Rvac + Rq),
λ4 = k1k2k3k4(1 − Rvac),

we want to show that λ0, λ1, λ4, λ1λ2 − λ0λ3, (λ1λ2 − λ0λ3) λ3 − λ
2
1λ4 are all non-negative whenever

Rvac is less than unity. λ0 is obviously positive. Note that the parameters k1, k2, k3 and k4 from
Equation (3.21) are positive. Since this is the case, λ1 and λ4 are non-negative whenever Rvac <

1. It remains to show that λ1λ2 − λ0λ3 > 0 and (λ1λ2 − λ0λ3) λ3 − λ
2
1λ4 > 0. If we can show that

(λ1λ2 − λ0λ3) λ3 − λ
2
1λ4 is positive whenever Rvac < 1, then λ1λ2 − λ0λ3 > 0 whenever Rvac < 1. After

some algebraic calculations, (λ1λ2 − λ0λ3) λ3 − λ
2
1λ4 was obtained as

(λ1λ2 − λ0λ3) λ3 − λ
2
1λ4 = Φ1 + Φ2 + Φ3RiRq + Φ4R

2
i + Φ5Ri + Φ6R

2
q + Φ7Rq + Φ8Rq (1 − Rvac) ,

(A.1)
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where

Φ1 = 3k2
1k2

2k3k4 + 3k2
1k2k3k2

4 + 2k1k3
2k3k4 + 3k1k2

2k2
3k4 + 4k1k2

2k3k2
4 + 2k1k2k3k3

4 + 3k1k2k2
3k2

4

Φ2 = k3
1k2

2k4 + k3
1k2k2

4 + k2
1k3

3k4 + 2k2
1k2

2k2
4 + k2

1k2k3
4 + k1k3

2k2
4 + k1k2

2k3
4 + k3

2k2
3k4 + k3

2k3k2
4

+ k2
2k3

3k4 + 2k2
2k2

3k2
4 + k2

2k3k3
4 + k2k3

3k2
4 + k2k2

3k3
4

Φ3 = 3k3
1k2k2

3 + 5k3
1k2

2k4 + k2
1k2

2k2
3 + 3k2

1k2k3
3 + 3k2

1k2k2
3k4 + 5k2

1k3
3k4 + 3k2

1k2
3k2

4

Φ4 = 2k3
1k2k2

3 + 2k3
1k2

3k4 + k2
1k2

2k2
3 + 2k2

1k2k3
3 + 2k2

1k3
3k4 + 2k2

1k2k2
3k4 + k2

1k2
3k2

4

Φ5 = k3
1k2

2k3 + 3k3
1k2k3k4 + k3

1k3k2
4 + k2

1k3
2k3 + 2k2

1k2
2k2

3 + 2k2
1k2

2k3k4 + 6k2
1k2k2

3k4 + 2k2
1k2k3k2

4

+ 2k2
1k2

3k2
4 + k2

1k3k3
4 + k1k3

2k2
3 + k1k2

2k3
3 + 2k1k2

2k2
3k4 + 3k1k2k3

3k4 + 2k1k2k2
3k2

4 + k1k3
3k2

4

+ k1k2
3k3

4

Φ6 = k3
1k2k2

3 + 2k3
1k2

3k4 + k2
1k2k3

3 + 2k2
1k3

3k4

Φ7 = k3
1k2

2k3 + 3k3
1k2k3k4 + 2k3

1k3k2
4 + k2

1k3
2k3 + 2k2

1k2
2k2

3 + 2k2
1k2

2k3k4 + 5k2
1k2k2

3k4 + 2k2
1k2k3k2

4

+ 2k2
1k2

3k2
4 + 2k2

1k3k3
4 + k1k3

2k2
3 + k1k2

2k3
3 + 2k1k2

2k2
3k4 + k1k2

2k3k2
4 + 3k1k2k3

3k4 + 2k1k2k2
3k2

4

+ k1k2k3k3
4 + 2k1k3

3k2
4 + 2k1k2

3k3
4

Φ6 = k2
1k2k2

3k4 + 2k2
1k2

3k2
4.



(A.2)

From Equation (3.15), Ri and Rq are non-negative, and given the positivity of k1, k2, k3, k4, we can
conclude that (λ1λ2 − λ0λ3) λ3 − λ

2
1λ4 > 0 whenever Rvac < 1.

We now show the positivity of λ1λ2 − λ0λ3 whenever Rvac < 1. Since (λ1λ2 − λ0λ3) λ3 − λ
2
1λ4 > 0

whenever Rvac < 1, we have

(λ1λ2 − λ0λ3) λ3 − λ
2
1λ4 > 0 =⇒ λ1λ2 − λ0λ3 >

λ2
1λ4

λ3
. (A.3)

It is obvious that
λ2

1λ4

λ3
> 0 whenever Rvac < 1. Therefore, λ1λ2 − λ0λ3 is positive whenever Rvac < 1.

However, for completeness, λ1λ2 − λ0λ3 was obtained as

λ1λ2 − λ0λ3 = 2k1k2(k3 + k4) + k3k4(k1 + 2k2) + (k2
1 + k2

3)(k2 + k4) + k2
2(k1 + k3 + k4)

+ k2
4(k1 + k2 + k3) + (k2

1k3 + k1k2
3 + k1k2k3 + 2k1k3k4)Ri

+ (k2
1k3 + k1k2

3 + k1k3k4)(1 − Rvac) > 0,

whenever Rvac < 1.
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