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Abstract: Urban taxi serves as an irreplaceable tool in public transportation systems. The balancing 
of demand-and-supply can be of significant social benefit, for which the equilibrium method for urban 
taxis, especially with dynamic trip demands, is not well studied yet. In this paper, we formally define 
the equilibrium problem and propose a coarse-grained dynamic balancing algorithm. It efficiently 
evaluates the trip demand distribution pattern and schedules supplies to more unbalanced regions. We 
first propose a density-based blocking algorithm to detect regions that are with more travel demands. 
A trip demand merging strategy is then proposed, which checks the correlation of trip demands to 
merge the trips into ones. To reduce the computation load, a lazy trip correlation strategy is devised to 
speed up the merging process. By calculating the defined balance factor, a scheduling algorithm is 
proposed to realize the trip merge and supply translocation based balancing approach. We evaluated 
our approach using a month of global positioning system (GPS) trajectories generated by 13,000 taxis 
of Shanghai. By learning the spatiotemporal distribution of historical taxi demand-and-supplies, we 
simulated an inflated trip demand platform. Tested on this platform with extensive experiments, the 
proposed approach demonstrates its effectiveness and scalability. 

Keywords: demand-supply balancing; taxi trajectory; dynamic balance; urban traffic 
 

1. Introduction  

Taxi serves as a public transportation mode that cannot be replaced by neither the bus systems 
nor the subway transportation in urban environments. However, due to the urban commuting demand, 
most of the metropolis cities are facing with the problem of imbalance between taxi request and taxi 
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supply. Especially in peak hours, taxi requests are typically much more than available taxi supply. Such 
imbalance lead to the resulting common phenomena that people who are hailing cabs always waste a 
lot of time on road sides for waiting an vacant taxi. It also means that potential riders compete for 
limited taxi resource nearby [1]. Meanwhile, instead of waiting at fixed locations, taxis drivers usually 
search around for riders, resulting in extensive fuel burning and unnecessary road space occupancy [2]. 
As the global information of taxi riders is not available to taxi drivers, the searching strategy could not 
be the optimal one [2]. There have some works that aims to extract the spatio-temporal travel patterns 
from the perspectives of both taxi supplies and the urban commuting demands. However, there has not 
been sufficient studies on the interplay between the taxi supplies and the urban commuting demands.  

To address these issues of taxi demand-supply balance, we proposed a dynamic demand-and-
supply balancing system, in which taxi riders could sense other riders’ position nearby and originate a 
ridesharing, furthermore, regions that are dense of sufficient vacant taxis could be recognized and 
drivers could get the information of regions that are denser of taxi riders to decide their orientation. 
The main contributions of this paper include: 
1) We first propose a novel density based layered blocking algorithm to learn the trip demand 
distribution pattern and detect regions that are dense of trip demands and small enough within walking 
distance. Furthermore, we define the notation of Balance Factor to describe the imbalance of each 
block that are dense of trip origins and destinations.  
2) We present a trip merging and supply transition-based demand-and-supply balancing approach. A 
trip demand merging strategy is proposed in advance, which checks the correlation of trip demands 
originating from the same grid and in the same time slot to merge the trips into ones with acceptable 
additional incurred travel distance for the longer trip. To tackle the heavy computation load, a lazy trip 
correlation strategy is devised to speed up the merging algorithm. By calculating the defined balance 
factor, a supply transition scheduling algorithm is proposed to realize the balancing approach. 
3) We evaluated the proposed approach in a practical setting by exploiting a real taxi trajectory dataset 
generated by 13,000 taxis in Shanghai during a period of one month. By learning the spatiotemporal 
distribution of historical demand and supply, we simulated an inflated trip demands platform. Extensive 
experiments on this platform have testified the effectiveness and scalability of our proposed method. 

2. Related works  

Related works can be categorized into two lines: the taxi demand-supply modeling and taxi 
service optimizing. The first one focuses on analyzing the travel pattern using the taxi trajectory data 
analysis, which also helps us understand the urban structure; another category aims to detect two types 
of regions, i.e., the over-served region and the under-served regions, which could provide insights for 
providing better taxi services. 

2.1. The taxi demand-supply modeling 

Urban trip demand modeling is an essential thesis for transportation system improving, city 
structure understanding, and regular traffic flow prediction. Yuan J. et al. propose a system prototype 
that aims to obtain the optimal routes in terms of driving time with two types of information, i.e., the 
derived traffic patterns and the knowledge of the driver behavior. Specifically, the proposed prototype 
system utilizes the extracted traffic patterns from historical traffic information and further incorporates 
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dynamic traffic context to predict future traffic conditions [3]. By using the taxi trajectory dataset, Liu 
et al. propose to utilize the typical network community detection method to explore the spatial 
structures of both commuting trips, and they further investigate the city structure based on the 
commuting trips [4]. Furthermore, the collection of urban taxicabs trajectories provides materials for 
analyzing and modeling the balance between taxi demand and supply. The studies in [5,6] adopt typical 
regression models, i.e., the Poisson model, the quasi-Poisson model, and the negative binomial model, 
to elucidate the taxi pick-ups based on a collection of taxi trip records during a time period of 10 
months from New York city. The negative binomial model has been verified to be the most appropriate 
one for the over-dispersed count data after sufficient analysis. Yang C. et al. adopt another variable, 
i.e., the number of taxi drop-offs, to further represent the taxi supply dynamics, which is due to the 
consideration that each drop-off also denotes an available supply. Kang C. et al. have systematically 
studied the spatial patterns of an urban of taxis supply in Wuhan, China, where the taxi trajectories are 
used, and the modeling is based on the non-negative matrix decomposition [7]. They find that the taxi 
drivers follow a remarkably self-organized operation pattern in the supply regions, which perform as 
the reactions to the sectored distribution of daily commuting trips. It has been observed that taxi drivers 
tend to operate within a single specific service area and a small proportion of taxis drives throughout 
different urban areas, which serves as a significant shifting tool that connect the remote urban areas 
and satisfy the demand of long-distance trips. Generally, this study provides a significant insight for 
helping recognize the drivers’ collective intelligence when they do not know the global information of 
taxi supply and demand. But it only considers the demand-supply status in the granularity of a district 
and disregard the unsupplied taxi demand. 

Studies on taxi demand-supply level are necessary for improving taxi service, meanwhile, there 
still exist several challenges about how to detect the service disequilibrium. Firstly, there exists 
inherent uncertainties in urban taxi service systems. Such uncertainties mainly relate several aspects. 
One is that the actual time of a taxicab request is uncertain. Another aspect is that we do not know the 
requests that have not been satisfied. But such unsatisfied requests are quite important when we model 
the taxi service disequilibrium. Besides, the taxi location between two reported GPS coordination is 
lost, which makes the counts of available taxis are uncertain for that time interval. Another challenge 
is how to design a model that could detect the over-served regions, as well as the under-served regions. 
Moreover, the model should fully relate the taxi demand with the taxi supply. Huang et al, partitioned 
the researched region of Shanghai into equal-sized cells and they assumed that the pickup time of 
requests follows a normal distribution, and a normal distribution is also used for estimating the 
unknown positions between two trajectory point [8]. Then they proposed a probabilistic counter 
method to count the observed requests and taxis in a time interval <t1, t2>. Afterward, they proposed 
a reasonable estimate of the unserved request by simulating the random injection of requests and 
attempting to match them with a cruising taxi within an arbitrary 100 meters, according to which to 
estimate the disequilibrium level and detect the over-served and under-served regions. Based on 
taxicab trajectories, Zhou Q. et al. proposed to model the taxicab demand in urban regions. Specifically, 
the propose use the taxicab service rate as an indicator to define the taxicab demands [9]. The analysis 
results over a real trajectory dataset have showed the weekday exhibits a higher the normality number 
than that on the weekends. Such an observation results result from the actual fact that weekdays own 
a relatively regular commuting pattern. Shao D. et al. also proposed to describe the demand-supply 
level with an indicator that denotes how fast free taxis are taken [10]. The effectiveness of the proposed 
indicator is identified by obtaining the survey dataset of average waiting time of taxi passengers. 
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2.2. Taxi service optimizing 

Taxi service optimization has attracted attention in both academic researches and real industrial 
applications, such as the taxi fleet management in urban areas. In fact, the supply-demand equilibrium 
of the taxi system was studied as early as 1998. The studies have focused on modeling the behaviors 
of passenger searching [11–13]. Studies in these works find that the average taxi utilization decreases 
sharply with the number of taxis operating, and that the higher the taxi utilization, the larger the average 
customer waiting time. While, with the growth of cities and technologies, the ITS (intelligent 
transportation system) is employed widely. For example, with the pervasive usage of smart phones, 
the taxi service has come to the era of e-hailing, which is popular globally. The utilization of e-hailing 
applications has exhibited excellent performance in reducing the average taxi waiting time. It also 
significantly increases the taxi utilization [14]. A distributed taxi advisory dispatch system (TADS) 
was proposed in [15], which estimates regions that are under-served. These under-served regions are 
further advised to taxicabs for obtaining a better balance at a global view. While, in this system, some 
clients use WiFi devices to communicate with taxis to signal the taxi demand, and taxi drivers also 
could communicate with each other to exchange the region’s service information. As well, with 
considering the constrains of supply time, capacity, and monetary, some taxi-sharing systems, most of 
which are smartphone applications at the client side, have been developed to tackle the real-time ride 
requests from taxi passengers, and some of these systems allow the ridesharing [2,16].  

All these researches are conducted on the road network of Beijing using taxi GPS data. In some 
ways, these researches are a kind of demand-supply balancing approach. Similarly, in [17], it presents 
exploratory evidence of how “ride-sourcing” services (app-based, on-demand ride services like Uber 
and Lyft) are used in San Francisco. The findings indicate that, despite many similarities, taxis and 
ride-sourcing differ in user characteristics, wait times, and trips served. While ride-sourcing replaces 
taxi trips, at least half of ride-sourcing trips replaced modes other than taxi, including public transit 
and taxi driving. These findings fill an important gap in our understanding of this emerging travel 
mode on which publicly available data remains scarce. In China, recent researches on taxi service are 
mainly conducted by Microsoft Asia. Yuan J. et al. provide recommendations to both taxi drivers and 
passengers, which mobilizes them and reduces the disequilibrium of the demand and supply on the 
level of road-segment [18]. On the one hand, a parking place detecting approach is proposed, the 
parking places stand for the location where taxi drivers usually wait for passengers with their taxi 
parked. Given the geo-position and time of a taxicab looking for passengers, they suggest the taxi 
driver with a location, towards which drivers are most likely to pick up a passenger as soon as possible 
and maximize the profit of the next trip. On the other hand, they provide people expecting to take a 
taxi with the locations (within a walking distance) where they are most likely to find a vacant taxicab. 
Thus the proposed recommender system help taxis find passengers more quickly and people take a 
taxi more easily, therefore balances the taxi demand-supply level to some extent [18–20]. Furthermore, 
they propose a time-dependent landmark graph, where a node is a road segment frequently traversed 
by taxis, to model the intelligence of taxi drivers and the properties of dynamic road networks. Based 
on this graph, they design a routing algorithm to compute the practically fastest route [21]. 

3. Methods 

In this section, we firstly present the definitions of necessary concepts used throughout our paper, 
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and formally state the focal problem to be solved. In our paper, we adopt a practical trajectory database 
to evaluate the supply-demand equilibrium strategy. 

3.1. Preliminary 

Definition 1 (Taxi trajectory). The taxi trajectory is a sequence of GPS points pertaining to the 
taxi’s sampling location over time. Each point 𝑇𝑟௜ ∈ 𝑇𝑟  consists of a tuple ൏ ሺ𝑥, 𝑦, 𝑡ሻ, 𝑓 ൐  with 
location ሺ𝑥, 𝑦ሻ, location reporting time 𝑡, and the taxi’s occupancy status f, where ሺ𝑥, 𝑦ሻ is a pair of 
spatial coordinates representing latitude and longitude, f = 1 means the taxi within passengers, 
otherwise f = 0. 

Note that the flag f bound to each trajectory position is essential for judging the taxi occupation state, 
which is adopted to extract the origin and destination point and corresponding time slot of the passenger. 

 

Figure 1. Taxi trajectory. 

Definition 2 (Trip demand). As shown in Figure 1, a trip demand is a 2-tuple  𝑇𝑑 ൌ൏
ሺ𝑥௢, 𝑦௢, 𝑡௢ሻ, ሺ𝑥ௗ, 𝑦ௗ, 𝑡ௗሻ ൐, where both ሺ𝑥௢, 𝑦௢, 𝑡௢ሻ and ሺ𝑥ௗ, 𝑦ௗ, 𝑡ௗሻ are geo-spatial points respectively 
represent the pick-up and drop-off position. All other points between these two points own the same 
occupation state of f = 1. In detail, O-D pair represents a trip demand that starts at ሺ𝑥௢, 𝑦௢, 𝑡௢ሻ and 
ends at location ሺ𝑥ௗ, 𝑦ௗ, 𝑡ௗሻ. Therefore, all trip demands of urban taxi passengers are extracted from 
the taxi trajectory database.  

Definition 3 (Trip orientation correlation). Given two trip demands as  𝑇𝑑 ൌ ൏
ሺ𝑥௢, 𝑦௢, 𝑡௢ሻ, ሺ𝑥ௗ, 𝑦ௗ, 𝑡ௗሻ ൐, 𝑇𝑑ᇱ  ൌ ൏ ሺ𝑥௢

ᇱ , 𝑦௢
ᇱ , 𝑡௢

ᇱ ሻ, ሺ𝑥ௗ
ᇱ , 𝑦ௗ

ᇱ , 𝑡ௗ
ᇱ ሻ ൐ . When the distance between two 

origin points distሺሺ𝑥௢, 𝑦௢, 𝑡௢ሻ, ሺ𝑥௢
ᇱ , 𝑦௢

ᇱ , 𝑡௢
ᇱ ሻሻ ൏ 𝜆௢, and time span between two origins |𝑡௢ െ 𝑡௢

ᇱ | ൏ 𝜆௧, 
where, 𝜆௢, 𝜆௧ are respectively the distance threshold and the time lag limitation threshold. Afterwards, 
the correlation between two trip demands is just cosine distance on trajectories cosine <Td, 𝑇𝑑′ >, 
calculated as below [22]: 

𝐶𝑜𝑟𝑟்ௗ,்ௗᇲ ൌ
ሺ𝒙𝒅ି𝒙𝒂𝒆ሻమାሺ𝒚𝒅ି𝒚𝒂𝒆ሻమା൫𝒙𝒅

ᇲ ି𝒙𝒂𝒆൯
మ
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ᇲ ି𝒚𝒂𝒆൯

మ
ି൫𝒙𝒅ି𝒙𝒅

ᇲ ൯
మ

ି൫𝒚𝒅ି𝒚𝒅
ᇲ ൯

మ

ଶൈඥሺ𝒙𝒅ି𝒙𝒂𝒆ሻమାሺ𝒚𝒅ି𝒚𝒂𝒆ሻమට൫𝒙𝒅
ᇲ ି𝒙𝒂𝒆൯

మ
ା൫𝒚𝒅

ᇲ ି𝒚𝒂𝒆൯
మ

  (1) 

where ሺ𝑥௔௘, 𝑦௔௘ሻ ൌ 𝑚𝑖𝑛ሺ௫,௬ሻሺ𝑇𝑑. 𝑡, 𝑇𝑑ᇱ. 𝑡ሻ. It means the origin point that arrive earlier. 
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Definition 4 (Taxi supply). A taxi status is changed to unoccupied when the flag f change from 0 
to 1. A Taxi Supply is a tuple 𝑇𝑠 ൌ ൏ ሺ𝑥௦, 𝑦௦, 𝑡௦ሻ, 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 ൐ , as shown in Figure 1, ሺ𝑥௦, 𝑦௦, 𝑡௦ሻ 
means the start point of the taxi status change to be vacant, and the duration represents the time span 
that the taxi remain vacant, which is equal to f = 0. 

3.2. Framework 

Figure 2 shows the framework of our system that consists of two primary components: 
Offline mining: As illustrated in the left column, this stem starts from the trajectory dataset. The 

trip demand detection module extracts the origin and destination points of the historical trajectories to 
build the trip demand dataset. It also learns the statistic features of the historical trajectories and trip 
demands, which is used in the layered blocking module. Specific to the positions that are in the same 
time slot, we partition them using the proposed blocking method to learn the distribution of trip 
demands, which represent the knowledge of demands’ origin and destination distribution. The blocking 
results are stored as block distributed pattern of historical trip demands in order to be adopted in online 
dynamic balance between taxi demand and supply. 

Online balancing: As illustrated in the right column, travelers send their trip demands that consist 
of an origin point and a destination point with corresponding pick-up time slot. The origin and 
destination points are matched to the blocks of corresponding time slot using the learned block 
distribution pattern. A demand mutual sensing module is introduced here to make trippers sense each 
other in the same block of the same time slot, and it get the feedback of other trips that denotes if they 
agree merging with each other. Then it delivers the trips’ information to the next module of trip demand 
merging, which determines whether two trips could be merged and feedback to trippers. Meanwhile, 
the specific block is estimated using the defined balancing factor. Then a balancing algorithm is 
adopted to realize taxi supply translocation from blocks that are sufficient of vacant taxis to blocks that 
are relatively shorter of taxi supply. 

 

Figure 2. Balancing system framework. 
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In Section 3.3, the trip demand detection is described, the Subsection “spatial-temporal trip 
demand distribution” describes both modules of “Statistic Learning” and “Layered Blocking”. The 
module “Block Distribution Pattern” is described in “Block-Based Balance Level Estimating”. In 
Section 3.4, we first describe a demand expanding strategy, where the translocation is also described. 
Secondly, the trip demand merging is described. Finally in Section 3.4, the modules of “Balancing 
Degree Analyzing of Blocks” and “Taxi Supply Translocation” are described in the subsection 
“Demand-and-Supply Balancing Algorithm”. 

3.3. Spatial trip 

Trip demand detection from trajectories: In this paper, we utilize a monthly collection of 
trajectory data from 13,000 taxis in the City of Shanghai, China. The study area covers all of the 
Shanghai districts except for Chongming Country, as in Figure 3. As illustrated by the trip demand 
definition and the system framework, in order to extract a trip demand with an origin point and a 
destination point, all taxi trajectory records are traversed to find a variation of occupation state (f value 
of a point). Ultimately, we obtain all taxi passenger trips and then assign each trip origin or destination 
into associated blocks got with the proposed blocking algorithm. Let us briefly illustrate the idea of 
our system with Figure 3. It depicts the distribution of origin points and destination points of particular 
time slot. It shows some areas have plenty of destinations that represent available taxis with only a few 
origins that denote occupied taxis, like 𝐶ଵ, while the situation is opposite in some other areas, such as 
𝐶ଶ. The heat map of the ratio of destination points to origin points suggests a demand-supply imbalance 
in various regions around Shanghai. Meanwhile, the distances between 𝑂ଵ and 𝑂ଶ, 𝑂ଷ and 𝑂ଷ are 
respectively within walking distance. Therefore, the trip merging strategy comes to mind easily only 
if their travel orientation is similar. 

 

Figure 3. The Shanghai study area. 

When partition the city into square grids of 1 km. By analyzing the statistical distance between 
origins of different trips, we found that the distance follows a normal distribution and mean 
distance is 444 meters. 
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Spatial-temporal trip demand distribution: In order to learn the spatial-temporal pattern of taxi 
trips, we partition the origin points and destination points in the same time slot into blocks with small 
area and high density, which is essential for demand-supply balancing. Therefore, a density based 
blocking algorithm is proposed in this paper, which divides the points into blocks with different density 
level, as shown in Figure 4. 

As the figure describes, the minimum vertex that covers of all origin and destination points in the 
same time slot is divided into 2 × 2 grids and the density is calculated and is justified whether it is in 
the density interval ሾ𝜌௟௢௪, 𝜌௨௣ሿ. If the density is lower than 𝜌௟௢௪, then the grid is deleted, which means 
that it is no longer considered in later iteration. If it is larger than 𝜌௨௣, then it is reserved in this layer. 
Otherwise, the grids are taken into next iteration of partition and each grid is divided into 2 × 2 smaller 
grids. After grid dividing, the grid and its neighbors in the same layer, which are less than walking 
distance, are linked together by labeling an identical block number using the region growing algorithm 
that are widely applied in image segmentation problem. By intergrading the grids and its 3 × 3 
neighbors, grids of the same layer are set as blocks. A higher layer represents smaller blocks and higher 
density. The ultimate blocking result of origin and destination points in the same time slot is achieved 
by overlaying all blocking results of each layer. 

 

Figure 4. Density level-based blocking illustration. 
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Figure 5. Distribution of trip demand and balance factor over block. 

Block-Based balance level estimating: This part is to estimate the imbalance between taxi demand 
and supply, and to identify the reasonable definition of the balance factor. As the drop-off status of a 
taxi means that it turns to be vacant, it’s worth noting that the defined balance factor within a block of 
a time slot is estimated by the ratio between destination points and origin points instead of using the 
vacant taxis number as the numerator.  

Definition 5 (Balancing factor within block). Given a set that contains points of trip demand origin 
and destination, we block all the points using the proposed blocking algorithm and get a set of blocks 
𝐵௞

௧ ൌ ሼ𝑂ଵ, 𝑂ଶ, … , 𝑂௥, 𝐷ଵ, 𝐷ଶ, … , 𝐷௦ሽ. Here, the total number of origin and destination points in 𝐵௞
௧  is 

𝑁஻ೖ
೟ ൌ 𝑟 ൅ 𝑠. Assume that, in the dynamic balancing process, a number of 𝑟ା ൌ ∑ ∑ |𝐵௞ᇱ

௧ᇱ ↝஻ೖᇲ∈஻೟ᇲ௧ᇲழ୲

𝐵௞
௧ | destination points are scheduled to block 𝐵௞

௧ , which means the vacant taxis are reallocated to 𝐵௞
௧ , 

where the symbol ↝ denotes transition, while 𝑟 ൌ ∑ ∑ |𝐵௞
௧ ↝ 𝐵௞ᇱᇱ

௧ᇱᇱ |஻ೖᇲᇲ∈஻೟ᇲᇲ௧ᇲᇲவ௧  destination points 

are scheduled to other time slots or other blocks from 𝐵௞
௧ , which means the vacant taxis’ location 𝐵௞ᇱᇱ

௧ᇱᇱ  
substitutes for the original block 𝐵௞

௧ . Then, the balance factor of a block 𝐵௞
௧  is defined as below, 

which is a system indicator that is the basis for our demand-supply balancing strategy. 

  𝑏𝑓஻ೖ
೟ ൌ ௦ା௥శି௥ష

∆ൈ௥ିெ
ಳೖ

೟
 (2) 

Here, ∆ is the inflating parameter of historical trip demand that will be introduced in Section C. And 

𝑀஻ೖ
೟  is the number of merged trips that will be elaborated in Section C. As in Figure 5, it shows that 

the blocks of denser trip demands are of small balance factor value, which means more unbalanced. 
This fits ordinary commonsense observations. Figure 6 is an example of the spatial distribution of the 
trip demand and the corresponding balance factor. 

3.4. Demand and supply balancing approach 

Demand expanding for the balance platform: Note that the taxi GPS trajectory dataset only 

trip demand balance factor
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reveals the number of trip demands that have got served. In reality there are also many taxi demands 
unsatisfied and disappeared due to the shortage of taxis. In order to take such taxi demands into 
consideration and validate our proposed balance model under practical settings, we introduce a system 
parameter ∆, which stands for the ratio of actual total number of taxi demands to the trip demand 
number extracted from the historical dataset.  

Additionally, the historical trajectory dataset conceals rich information regarding 1) the spatial-
temporal distribution of the trip demand origin points and destination points, and 2) the mobility 
patterns of taxi riders. In this paper, we evaluate a coarse-grained demand-and-supply balancing 
approach that means that we disregard the road network.  

Previously, the origin and destination points of the same time slot in weekdays or 
weekends/holidays are separately mixed and then blocked with different density level. Obviously, the 
block distribution represents spatial-temporal taxi trip demands distribution, including trip origins and 
destinations, and the demand mobility patterns can also be described by transition probability between 
blocks. Thus, we mine the trajectory dataset to build an experimental platform, which generates 
inflated trip demands of different time slots for the balancing model and preserves the transition pattern 
between blocks. Figure 6 illustrates the demand expanding process. 

 

Figure 6. Distribution and transition between blocks of the inflated demand. 

Assume that we blocked trip demand origins and destinations and got eight blocks 𝐵ଵି଼ in three 
continuous time slots. 

Given the system inflation parameter ∆, both point number in each block B and each grid g is 

inflated, and the inflating process guarantees the transition probability of 𝐵௜
௧ೖ  to 𝐵௝

௧ೖᇲ remains 

unchanged as shown in Eq (3).  
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∀𝑔 ∈ 𝐵௞
௧ , 𝑔ᇱ ∈ 𝐵௞ᇲ

௧ᇲ
, 𝑡ᇱ ൒ 𝑡, ൞

𝑝𝑟 ቀ∑ ∆ ൈ 𝐵௞
௧ ⇝ ∑ ∆ ൈ 𝐵௞ᇲ

௧ᇲ
ቁ ൌ 𝑝𝑟 ቀ∑ 𝐵௞

௧ ⇝ ∑ 𝐵௞ᇲ
௧ᇲ

ቁ

𝑝𝑟ሺ∑ ∆ ൈ 𝑔 ⇝ ∑ ∆ ൈ 𝑔ᇱሻ ് 𝑝𝑟ሺ∑ 𝑔 ⇝ ∑ 𝑔ᇱሻ
𝑝𝑟ሺ∆ ൈ 𝐵௞

௧ ⇝ ∆𝑔ᇱሻ ് 𝑝𝑟ሺ𝐵௞
௧ ⇝ 𝑔ᇱሻ

                            (3) 

where the transition from 𝐵௜
௧  to 𝐵௞ᇱ

௧ᇱ  , i.e., ∑ 𝐵௞
௧ ⇝ ∑ 𝐵௞ᇱ

௧ᇲ
  is defined according to the origin-

destination pair of the trip demand 𝑇𝑑 ൌ ൏ ሺ𝑥௢, 𝑦௢, 𝑡௢ሻ, ሺ𝑥ௗ, 𝑦ௗ, 𝑡ௗሻ ൐ ൌ ൏ 𝑂, 𝐷 ൐, and the transition 
probability is defined as Eqs (4) and (5). 

For example, the transition probability from 𝐵ଵ  to 𝐵଺  is the 𝑛ଵ,ଵଷ;ଵସ;ଵ଺ ൅ 𝑛ଶ,ଵହ  divided by 
𝑛ଵ,ଷ ൅ 𝑛ଵ,଼;ଵ଴ ൅ 𝑛ଵ,ଵଷ;ଵସ;ଵ଺ ൅ 𝑛ଶ,ଷ;ସ;ହ ൅ 𝑛ଶ,଺;଻ ൅ 𝑛ଶ,ଽ ൅ 𝑛ଶ,ଵଵ;ଵଶ ൅ 𝑛ଶ,ଵହ ൅ 𝑛ଶ,ଵ଼ ൅ 𝑛ଶ,ଵଽ;ଶ଴. 

According to Eq (3), this transition probability remains unchanged before and after demand 
inflating, which means that the demand distribution and mobility are preserved same with historical 
dataset on the level of our block. While, the transition probability from 𝐵ଶ to 𝑔ଽ is changed, as well 
as the transition probability from 𝑔ଷ to 𝑔ଽ, or 𝑔ଵଶ to 𝑔ଽ. 

                  𝑆𝑔𝑛ሺ𝑃, 𝐵௞
௧ ሻ ൌ ቊ

1, 𝑃. ሺ𝑥, 𝑦ሻ ∈ 𝐵௞
௧ ∧ 𝑃. 𝑡 ∈ 𝑡

0, 𝑃. ሺ𝑥, 𝑦ሻ ∉ 𝐵௞
௧                    

                     (4) 

     𝑝𝑟ሺ∑ 𝐵௞
௧ ⇝ ∑ 𝐵௞ᇱ

௧ᇱሻ ൌ
∑ ௌ௚௡൫ை,஻ೖ

೟൯ௌ௚௡൫஽,஻ೖᇲ
೟ᇲ൯೅೏సಬೀ,ವಭ

∑ ௌ௚௡൫ைᇱ,஻ೖ
೟൯ௌ௚௡൫஽ᇲ,஻ೖᇲᇲ

೟ᇲᇲ൯
 ೅೏సಬೀᇲ,ವᇲಭ,ಳ

ೖᇲᇲ
೟ᇲᇲ ,೟ᇲᇲಱ೟

            (5) 

Trip merge strategy: As described by the definition of Trip orientation correlation, when the 
origin coordination is close and the trip starting time is in the same slot, the correlation value closing 
to 1 represents that two trips could be merged in our framework. The distance threshold and time lag 
threshold are respectively the grid size of the 12th layer and time slot granularity. Generally, the trip 
merging aims to decrease the average total travel distance, though it may increase the travel distance 
for single travel. Here, we propose a lazy trip correlation calculating method that considers the Euler 
distance between the origin and destination points. Assuming the travel distance 𝑑ଶ ൐ 𝑑ଵ,and 𝑂௔௘ ൌ
𝑚𝑖𝑛ைభ,ைమ

ሺ𝑂ଵ. 𝑡, 𝑂ଶ. 𝑡ሻ is the origin point of the earlier trip demand. In order to assure that the increased 
distance of 𝑇𝑑ଶ is accepted by the trippers, we add a trip merging limitation of 𝛼 ൏ 90°,and the 
increasing distance ratio is set as the system parameter as shown in Eq (6). 

𝛾ௗభ,ௗమ
ൌ ଵ

ௗమ
ඥ𝑑ଵ

ଶ ൅ 𝑑ଶ
ଶ െ 2𝑑ଵ𝑑ଶ𝑐𝑜𝑠𝛼                          (6) 

The arriving time slot of 𝑇𝑑ଶ is estimate as Eq (7). 

𝑑𝑒𝑠𝑡_𝑇𝑖𝑚𝑒ሺ்ௗభ,்ௗమሻ ൌ ቒ𝑡஽భ
൅ ∥஽భ஽మ∥

ைೌ೐஽భ
ሺ𝑡஽భ

െ 𝑡ைభ
ሻቓ                      (7) 

Demand-and-supply balancing algorithm: According to the definition of Balancing factor within 
block, we sort the balancing factors (bf) of all blocks in time slot t, and the bf based demand-supply 
balancing algorithm is shown as Algorithm 1 below. As grids in 11th layer of the blocking algorithm 
sis 136.19 m × 50.92 m, which is regarded to be reached with walking distance, and this is the distance 
threshold 𝜆௢ for trip merging. 
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𝑚𝑎𝑥௫
∑ ௌ௚௡ሺ஽೔,஻ሻି௫

∑ ௌ௚௡ሺை೔,஻ሻ
൒

∑ ௌ௚௡ሺ஽೔,஻ᇱሻା௫

ௌ௚௡ሺை೔,஻ᇱሻ
                       (8) 

Table 1. Algorithm 1. 

Algorithm 1: bf_Balancing(t)  

Static Input:    trip demand distribution pattern 𝒅𝒊𝒔𝒕𝒓_𝑩𝒕 

              Inflated trip demand ሼ𝑰𝑻𝒅 ൌ൏ 𝑶𝑩𝒌
𝒕 , 𝑫

𝑩
𝒌ᇲ
𝒕ᇲ ൐ሽ,  

              distance ratio threshold 𝜸, bf variation threshold 𝝈. 

Output:        updated distribution of blocks 𝐵௧ାଵ 
1  foreach demand pair 𝐼்ௗభ

, 𝐼்ௗమ
, 𝑂ଵ, 𝑂ଶ ∈ 𝑔௞

௧  𝒂𝒏𝒅 distሺ𝑂ଵ, 𝑂ଶሻ ൑ 𝜆௢     // trip merging 

2       𝑑ଵ ൌ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒ሺ𝑂ଵ, 𝐷ଵሻ; 𝑑ଶ ൌ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒ሺ𝑂ଵ, 𝐷ଵሻ;  
3        if 𝛾௠௜௡ሺௗభ,ௗమሻ,௠௔௫ሺௗభ,ௗమሻ ൏ 𝛾 

4          𝑘ᇱᇱ ൌ 𝑙𝑜𝑛𝑔𝑒𝑟௞൫𝐼்ௗభ
, 𝐼்ௗమ

൯; 
5          tᇱᇱ ൌ 𝑑𝑒𝑠𝑡_𝑇𝑖𝑚𝑒ሺ𝐼்ௗభ

, 𝐼்ௗమ
ሻ; 

6        end if 

7        add to Block(𝐵௞ᇱᇱ
௧ᇱᇱ ,location(𝑚𝑎𝑥஽ሺ𝑑ଵ, 𝑑ଶሻ); 

8  foreach block 𝐵௞                                           

9       𝑏𝑓஻ೖ
ൌ ∑ 𝑆𝑔𝑛ሺ𝐷௜, 𝐵௞ሻ

∑ 𝑆𝑔𝑛ሺ𝑂௜, 𝐵௞ሻ൘ ; 

10      𝜎௧ ൌ 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒ሺ𝑏𝑓஻భ
，𝑏𝑓஻మ

，… , 𝑏𝑓஻ಿ
ሻ, 𝑁 ൌ∥ 𝑑𝑖𝑠𝑡𝑟_𝐵௞

௧ ∥; 

11      while 𝜎௧ ൏ 𝜎 
12           𝐵 ൌ 𝑚𝑎𝑥஻ೖ

 𝑏𝑓஻ೖ
; 

13           𝐵ᇱ ൌ 𝑚𝑖𝑛஻ೖᇲ,௞ᇲஷ௞𝑑𝑖𝑠𝑡ሺ𝐵, 𝐵௞ᇱሻ; 

14           𝑥 ൌ 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑁𝑢𝑚஻,஻ᇱ;                      

15           Translocation(random(B, x ,{D}),𝐵′)             //   sufficient supply translocation 

16      end while 

17  go to 8. 

18  go to 1 

19  return 𝒃𝒇_𝑩𝒂𝒍𝒂𝒏𝒄𝒊𝒏𝒈ሺ𝑡 ൅ 1ሻ; 

4. Experiment 

4.1. Data and metrics 

We perform the experiments using the taxi trajectory dataset contains the GPS trajectory 
recorded by over 13,000 taxis during a period of 30 days spanning from April 1st to April 30th in 
the year of 2015. After trip detection, there are more than 11.23 million occupied trips. The 
performance of the devised demand-supply balancing system is evaluated in the perspective of 
effectiveness, described by following effectiveness measurements.  

Proportion of merged trips (PMT) is the merged trips percentage of total trip demands. Relative 
Decrement of mean BF value (RDMBF) and Relative decrement of BF variance (RDBFV) are applied 

//Eq (8)
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to evaluate the effectiveness of our defined balancing factor. Satisfaction proportion (SP) is the fraction 
of trip demands that get satisfied in the balancing process (the merged trips are given the priority to be 
satisfied and two merged trips are regarded as two satisfied demands).  

We compare the performance of the original system that means non-merging and non-balancing 
approach with three flavors of our proposed balancing approach: Non-Merging With-Translocation 
approach, the With-Merging Non-Translocation, the With-Merging With-Translocation. We added 
another system parameter η to represent the percentage of travelers that receive the trip merging 
strategy with others. 

4.2. Results 

The overall evaluation result of the metrics described above is shown as Table 1. In the evaluation, 
our proposed approach serves 20.86% additional taxi users while the defined balance factor average 
value decreasing by 1.58% and the variance decreasing by 3.2% compared with non-balancing (when 
the inflating ratio of taxi trip demand number is 3 and the ratio of trip merging acceptance is 0.6). 
Evidently, the satisfaction proportion of trip demands increases obviously when it applies our system, 
and compared to the Non-Balancing method, the With-Balancing method achieve much more increase 
of satisfaction proportion, which means when we adopt the proposed balancing factor based supply 
translocation algorithm, more trip demands can be satisfied. Furthermore, it also achieves much better 
value of RDMBF and RDBFV. The PMT value shows that 41.7% trips are merged when the system 
parameters are set as Δ = 3, η = 0.6, γ = 0.3. 

Table 2. Evaluation results of the study case (Δ = 3, η = 0.6, γ = 0.3). 

  Non-Merging,  

Non-Translocation 

Non-Merging,  

With-Translocation 

With-Merging,  

Non-Translocation 

With-Merging  

With-Translocation 

PMT — — 0.417165 0.417165 

RDMBF — 0.013181 — 0.021149 

RDBFV — 0.039198 — 0.086995 

SP 0.333333 0.65367 0.476190 0.881090 

 

Figure 7. Proportion of merged trips with different parameters. 
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The metrics of different time slot with different system parameters are shown in Figures 7–10, 
and grid-based balancing is added to compare which block-based balancing, which partition the whole 
study area into all grids of identical size of 1 km. As shown in Figure 7, the proportion of merged trips 
achieves higher value when the system parameter Δ = 4, compared to Δ = 3 or Δ = 5. This is because 
that when the trip demands are 4-inflated, the total number reach the amount of taxi supplies. When Δ 
and γ are fixed, the proportion achieves higher value when η is larger. It shows no significant difference 
of the proportion value when γ varying. It’s worth noting that the other three metrics are also not quite 
sensitive to parameter γ. This reveals that γ is weakly correlated to the system performance though we 
instinctively regard that the distance increment ratio is an essential factor for trip merging. 

Figures 8 and 9 show that the RDMBF and RDBFV remain more than zero that means the 
proposed balancing approach indeed improves the balance status of the taxi demand-supply system, as 
well, it certifies the reasonable definition of balance factor as a measurement of system balance status. 
The balance status achieves more improvement for ordinary time period than peak periods. And the 
RDBFV shows that the balance variance improves during almost time frame. 

 

Figure 8. Relative decrement of mean BF value with different parameters. 

 

Figure 9. Relative decrement of BF variance with different parameters. 

As in Figure 10, the SP value also displays more sensitive to Δ while shows a little difference 
when η or γ changes separately. It can be seen that during the morning rush hour, the demand 
satisfaction ratio is not sensitive to the influence of the expansion parameters. While, after ten o’clock 
in the morning and during the evening peak hours, SP value is larger with small Δ. SP is not sensitive 
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to η and γ. Therefore, after adopting the proposed balance model, under the condition of fixed taxi 
number, the taxi hailing success rate achieves 1.2 times of none balance strategy. 

 

Figure 10. Satisfaction proportion of trip demands with different parameters. 

5. Discussion and conclusions 

This paper mainly devised a coarse-grained approach for urban taxi demand-supply balancing, 
after proposing a density-based blocking algorithm that partition trip demands into blocks of different 
density level. The supply translocation part is based on the defined balancing factor that is adopted to 
estimate the demand-supply balance level of a block in a given time slot. We evaluate our approach 
utilizing a real trajectory dataset generated by 13,000 taxis of Shanghai in one month. The experimental 
results demonstrated the effectiveness of our approach in estimating the demand-supply balance level 
and improving the satisfaction proportion of trip demands. 

We regard the system as a coarse-grained taxi demand-supply balancing prototype because either 
the scheduling or trip merging process is implemented on the granularity of blocks. There are several 
potential future directions for this framework. Firstly, we will try to implement the framework on the 
level of the road network, so the travel distance and the merged trip destination time could be calculated 
with real path distance and more reasonable time consumption calculation. Secondly, with the 
development of mobile applications, such as the Didi Taxi and the Uber, the real taxi request that gets 
served and unserved can be collected, which can substitute for the trip demand inflating part. 
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