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Abstract: User data usually exists in the organization or own local equipment in the form of data
island. It is difficult to collect these data to train better machine learning models because of the General
Data Protection Regulation (GDPR) and other laws. The emergence of federated learning enables users
to jointly train machine learning models without exposing the original data. Due to the fast training
speed and high accuracy of random forest, it has been applied to federated learning among several data
institutions. However, for human activity recognition task scenarios, the unified model cannot provide
users with personalized services. In this paper, we propose a privacy-protected federated personalized
random forest framework, which considers to solve the personalized application of federated random
forest in the activity recognition task. According to the characteristics of the activity recognition data,
the locality sensitive hashing is used to calculate the similarity of users. Users only train with similar
users instead of all users and the model is incrementally selected using the characteristics of ensemble
learning, so as to train the model in a personalized way. At the same time, user privacy is protected
through differential privacy during the training stage. We conduct experiments on commonly used
human activity recognition datasets to analyze the effectiveness of our model.
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1. Introduction

Human activity recognition (HAR) is a classification task in machine learning [1]. Its goal is to
classify some activities performed by a user within a certain period of time. People’s activities can
include different types, such as walking, running, going upstairs, going downstairs, sitting, etc. The
human activity recognition program can be applied to the fields of medical care, fitness and so on [2,
3]. The machine learning model trains on data collected by smart devices with accelerometer and
gyroscope sensors to achieve the purpose of tracking the user’s health [4, 5].
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In real life, data is scattered among individual users or various institutions. The machine learning
model requires a large amount of data to train better model. However, the method of concentrating user
data to a central server will cause the privacy of data to be leaked. Moreover, the recent regulation,
like GDPR is designed to protect the privacy of user [6]. Users or institutions cannot share their data to
the data center, which makes it difficult to use these valuable data to train powerful machine learning
models.

Federated learning was proposed by Google, which can train a shared global model collaboratively
while keeping user data scattered [7, 8]. A typical method of implementing federated learning is fed-
erated averaging (FedAvg) [7], which updates parameters on the server by averaging the local model
parameters uploaded from each client. After multiple iterations, a shared global neural network model
is generated in the server and distributed to each client. These researches focused on federated learn-
ing based on neural networks. Due to the excellent characteristics of other machine learning, many
researches have begun to pay more attention to training other machine learning models in federated
settings [9, 10]. Considering the faster training speed of the tree model and the high accuracy of the
tree-based ensemble model, some studies have applied the tree-based ensemble model to the setting of
federated learning, such as federated gradient boosting decision tree [11], federated extreme tree [12].

In the training process of federated learning, the original data is stored locally on the client and is
not exposed to the server or any other users for alleviating the privacy leakage of user data. However,
some studies have shown that the parameters or intermediate information in the model training process
may still leak user privacy [13]. To ensure the privacy and security of user data in federated learning,
some works mainly used differential privacy or homomorphic encryption to protect the intermediate
parameters in the model training process [14, 15]. Recently, Mo et al. [16] utilized the widely existing
trusted execution environment (TEE) in mobile devices to hide model updates from attackers through
local TEE training on the client and TEE security aggregation on the server.

Federated learning can effectively alleviate the problem of data islanding and has been widely
used in various practical tasks, especially in the field of medical and health care. A system based
on blockchain technology elements and threaded federated learning was proposed [17]. An agent with
a consortium mechanism was constructed for the classification results of many machine learning so-
lutions. This research provides the new multi-agent model that can be implemented as a real-time
medical data processing system. Sozinov et al. [18] used federated learning to train a classifier to
solve the challenge of insufficient data for a single user in human activity recognition tasks. However,
an important problem in federated learning is that the final global model lacks personalization. Most
methods are based on all users to generate a common model. Due to the heterogeneity of user data in
actual federated learning, generating a unified model may not be the best solution for all users. We can
see that in the human activity recognition task, different users have different physical characteristics
and daily activities. Therefore, a unified model cannot meet the needs of all users and cannot achieve
personalized medicine. In this case, each user wants to obtain a personalized model instead of a global
shared model after participating in federated learning.

Some existing personalization methods are designed for the training of neural networks in federated
learning, but there is no relevant research on the personalized methods of tree-based federated models.
The lightweight tree-based model is more suitable for training and deployment on wearable devices
with limited computing. So we are mainly concerned about how to apply the federated random forest
to the task of activity recognition, and generate a personalized federated model for each user. Inspired
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by previous work, we propose a new privacy-protected federated personalized random forest model
(PP-FPRF) to accurately and securely support real-world activity recognition applications. We have
three main contributions:

Personalization. The federated personalized random forest is considered from the two levels. First,
from the data point of view, according to the data characteristics of the users in the activity recognition
task, the locality sensitive hashing (LSH) [19] is used to measure the data similarity between users,
and the user and other users with similar data characteristics are trained in cooperation. Second, from
the model of view, the user selects the base classifier by the ensemble learning incremental selection
to achieve the purpose of a personalized model.

Privacy protection. In the process of users cooperative training, to protect users’ privacy, each
user participating in the training communicates the optimal split of candidate attributes in non-leaf
nodes and the classes counts in leaf nodes based on exponential mechanism and Laplace mechanism,
respectively.

Feasibility. We evaluated the proposed framework based on real human activities recognition
datasets and conducted extensive experiments. The experimental results show the effectiveness of
our model.

This rest of this paper is organized as follows. Section 2 overviews the related work of our research.
The preliminaries on locality sensitive hashing and differential privacy are introduced in Section 3. In
Section 4, we describe our approach in detail. The experimental evaluations and results are discussed
in Section 5. Finally, Section 6 summarizes the paper.

2. Related work

Since our work is related to tree-based federated learning and personalized federated learning, we
discuss some existing methods. In addition, we also analyze the differences between our work and
existing methods.

2.1. Personalized federated learning

Some studies have paid attention to the heterogeneity of data in federated learning and have pro-
posed some personalized solutions. Wang et al. [20] fine-tuned the federated model through the local
data in each client to realize the personalization of the user model. After training a unified federated
model, in the process of personalized learning, all convolutional and pooling layers in the network are
frozen, and only the parameters of the fully connected layer are updated by using stochastic gradient
descent (SGD). Fedhealth aggregated model parameters through federated learning and then applied in
personalized medicine by building a personalized model for each user through transfer learning [21].
In multi-task learning [22], multiple related tasks are solved simultaneously, allowing the model to
take advantage of the commonalities and differences of different tasks through cooperative learning.
Smith et al. [23] developed the framework for federated multi-task learning (MOCHA) algorithm to
solve personalized problem. Yu et al. [24] extended the personalization method and proposed three
different schemes to personalize the federated model: fine-tuning, multi-task learning and knowledge
distillation.

But these works are aimed at the personalized training of neural networks in federated learning. The
random forest model is a lightweight model that is more suitable for computing constrained wearable
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devices [21], so we focus on the application of federated random forest in activity recognition tasks
and design the corresponding personalized method to improve the model effect.

2.2. Tree-based federated learning

The tree-based ensemble model has been applied to horizontal and vertical federated learning. In
vertical federated learning, the client has the same samples but different feature spaces. In this direc-
tion, Liu et al. [9] proposed a federated forest framework based on classification and regression trees
(CART) and bagging. This framework has a certain degree of privacy protection, and the communica-
tion burden is not high when forecasting. In horizontal federated learning, data samples with the same
characteristics are distributed in multiple parties. Li et al. [11] studied an actual federated environment
with loose privacy constraints. Medical institutions jointly trained the gradient boosting decision tree
(GDBT) model and used gradient weighting to improve the performance of the model. Liu et al. [12]
extended extra-trees to provide a concise algorithm to limit the computational complexity to a mini-
mum, and greatly increase the training speed to adapt to horizontal federated scenarios, while using
differential privacy to protect intermediate data.

These methods based on tree are suitable for collaborative training between several medical, finan-
cial and other data institutions. They consider generating a unified model for all users without con-
sidering the personalization. The necessary motivation for this collaboration is that federated learning
should generate a better learning model than a model generated from the local data of the users alone.
However, for human activity recognition tasks, the number of users is larger and the model needs to
be personalized, current methods based on tree are not effective enough. So we investigate the the
tree-based personalized federated learning for activity recognition tasks.

3. Preliminaries

In this section, we give some basic concepts and review the knowledge about locality sensitive
hashing and differential privacy.

3.1. Locality-sensitive hashing

LSH was originally proposed by Gionis et al. [19]. It is a fast nearest neighbor search algorithm
for massive high-dimensional data. The main idea of LSH is to select a hash function so that the hash
values of two neighboring points are equal with a high probability. On the contrary, the hash values of
two non-neighboring points are not equal with a high probability. For a domain S of the points set, an
LSH family is defined as:
Definition 1. [19]. A family H of functions from S to U, H = {h : S → U} is called (r1, r2, p1, p2)-
sensitive if for any v, q ∈ S , d(v, q) is the distance between two vectors:i f d(v, q) < r1, then Pr[h(q) = h(v)] ≥ p1

i f d(v, q) > r2, then Pr[h(q) = h(v)] ≤ p2
(3.1)

The characteristic of LSH is that there will be multiple input data corresponding to the same hash
value output. Therefore, LSH has been used to protect user privacy in applications such as keyword
search [25] and recommendation systems [26]. A widely used p-stable LSH family is proposed by
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Datar et al. [27]. The hash functions Fa,b are expressed as

Fa,b(v) = b
a · v + b

r
c (3.2)

where v is a d-dimensional vector representing a sample; a is a d-dimensional vector with entries
selected independently from p-stable distribution [27]; b is a real number randomly selected from the
range [0, r]; r is a positive real number representing the size of the window.

3.2. Differential privacy

The differential privacy model proposed by Dwork et al. [14], disturbs the calculation results to
ensure that deleting or adding a single item in the database will not affect the output of the database
access mechanism. This shows that it is difficult for opponents to judge whether a person is in the
database through indistinguishable differences. In this way, personal sensitive information is protected.
Definition 2. (ε-Differential privacy [14]). A randomization mechanism M provides ε-differential
privacy if for databases D1 and D2 differing on one element, R is the output range:

Pr[M(D1) ∈ R] ≤ eεPr[M(D2) ∈ R] (3.3)

The privacy budget ε controls the privacy protection level of differential privacy, and a smaller
privacy budget represents stronger privacy protection.
Definition 3. (Sensitivity [28]). Given a function f : D → Rd over an arbitrary domain D, the global
sensitivity of f is defined as

∆ f = max
D1,D2
‖ f (D1) − f (D2)‖1 (3.4)

where D1 and D2 differ in one record.
To obtain ε-differential privacy, the noise is calibrated according to the sensitivity of the function.

The sensitivity of a real-valued function represents the maximum possible change in its value due to
the addition or deletion of a single record.
Theorem 1. (Laplace Mechanism [28]). Given a function f : D→ Rd over an arbitrary domain D, the
computation:

M(D) = f (D) + Lap
(
∆ f
ε

)
(3.5)

provides ε-differential privacy.
For example, the count function f over a set S , f (S ) = |S |, the sensitivity of the function is 1.

Therefore, a noisy count that returns M(S ) = |S | + Lap(1
ε
).

Theorem 2. (Exponential Mechanism [29]). Suppose the input of random calculation M is the dataset
D, the output is r ∈ Range(M), q(D, r) is the quality function, and ∆q is the sensitivity of the quality
function. If the algorithm selects and outputs r from the range with a probability proportional to
exp

(
εq(d,r)
2∆(q)

)
, then algorithm M provides ε-differential privacy protection.

The following is an example of the exponential mechanism [30]. If a competition is to be held,
the available items are from the collection {swimming, running, basketball}. Participants will vote to
determine an item and ensure that the entire decision process meets the ε-differential privacy protection.
Taking the number of votes as the availability function, so ∆q = 1. Then according to the exponential
mechanism, under a given privacy protection budget ε, the output probabilities of various projects can
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be calculated.
Theorem 3. (Sequential Composition [31]). Given algorithm M1,M2, . . . ,Mn, their privacy budgets
are set to ε1, ε2, . . . , εn, respectively. Then for the same dataset D, the combined algorithm composed
of these algorithms M(M1(D),M2(D), . . . ,Mn(D)) provides

(∑n
i=1 εi

)
−differential privacy protection.

This property shows that for a differential privacy sequential composition algorithm, its privacy
protection level is the sum of all privacy budgets.
Theorem 4. (Parallel Composition [31]). Given algorithm M1,M2, . . . ,Mn, their privacy budgets are
set to ε1, ε2, . . . , εn, respectively. Then for disjoint data sets D1,D2, . . . ,Dn, the combined algorithm
composed of these algorithms M(M1(D),M2(D), . . . , Mn(D)) provides (max εi)-differential privacy
protection.

In a differential privacy protection algorithm sequence, if all the datasets processed by these algo-
rithms do not intersect each other, then the privacy protection level provided by the algorithm sequence
depends on the algorithm with the worst protection level, that is, the algorithm with the largest privacy
budget.

4. Methods

In this section, we introduce the federated personalized random forest framework, which allows
random forest models to be trained for every user in a horizontal federated setting. A user only trains
with some similar users instead of all users. Our motivation is that in the task of activity recognition,
people have different physical characteristics and activity patterns, and their data are very different.
The models trained by similar users are more suitable for their own characteristics.

Table 1. Major notations.

Notation Description
Ml The trained local model
M f The federated model (global model)
Mp The personalized federated model (our goal)
U A user in federated learning
D The data in a client
F The attributes set of the data
N The number of data in a certain client
S The similar clients set of a user

Table 1 summarizes the important symbols that will be used frequently in this paper. In the activity
recognition task, each user Ui has its own local dataset Di and can train a local model Mi

l based on Di.
The user obtains a unified model M f through traditional federated learning. But the unified model M f

does not consider the differences among users. Therefore, it does not achieve good performance on
some users, and is even worse than some users’ local models. Our work is to let each user Ui gets a
personalized random forest model Mi

p through personalized federated learning.
Figure 1 shows the structure of our approach. The user Ui and its similar users are taken as an exam-

ple to describe the personalized training phase. Step 1 is the stage of finding similar users. Each user
first uses the global hash tables to find users who are similar to them. In step 2, the user trains a random
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decision tree with similar users. Then in step 3, the user individually makes a personalized selection of
the newly generated decision tree. An overview of PP-FPRF algorithm is shown in Algorithm 1. The
inputs are the LSH functions {Fk}k=1,2...L, all users data {Di}i=1,2...I , the number of trees T and differential
privacy budget B. User participates in training and gets his own personalized model Mi

p. In line 1, we
call function Preprocess [11] for each user Ui to obtain his similar users S i. Each user Ui can initiate
a training session and coordinate his similar users S i to train a tree. In this training, Ui is regarded as
the master node, and his similar users participating in the training are regarded as cooperative users.
A user in federated learning can initiate a training session as a master or participate in a training as a
collaborator. In line 3, a master obtained a new tree by Algorithm 2 (TreeBuild M), at the same time,
a collaborator get a new tree by Algorithm 3 (TreeBuild C). In line 9, the user participating in the
training uses Incre Select of the decision tree based on his local data, to determine whether add the
new tree to his own personalization model Mi

p.

Ui

Ui

Tree t Tree tTree t

Tree t

Users similar ity calculation

Personalization stage one: 
Similar  users training

Personalization stage two: 
Incremental selection

Figure 1. Structure of the PP-FPRF approach.

Algorithm 1 The learning procedure of PP-FPRF
Input: The user Ui, LSH functions {Fk}k=1,2...L, all users data {Di}i=1,2...I , hyperparameter k, the number

of training sessions T , differential privacy budget ε = B
T

Output: The personalized federated model Mi
p of Ui

1: S i = Preprocess({Fk}k=1,2...L, {Di}i=1,2...I , k)
2: for j← 1 to T do
3: if Ui is master then
4: t = TreeBuild M(Di, S i, ε);
5: else
6: t = TreeBuild C(Di, ε);
7: end if
8: if Incre Select(Di,Mi

p, t) is true then
9: Mi

p ← add(Mi
p , t);

10: end if
11: end for
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4.1. Users similarity calculation

The Preprocess method utilizes the widely used p-stable LSH function to obtain the similarity
of any two samples in different users [27], without exposing the original data to other users [11].
According to the characteristics of LSH, if two samples are similar, they are more likely to be hashed
to the same value. Therefore, by using multiple LSH functions, the bigger the number of identical hash
values of two samples, the greater the likelihood that they are similar.

The description of function Preprocess is as follows. Given L randomly generated p−stable hash
functions, the users first calculate the hash values corresponding to their samples, and each sample is
mapped to L hash values by L hash functions. The AllReduce operation is used to build L global hash
tables, and the inputs to AllReduce are the sample IDs and their hash values of all users. The reduction
operation is to combine the samples IDs with the same hash value. By adopting the previously proposed
bandwidth optimal and contention free approach [32], propagate the aggregated hash tables to each
user. After each user gets the global hash tables, calculates the similarity with other users. For example,
user Ui calculates the number of identical hash values for each sample in user Ui and each sample in
user U j. If the number of the same hash value of the two samples is bigger than a specific threshold,
the two samples are considered similar.

Li et al. [11] used LSH to find similar samples to weight the gradient. The basic idea is that the
instance is important if it is similar to many other instances. Different from them, we use LSH to find
similar samples and continue to find similar users of users. User Ui counts how many samples in U j are
his similar samples, and calculates the proportion of similar samples to U j. Because of the randomness
of the LSH function, it is not easy for us to define similar users with specific threshold. Therefore,
through comparison, each user finds the top-k users with higher similar samples ratio, as their own
similar users.

4.2. Personalized training stage

Through similarity calculation, each user gets his own set of similar users. To make the model
generated by the federated learning suitable for the user’s local data, the user only trains the federated
learning model with similar users. The generated personalized model can combine the generalization
characteristics of the global model and the data matching characteristics of the local model. In this
subsection, we will introduce our personalized methods considered from the data level and model
level: similar users training and incremental selection methods.

4.2.1. Similar users training

Algorithms 2 and 3 describe the cooperating training process of the master node and similar users.
The key steps of building a tree are as follows.

In the process of training a random tree, the master is responsible to coordinate cooperating users,
and according to the total splitting information to determine the splitting attributes of a node or choose
to stop splitting. We call function RandomPick provided by Liu et al. [12], allows the master to
exchange information with cooperating users and return candidate attributes F

′

and splitting values{
vk, k = 1, ..., |F

′

|
}

to cooperating users. The cooperative user U j temporarily splits the local data into

left and right parts according to each value in
{
vk, k = 1, ..., |F

′

|
}
.We use the information gain (IG) qual-

ity function to evaluate the scores of nodes divided by different attributes and corresponding values.
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Algorithm 2 Privacy-protected federated personalized random forest - Master
Input: Training set Di of master Ui, the similar users set S i, differential privacy budget ε
Output: A new decision tree t

1: function TreeBuild M(Di, S i, ε)
2: if Stopping Condition is true then
3: Receive noisy classes counts from user U j, U j ∈ S i;
4: Send leaf labels to collaborative users S i;
5: return leaf node;
6: end if
7:

{
vk, k = 1, ..., |F

′

|
}
← RandomPick(F, Di, S i);

8: for every attribute fk ∈ F
′ do

9: Calculate the information gain q = IG( fk,Di);
10: end for
11: f

′

i ← Select the local optimal splitting attribute based on Exponential Mechanism in Eq. ( 4.1);
12: Receive f

′

j from the U j , j = 1, ..., |S i|;
13: f

′

←Weighted voting on the local optimal attributes, send the global best splitting f
′

to S i;
14: Lsubtree← TreeBuild M(Dl

i, S i, ε);
15: Rsubtree← TreeBuild M(Dr

i , S i, ε);
16: return tree node;
17: end function

Each user finds the attribute with the largest information gain as the local best attribute in the
candidate set F

′

. To protect user privacy, we use exponential mechanism to select the local best attribute
f j
k , the details are described in Section 4.3. The master also has its own local optimal attribute f i

k by
perturbing, and receives the local optimal splitting attribute sent from the cooperating user. Then,
he determines the global optimal splitting attribute f

′

by means of weighted voting. The larger the
sample size N of the user, the greater the weight in the federated learning. The attribute f

′

with the
largest weight is selected as the best splitting method for the current node. Then the master sends the
determined node splitting method to the partners.

In RandomPick [12], the master Ui first randomly selects a subset F
′

⊂ F as candidate splitting
attributes. Then sends F

′

to cooperative user U j ∈ S i who participated in the training. For attribute
fk ∈ F

′

, each cooperative user U j randomly selects a value v j
k within the range of minimum and

maximum values of attribute fk, and sends v j
k to the master. The master Ui combines the local random

splitting value vi
k and the received splitting values

{
v j

k, j = 1, ..., |S i|
}

from other users, and takes the

minimum and maximum value of vi
k and

{
v j

k, j = 1, ..., |S i|
}
. Then, randomly selects a value vk from

the range of minimum and maximum value, as the splitting value of the candidate attribute fk. The
master calculates corresponding splitting values of candidate attribute in F

′

, and sends these values{
vk, k = 1, ..., |F

′

|
}

to cooperative users.
Recurse this step to split the random tree until the stopping condition is met. Before creating a new

tree node, the master will check whether the stop condition is met. To prevent the generated decision
tree from overfitting, the stopping condition we adopt is to limit the maximum depth of the tree and
the number of remaining samples in the node [12, 33]. When the node reaches the stop condition, the
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cooperating users perturb the classes counts in the node by Laplace mechanism, as is described in the
Section 4.3. They send perturbing counts to the master node to calculate the global classes counts
and get the class with the largest total count as the label of the leaf node. In the training stage, by
aggregating the random attribute values corresponding to the candidate attributes, the best attribute
partition selected by exponential mechanism, and the count of leaf labels after perturbing to complete
the training of the model.

Algorithm 3 Privacy-protected federated personalized random forest - Collaborative user
Input: Training set D j of user U j ∈ S i, master Ui, differential privacy budget ε
Output: A new decision tree t

1: function TreeBuild C(D j, ε)
2: if Stopping Condition is true then
3: Perturb classes counts by Laplace Mechanism in Eq. ( 4.2), send to master;
4: Receive leaf labels from master;
5: return leaf node;
6: end if
7:

{
vk, k = 1, ..., |F

′

|
}
← RandomPick(F, D j);

8: for every attribute fk ∈ F
′ do

9: q = IG( fk,D j);
10: end for
11: f

′

j ← Select the local optimal splitting attribute based on Exponential Mechanism in Eq. ( 4.1);
12: Send f

′

j to master, receive the global optimal split attribute f
′

;
13: Lsubtree← TreeBuild C(Dl

j, ε);
14: Rsubtree← TreeBuild C(Dr

j, ε);
15: return tree node;
16: end function

4.2.2. Incremental selection

This is a personalized approach that we consider from the model level. Ensemble pruning is to
select a subset of the ensemble model to form a new ensemble model. Zhou et al. [34] believed that
the smaller scale ensemble model after pruning performed better than the original ensemble. Most of
the existing ensemble pruning methods are divided into selection or adjusting the weight of the base
classifier [35]. We adopt the selected method for ensemble pruning.

Aiming at the random decision tree generated in the similarity learning stage described above, users
use the Incre Select method to adapt the model locally. A user evaluates the importance of the newly
generated decision tree to the current ensemble model by testing the performance of the model on the
validation set. If a new random decision tree t is added to the user’s local personalization model Mp,
the accuracy of the model Mp + t on the user’s verification set is higher than before. Then the user
adds the newly generated random decision tree t to the current ensemble model. The local selection of
the newly generated random decision tree just as the previous personalization study makes a local fine-
tuning of the neural network obtained in the federated learning. By using incremental selection, users
can not only control the number of trees in the model, and reduce the cost of storage and calculation
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during prediction, but also further personalize improving the local performance of the model.

4.3. Privacy protection

In [36, 37], they concerned about how differential privacy interacts with each component of the
decision tree algorithm and the conflict that arises when trying to balance the need for privacy and the
accuracy of the model. Patil and Singh [38] introduced the concept of differential privacy in the classic
random forest algorithm. On the basis of these studies, we analyze the privacy issues in our federated
personalized random forest model, and furthermore use differential privacy to protect users privacy
during the model training process.

The calculation of information gain and the counts of classes are directly based on the user’s data.
According to the differential privacy statement, publishing such information may be a leak of privacy,
so these potential privacy leaks are exactly what the differential privacy algorithm wants to prevent [37].
Next, we elaborate user privacy protection on the two key steps in model construction: using expo-
nential mechanism to perturb the local optimal attribute in non-leaf nodes, and adding Laplace noise
perturbation to the classes counts in the leaf node.

The sensitivity of the information gain calculation function q is ∆ (q) = log2 |C|, where |C| is the
domain size of the class attribute C [38]. Allocate a privacy budget ε1 = ε

d for the perturbation of
local optimal candidate attributes on non-leaf nodes, where ε is the privacy budget allocated to a tree
of the user, and d is the depth of the tree (including non-leaf nodes and leaf nodes). The exponential
mechanism selects a local optimal candidate attribute fk with the following probability:

exp
(
ε1

2∆qq ( fk)
)

∑
fk∈F′ exp

(
ε1

2∆qq ( fk)
) (4.1)

When determining the leaf label, the classes counts in the user’s leaf node are required. The sensi-
tivity of the classes counts is 1. Allocate privacy budget ε2 = ε

d for leaf node classes counts:

Noisy nc = nc + Lap
(

1
ε2

)
,∀c ∈ C (4.2)

where nc is the number of c type label elements in the node, and the user adds Laplace noise perturba-
tion on the count of each class.

Given privacy budget ε for a private random decision tree, we demonstrate the tree building process
preserves ε-differential privacy. For the perturbation of local best candidate attributes on non-leaf
nodes, the allocated privacy budget is ε1 = ε

d . The privacy budget consumption of each non-leaf node
layer of the tree is still ε1. The total privacy budget consumed by the d − 1 layers of non-leaf nodes is
εin = ε1 ∗ (d − 1) =

ε∗(d−1)
d . For each class of count in user’s leaf node, allocate privacy budget ε2 = ε

d .
the overall privacy budget allocated on the user leaf nodes is εl = ε2 = ε

d . The total privacy budget for
the user to select split attributes and leaf labels in a tree is εin + εl = ε. As a conclusion, ε-differential
privacy is provided for each tree of the user. All trees are obtained based on the user’s training set,
the privacy budget budget is accumulated among T trees. The privacy budget consumed by the user to
participate in federated learning is B = T ∗ ε.
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5. Experimental results

In this section, we describe in detail our extensive experiments to evaluate the effectiveness of
personalized federated random forest. We show the public datasets considered in the experiment and
discuss the results obtained on the target datasets.

5.1. Experimental setup

We use the public human activity recognition dataset UCI SmartPhone [39]. This dataset collected 6
activities of 30 users. These 6 activities are walking, going upstairs, going downstairs, sitting, standing,
and lying down. The 30 users are between 19–48 years old. Each user wears a smartphone (Samsung
Galaxy S II) on his waist and uses its built-in accelerometer and gyroscope to collect data generated by
activities. We also consider the well-known WISDM dataset [40], which has been widely adopted as a
benchmark for human activity recognition tasks. WISDM contains accelerometer data collected from
the smartphone in each subject’s pocket during the execution of the activity. The activities included in
the dataset are as follows: walking, jogging, climbing stairs, brushing teeth, folding clothes and so on.
We use the data collected by the mobile phone acceleration sensor in the WISDM dataset. The Table 2
shows the detailed information of the datasets used after preprocessing.

We treat each subject in the activity recognition dataset as an independent user in the actual fed-
erated environment. To simulate the heterogeneity of data distribution (non-IID) among users, before
training, we randomly perform three different states on each user’s data. 1) The user’s data is sufficient:
the user’s original data is retained. 2) Insufficient user data: the user’s data is randomly sampled. 3)
User data label distribution is unbalanced: a part of the classes is randomly selected. The processed
data is used as the actual data in each user’s federated training. Then the dataset of each user is ran-
domly divided into three groups, training set, validation set, and test set. Among them, 70% of user
data is selected to generate training data, 20% of data is selected to generate test data, and the remain-
ing data is used as user verification data. Through the above settings, we have established an actual
complex federated learning environment.

Table 2. HAR datasets in our experiments.

Dataset Subject Activity Sampling rate Sensor Features Instrance
Smartphone 30 6 50 Hz Gyroscope/Accelerometer 561 10,299
WISDM 51 18 20 Hz Accelerometer 93 20,650

To prove the effectiveness of personalized federated random forest, we compared our privacy-
protected federated personalized random forest model (PP-FPRF) with two methods: (1) Local random
forest (LRF): The user only trains the random forest model locally. There is no communication among
user and others, so the random forest model is only trained based on their own local data, that is, the
local model for the user. Users only train locally and do not need to worry about privacy issues. (2)
Privacy-protected federated global random forest (PP-FGRF) [12]: All users train a global federated
learning model together, without personalized operations. Using differential privacy to protect the
intermediate data in the training process, the method of adding noise is the same as that of PP-FPRF.
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5.2. Experimental results

We test the performance of the personalized random forest model on the activity recognition
datasets, and analyze the impact of the tree settings and the privacy budget on the model.

5.2.1. Classification accuracy

We fix the depth of each tree in LRF (local model), PP-FGRF (global federated model), and PP-
FPRF (personalized federated model) to 15, and fix the number of trees in the user random forest model
to 20. We assign the same privacy budget ε = 1 to each tree of the user in the global federated model
and the personalized federated model. The hyperparameter k in the personalized random forest is set to
7, that is, the number of similar users for each user. k is varied from 1 to 11, the experimental results in
Figure 2 shows that the performance of the model is better when k reaches 7. It can not only improve
the generalization ability of users, but also maintain the personalized characteristics of the models.
We train the three models on the SmartPhone and WISDM datasets, and the experimental results are
shown in the Tables 3 and 4, where A, B, and C represent three types of users with sufficient data,
insufficient data, and unbalanced label distribution, respectively. We can see the average accuracy of
different models on these three types of users, as well as the overall accuracy of all users participating
in the training.

1 3 5 7 9 11
k

0.88

0.89

0.90

0.91

0.92

0.93

A
cc
ur
ac
y

PP-FPRF

(a) SmartPhone
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(b) WISDM

Figure 2. The effect of varying k.

According to the performance of the model on different datasets, we can see that for all users, the
average accuracy of the federated random forest is better than the average accuracy of the random
forest trained independently by the users. And our personalization method can further improve the
effect of federated random forest. We focus on measuring the average accuracy of several models on
the users participating in the training, in addition, we also measured the accuracy of individual users,
and then compared whether their participation in federated learning has improved the effect of their
models.

We analyze the detailed results of each user in the SmartPhone dataset, as shown in Table 5. For
most users, the achieved performance (ie accuracy) of the federated personalized random forest is better
than other methods. Clients 1 to 10 are type A users, and their data is relatively sufficient. Clients 11
to 20 are type B users, and their data volume is small. Clients 21 to 30 are type C users, their label
distribution is not balanced. Whether it is PP-FGRF or our PP-FPRF, compared with the local models

Mathematical Biosciences and Engineering Volume 19, Issue 1, 953–971.



966

LRF of type B and C that don’t participate in federated training, there is a big improvement. Although
the generalization ability of the global federated random forest PP-FGRF for the overall users has been
improved, for type A users, such users with sufficient data, the global federated learning has not brought
effective improvement. That makes these users lose their motivation to participate in federated training.
For them, more data from other irrelevant users is equivalent to noisy data, disturbing the effect of the
model. Therefore, we use the personalized training method of similar users and incremental selection
to better adapt to the user’s personal data and effectively alleviate the above mentioned contradiction.

Table 3. Achieved accuracy of different methods on SmartPhone dataset.

Method A B C Avg
LRF(Local) 0.932 0.859 0.795 0.862
PP-FGRF(Global) 0.930 0.909 0.912 0.917
PP-FPRF(Personalized) 0.955 0.922 0.914 0.930

Table 4. Achieved accuracy of different methods on WISDM dataset.

Method A B C Avg
LRF(Local) 0.930 0.831 0.871 0.877
PP-FGRF(Global) 0.949 0.936 0.933 0.940
PP-FPRF(Personalized) 0.956 0.939 0.940 0.945

Table 5. Accuracy obtained by different methods for each user on the SmartPhone dataset.

Method client1 client2 client3 client4 client5 client6 client7 client8 client9 client10
LRF 0.943 0.976 0.855 0908 0.963 0.912 0.954 0.882 0.942 0.959
PP-FGRF 0.957 0.967 0.912 0.968 0.885 0.938 0.935 0.942 0.913 0.881
PP-FPRF 0.958 0.973 0.935 0.934 0.969 0.942 0.967 0.952 0.957 0.961
Method client11 client12 client13 client14 client15 client16 client17 client18 client19 client20
LRF 0.773 0.894 0.900 0.777 0.853 0.809 0.894 0.922 0.896 0.870
PP-FGRF 0.887 0.943 0.957 0.827 0.934 0.875 0.922 0.902 0.899 0.942
PP-FPRF 0.929 0.894 0.967 0.881 0.959 0.914 0.889 0.923 0.955 0.913
Method client21 client22 client23 client24 client25 client26 client27 client28 client29 client30
LRF 0.682 0.831 0.813 0.818 0.768 0.835 0.776 0.805 0.870 0.753
PP-FGRF 0.885 0.927 0.919 0.942 0.945 0.938 0.914 0.870 0.915 0.866
PP-FPRF 0.836 0.940 0.962 0.958 0.865 0.878 0.951 0.895 0.939 0.909

5.2.2. Effect of tree settings

We separately tested the influence of the number of trees and the maximum tree depth in the model.
When experimenting with the number of trees, fix the remaining hyperparameters and change the
number of trees. By observing the changes in the Figure 3, we can find that the accuracy of the three
methods from a single tree to multiple trees has been greatly improved, reflecting the advantages of the
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forest structure. However, when the number of trees in the model reaches a certain value, the increase
in the number of trees has little effect on the results. This shows that it is necessary for us to adopt
an incremental selection method to control the number of trees in the model, which is conducive to
reducing the storage and computational overhead of the model.

When testing the influence of maximum tree depth, fix the remaining hyperparameters and change
the maximum tree depth of the tree. By observing the changes in the Figure 4, the maximum tree
depth has a greater impact on the results, and the accuracy of the model increases as the tree depth
threshold increases. The local training model converges when the maximum depth is small. When
our personalization model reaches convergence, the maximum depth is smaller than the global model’s
depth. When the global federated learning trains one tree, there are more users participating in the
training, so the overall data is more. The range of data feature values is larger, and deeper nodes are
needed to divide the data. Therefore, we use the personalized learning of similarity, users only choose
similar users instead of all users to train together, which further reduces the complexity of the model.
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Figure 3. The effect of varying number of trees.
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Figure 4. The effect of varying max depth of tree.
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Figure 5. The effect of varying privacy budget ε.

5.2.3. Effect of ε

We observe the change in accuracy by changing the privacy budget ε from 0.01 to 1.5. Because the
local model does not need to add noise protection, it is not affected by the privacy budget. The results
are summarized in Figure 5. The accuracy of the model increases with the increase of the privacy
budget. When the privacy budget is small, the accuracy of the model obtained by federated learning is
worse than that of the local model. So we should strike a balance between privacy and model utility.

6. Conclusions

In this paper, based on the existing traditional federated random forest model, we propose a person-
alized federated learning framework. We pay more attention to the improvement of the model accuracy
of each user by personalization, so that the federated random forest model is more suitable for human
activity recognition task. The personalization method is considered at the two levels of user data and
model. Firstly, using effective locality sensitive hashing functions to collect the similarity informa-
tion without exposing individual data records, users conduct personalized training by selecting similar
users. Then, combining with the ensemble learning pruning operation, the generated random tree is
personalized selection by the incremental method. At the same time, differential privacy is used in
the training phase to protect the private information of users. The experiments show that PP-FPRF
improves the classification accuracy of users in activity recognition tasks, and the personalized method
also simplifies the complexity of the federated trees model. The personalization method is introduced
into the federated random forest model to ensure that more users benefit from federated learning and
are more suitable for actual activity recognition tasks. Using differential privacy to protect user data
will also result in loss of model accuracy. In the actual application process, the balance between user
privacy and model utility must also be considered. In future works, to ensure the matching of user
distribution, we will use users with similar distribution to collaboratively train the federated model,
and other privacy protection methods to ensure user privacy.
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