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Abstract: As one of the most significant protein post-translational modifications (PTMs) in eukaryotes, 
ubiquitylation plays an essential role in regulating diverse cellular functions, such as apoptosis, cell 
division, DNA repair and replication, intracellular transport and immune reactions. Traditional 
experimental methods have the defect of being time-consuming, costly and labor-intensive. Therefore, 
it is highly desired to develop automated computational methods that can recognize potential 
ubiquitylation sites rapidly and accurately. In this study, we propose a novel predictor, named UPFPSR, 
for predicting lysine ubiquitylation sites in plant. UPFPSR is developed using multiple 
physicochemical properties of amino acids and sequence-based statistical information. In order to find 
a suitable classification algorithm, four traditional algorithms and two deep learning networks are 
compared, and the random forest with superior performance is selected ultimately. An extensive 
benchmarking shows that UPFPSR outperforms the most advanced ubiquitylation prediction tool on 
each measurement indicator, with the accuracy of 77.3%, precision of 75%, recall of 81.7%, F1-score 
of 0.7824, and AUC of 0.84 on the independent test dataset. The results indicate that UPFPSR can 
provide new guidance for further experimental study on ubiquitylation. The data sets and source code 
used in this study are freely available at https://github.com/ysw-sunshine/UPFPSR. 
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1. Introduction  

To date, more than 400 different types of protein post-translational modifications (PTMs) have 
been discovered in the whole process of life activities [1,2]. Ubiquitylation is a modification process 
in which ubiquitin molecules may attach themselves to substrate proteins on lysine residues under the 
action of E1 activation enzyme, E2 conjugation enzyme and E3 ligation enzyme [3–5]. Ubiquitination 
is widely involved in various physiological processes due to its diversity and multivalence, including 
cell proliferation, apoptosis, autophagy, DNA damage repair and immune response [6,7]. Similar to 
the phosphorylation pathway, the ubiquitin modification pathway is reversible, that is, ubiquitin protein 
modifications can be removed by deubiquitinase. Therefore, it is difficult to study protein 
ubiquitination. However, there are many experimental approaches which have been developed, mainly 
including high-throughput mass spectrometry techniques, ubiquitin antibodies, ubiquitin binding 
proteins, and so on [8,9].  

To study the ubiquitination of proteins, we need to make clear that: 1) Which proteins can be 
ubiquitinated; 2) For ubiquitinated proteins, which lysine residues can be ubiquitinated; 3) 
Quantitative analysis should be performed to find the motifs of ubiquitinated protein sequences. 
After clarifying the above points, we need to further understand how the ubiquitination happens, 
and what the key molecules that affect this ubiquitination process are. In other words, what is the 
role of E3 enzyme in this process? To complete these studies, a large amount of statistical data is 
needed. With the development of molecular biology and computer aided calculation, motif 
identification has become a helpful method for digging valuable information from biological 
sequences. Recently, a variety of machine learning approaches have been developed for automatic 
recognition of protein ubiquitylation sites.  

The first online predictor for identifying protein ubiquitylation sites, called Ubipred [10], took 
advantage of 31 informative attributes out of 531 physicochemical properties as features, and support 
vector machine (SVM) as classifier. After that, many researches have proposed new models to predict 
ubiquitylation sites based on traditional classification algorithm, such as SVM [8,11–14], random 
forest (RF) [15,16], gray system model. In these studies, the composition of k-spaced amino acid pairs, 
binary amino acid encoding, physicochemical properties of amino acids, pseudo-amino acid 
composition, and so on, are adopted to characterize sequence information. Chen et al. [17] proposed a 
predictor called hCKSAAP_UbSite, which used SVM classifier incorporated with the composition of 
k-spaced amino acid pairs (CKSAAP), the binary amino acid encoding, the AAindex physicochemical 
property, and the protein aggregation propensity, to recognize protein ubiquitylation sites of human. 
Qiu et al. [18] developed a predictor called iUbiq-Lys, which adopted the evolutionary information, 
pseudo-amino acid composition (PseAAC), as well as the gray system model to predict protein 
ubiquitylation sites. Cai and Jiang [19] employed various traditional machine learning methods for the 
ubiquitylation site identification based on physicochemical properties of amino acids concerning 
protein sequences. Wang et al. [20] designed a tool, ESA-UbiSite, using physicochemical properties 
together with support vector machine to identify human ubiquitylation sites. And they also proposed 
the evolutionary screening algorithm (ESA) to select negative samples from non-validated sites effectively. 
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In recent years, deep learning has been extensively used in the field of bioinformatics [21–24]. In 2017, 
He et al. [21] proposed the first deep learning architecture by utilizing raw protein sequence fragments, 
selected physicochemical properties of amino acids, and corresponding position-specific scoring 
matrix as input. More recently, Wang et al. [24] proposed an improved training scheme with word-
embedding model, incorporated with the multilayer convolutional neural network to predict plant 
ubiquitylation sites. Although many models have been proposed to recognize ubiquitination sites of 
different species, there are only several models are designed for plant [13,15,16,24]. The latest model 
is built by Wang et al. [24], which achieved the accuracies of 0.782 on 10-fold cross-validation and 
0.756 on independent test, respectively. Comparing the performance with other species, there is still a 
lot of room to improve the prediction performance. One solution is to use more sequence order 
information and position information of whole sequences. Another solution is to consider both 
traditional classification algorithm and deep learning. For the convenience of research, we show the 
related works and major information in Table 1. 

In this work, we present a novel prediction model called UPFPSR to further improve the 
predictive performance for plant potential ubiquitylation sites. We build and optimize our model from 
three aspects. First, in order to extract more effective and representative information from protein 
fragments, four sequence feature extraction methods, namely DBPB (di-amino acid bi-profile Bayes), 
EGAAC (enhanced grouped amino acid composition), Pse-AAC (pseudo-amino acid composition) 
and PWAA (position-weight amino acid composition) are used to transform sequence fragments of 
length 31 into numerical feature vectors efficiently. Second, deep learning algorithms and several 
extensively used traditional machine learning algorithms were compared during model construction, 
and random forest (RF) is the chosen classification algorithm to establish our lysine ubiquitination site 
prediction model UPFPSR. Last, we perform a 10-fold cross-validation test, as well as an independent 
test to compare and evaluate the performance of the constructed model objectively using five common 
measures, i.e., accuracy (Acc), precision, recall, F1-score and the area under the ROC curve (AUC) 
values. When compared with one of the most advanced prediction tool CNN+word2vec on an 
independent dataset, UPFPSR shows its advantage over CNN+word2vec with the accuracy of 77.3%, 
precision of 75.0%, recall of 81.7%, F1-score of 0.782, and AUC of 0.84. 

2. Materials and methods 

Figure 1 shows the overall framework of UPFPSR, which contains four major steps: 1) Data 
collection and preprocessing; 2) Feature encoding schemes; 3) Model construction; 4) Model 
evaluation. In the first step, the training dataset and the independent testing set originating from the 
PLMD database [25], are collected and pre-processed. Then in the second step, we adopt four different 
sequence-based feature-encoding techniques to extract effective feature vectors. We perform a 10-fold 
cross-validation on multiple classifiers in the third step to select the optimal model for plant 
ubiquitylated site recognition. Finally, the trained RF model is further evaluated by an independent test 
set, and the predictive performance is compared with the existing predictor of Wang et al. [24]. Details 
are described in following sections. 

2.1. Data collection and pre-processing 

In this study, we use datasets constructed by Wang et al. [24] to train and validate our model. The 
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experimentally verified lysine ubiquitylation proteins are collected from the PLMD database [25]. We 
select ubiquitylation sites from Oryza sativa subsp indica, O. sativa subsp japonica, and Arabidopsis 
thaliana for the plant subset. The protein peptide sequences of length 31 with experimentally verified 
ubiquitylation lysine in the center are collected as positive dataset. If the number of upstream or 
downstream amino acids is less than 15, the lacking amino acids are complemented with the same 
number of pseudo amino acid “X”s. The negative samples (non-ubiquitination sites) were generated 
by satisfying the requirement that 31 long sequences with lysine in the center. Meanwhile, the negative 
sample should not be annotated experimentally. After a series of treatment, a total of 7000 protein 
peptide sequences are obtained for species of plant with sequence similarity less than 30%, which 
contains 3500 positive peptides and 3500 negative peptides. We randomly select 2750 peptides from 
the 3500 positive peptides and 2750 peptides from the 3500 negative peptides, separately, as the 
positive training dataset and the negative training dataset. The training dataset, consisting of 5500 
protein fragments, is used to train and optimize the prediction model. The remaining 1500 protein 
peptides including 750 positive samples and 750 negative samples are used to evaluate the 
generalization ability of the established predictor. For the specific procedure of constructing data set, 
please refer to the work of Wang et al. [24]. 

 

Figure 1. Overall framework of UPFPSR. 

2.2. Sequence encoding schemes 

Four different protein fragment encoding methods are used in this study, namely DBPB, EGAAC, 
Pse-AAC and PWAA. These encoding schemes consider 20 natural amino acids and a pse-amino acid 
(A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y, X) presented in protein sequence fragments, 
and transform them into numerical feature vectors.  
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Table 1. A comprehensive list of the existing methods for prediction of ubiquitylation sites. 

Tools Yaer Reference Features Algorithm Species 

Ubipred 2008 Tung et al. PCPs SVM Generic 

hCKSAAP_Ub

Site 
2013 Chen et al. 

CKSAAP + BE + Aaindex 

+ aggregation propensity 
SVM Human 

UbiProber 2013 Chen et al. AAC + PCPs + KNN SVM 

General 

and 

species-

specific 

iUbiq-Lys 2015 Qiu et al. 
evolutionary information 

+ PseAAC 
Gray system model Generic 

Cai and Jiang, 

2016 
2016 Cai et al. PCPs 

NB + FSNB + MANB + EBMC + 

SVM + LR + LASSO 
Generic 

Nguyen et al., 

2016 
2016 

Nguyen et 

al. 
AAC + AAPC + PSSM SVM Generic 

UbiSite 2016 
Huang et 

al. 

MDDLogo-identified 

substrate motifs + PSSM 
a two-layered SVM model Generic 

ESA-UbiSite 2017 Wang et al. PCPs SVM Human 

He et al., 2018 2018 He et al. One hot + PCPs + PSSM CNN Generic 

UbiNets 2018 
Yadav et 

al. 
PCPs DenseNet Generic 

DeepUbi 2019 Fu et al. One-Hot + CKSAAP CNN Generic 

AraUbiSite 2019 Chen et al. AAC + CKSAAP SVM 
A. 

thaliana 

UbiSitePred 2019 Cui et al. 
BE + PseAAC + 

CKSAAP + PSPM 
SVM Generic 

in silico 2019 
Mosharaf 

et al. 
BE RF 

A. 

thaliana 

Mosharaf et al., 

2020 
2020 

Mosharaf 

et al. 
CKSAAP RF 

A. 

thaliana 

Wang et al., 

2020a 
2020 Wang et al. word embedding CNN Plant 

Notes: A. thaliana: Arabidopsis thaliana; RF: Random forest; SVM: Support vector machine; CNN: Convolutional 

neural network; DenseNet: Densely connected convolutional neural networks; NB: Naïve bayes; FSNB: Feature 

selection NB; MANB: Model averaged NB; EBMC: Efficient bayesian multivariate classifier; LR: Logistic 

regression; LASSO: Least absolute shrinkage and selection operator; CKSAAP: Composition of k-spaced amino acid 

pairs; PCPs: Physicochemical properties; PseAAC: Pseudo amino acid composition; AAC: Amino acid composition; 

BE: Binary encoding; PSPM: Position-specific propensity matrices; AAPC: amino acid pair composition; PSSM: 

Position-specific scoring matrix; KNN: K nearest neighbor; AAindex : Amino acid index database.  
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2.2.1. Di-amino acid bi-profile Bayes (DBPB) 

DBPB [26] considers the frequency of every two adjacent amino acids at each position in all the 
positive and negative samples. It has been widely used in the field of post translational modification 
of proteins. For example, Zhu et al. [27] proposed Inspector, a novel succinylation prediction tool that 
used random forest algorithm to identify key determinants of succinylation among six sequence-based 
features: di-amino acid bi-profile Bayes, position-specific di-amino acid propensity, pseudo-amino 
acid composition, position-weight amino acid composition, enhanced grouped amino acid composition 
and composition of k-spaced amino acid group pairs. Jia et al. [28] proposed an ensemble model O-
GlcNAcPRED-II to predict O-GlcNAcylation sites by fusing multiple features incorporated di-amino 
acid bi-profile Bayes. Given a protein peptide sequence S, the DBPB feature vector is defined as: 

  1 2 1 2 1, , , , , ,n n nP p p p p p         (1) 

where n is the length of the sequence fragment after omitting amino acid K in the central position. (i.e., 
n=30),  1, 2, , 1jp j n       denotes the posterior probability of two adjacent amino acids at the j-th 

position in all positive samples, while   , 1, ,2 1jp j n n n     represents the posterior probability of 

two adjacent amino acids at the ( 1j n  )-th position in all negative samples. 

2.2.2. Enhanced grouped amino acid composition (EGAAC) 

The EGAAC feature encoding [29] firstly classifies the 20 amino acids into five categories, 
according to their physicochemical properties, e.g., charge, hydrophobicity and molecular size. These 
five categories are aliphatic group (g1): (G, A, V, L, M, I), aromatic group (g2): (F, Y, W), positive 
charge group (g3): (K, R, H), negative charge group (g4): (D, E) and uncharged group (g5): (S, T, C, 
P, N, Q), respectively. EGAAC descriptor calculates the frequency of each amino acid group in 
windows of fixed length, which is defined as: 

( , )
( , ) , { 1, 2, 3, 4, 5}, { 1, 2, , 31}

( )EGAAC

N g w
f g w g g g g g g w w w w

N w
     (2) 

where ( )N w  is the size of the sliding window w, and ( , )N g w is the number of amino acids in group g 

within the sliding window w. In this study, we used the default setting w = 5, the size of the sliding 
window is 5.  

2.2.3. Pseudo-amino acid composition (Pse-AAC)   

Considering both local and global sequence-order information of protein sequences, Pse-AAC [30] 
has been developed and widely used to represent protein sequences [31–33]. Pse-AAC expresses 
the protein sequence as a (20 )  -dimensional feature vector, where the first 20 dimensions 

contain information about the composition of amino acids, while the last λ-dimensional vector 
represents a range of physicochemical properties. This method can effectively avoid the loss of 
information in amino acid order and the loss of physicochemical information in protein sequence. 
The Pse-AAC feature vector for a protein sequence can be formulated as: 
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  1 2 1 2 1, , , , , ,n n nP p p p p p         (3)

where 
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 

 

 
 (4)

 1, 2,rf r   , 20  represents the normalized occurrence frequency of 20 natural amino acids in 

the protein sequence [27,31]. Parameter   is the integer representing the top counted grade (or rank) 
of the correlation along a protein sequence, and   = 30 is adopted in this section. In addition, w

(ranging from 0 to 1) is a weight factor used to improve accuracy and is set to w  = 0.05 in this work. 
 1,k k  2, ,     is referred to as the j-tier correlation factor imaging the sequence-order correlation 

among all the j-th most contiguous residues along the protein chain. k  can be calculated as follows:  

 
 1

,  
  

L k

i i ki
k

R R
k

L k


 


 


  (5)

The correlation function  ,  i i kR R   is given by: 

      
1

1
,  i i k j i j i k

j

R R I R I R



 



   (6) 

where    is the number of physical and chemical indices considered, and  j iI R   is the j-th 

physicochemical index value of the amino acid iR  . In this section, we employed thirty 
physicochemical properties, and so,  is equal to 30 in Eq (6). 

It should be noted that before replacing the physicochemical index values through Eq (6), the 
standard conversion described by the following formula is performed: 

 
   
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20 20
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I x



 


 




 



 
 

(7)

where  j iI A  is the j-th original physical and chemical value of the i-th amino acid iA . kx  and mx  

represent 20 natural amino acids  , 1, 2,  , 20m k   . The amino acid “X” is omitted here. We apply the 

iLearn package [34] to calculate the Pse-AAC features. 

2.2.4. Position-weight amino acid (PWAA) composition 

PWAA [35] is the improvement of the traditional amino acid composition vector and can reflect 
the sequence position information of amino acid around the intermediate site. Therefore, this feature 
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can avoid the loss of sequence-order information effectively. Given a natural amino acid  1, 2, , 20iA i   , 

the position information of iA  in a protein peptide fragment can be calculated as follows: 

  ,

1

1

D

i i j
j D

j
w x j

D D D

 
      

  (8)

where D represents the number of upstream residues or downstream residues from the center site 
in a protein or peptide fragment. , 1i jx   if iA  is the j-th residue in a protein peptide fragment, 

otherwise , = 0i jx . According to Eq (8), iw  demonstrates the distance information between iA  and 

intermediate site. 

2.3. Model training 

Random Forest (RF) [36] is an algorithm that integrates a lot of decision trees through the idea of 
ensemble learning, and has been widely used in computational biology, since it is non-parametric, 
efficient and interpretable. For example, it has been used in identifying protein succinylation sites [37–39], 
phosphorylation sites [40], glutarylation sites [41], et al.. 

The basic unit of random forest is a decision tree, which casts a unit vote for each subset of samples. 
Then the forest is constructed based on the majority voting strategy. In general, the number of trees 
has a great impact on the performance of the RF classification algorithm. Therefore, we search for 
optimal RF parameters in the training process, by setting the tree number from set

50,100,150,200,250,300 , respectively. The performance results are shown in Supplementary Table S1. 

Support vector machine (SVM) is a classical machine learning method originally proposed in 1963 
by Vapnik et al. [42], and has been widely used to solve data classification problems [11,43–46]. Based 
on the statistical learning theory, the main idea of SVM is to design a kernel function and look for the 
optimal separating maximum margin hyperplane which can differentiate between ubiquitylation sites 
and non-ubiquitylation sites. The Gaussian radial basis function (RBF) is adopted as the kernel 
function in this study. The RBF-SVM needs optimizing two key parameters: penalty parameter C and 
kernel parameter γ. For SVM algorithm, we apply grid search by setting  2 3 4 52 ,2 ,2 ,2C  and 

0.01,0.1,1  , and finally select the pair of parameters which show the best prediction performance 

on the 10-fold cross validation. 
The k-nearest neighbor (KNN) algorithm is the most common and simplest among all machine learning 

classifiers, and is also called lazy learning algorithm because it requires less training time [47–49]. KNN 
algorithm selects k training samples which are nearest to the input sample in the feature space 
according to certain decision rules. In this section, Euclidean distance is used as the measure of 
the difference between two data points and we assign the sample to be determined to the class label 
with the maximum voted class among these neighboring classes [50]. The Euclidean distance d 
between two samples x and y can be calculated through the following formula: 

    2

1
,

N

i
d x y i ix y

   (9) 

where N is the total number of feature dimensions, and ix , iy  are the i-th dimension feature of x and 

y respectively.   
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It is important to select the optimal k value, which affects the performance of the KNN classifier 
significantly. We choose the optimal k value by 10-fold cross validation, and set the parameter k from 
set 3,5,7,9,11,13,15 . 

The Naïve Bayes (NB) is an efficient statistical classification algorithm, constructing model 
through the joint probability ( , ) ( | ) ( )P x y P x y P y . It achieves posterior probability ( | )P y x  based on 

Bayes theorem, and then the prediction is given according to the category label with the maximum 
posterior probability [50–52]. 

Despite its simplicity, the NB algorithm tends to outperform some more complex classification 
approaches, and is a widely used algorithm in bioinformatics researches. Because of its simple 
implementation, no iteration and high learning efficiency, Naïve Bayes algorithm has been extensively 
used in classification and other decision support applications [50,53,54]. 

2.4. Performance evaluation 

To evaluate the performance of the constructed model and compare it with existing methods 
objectively, statistical analyses, including k-fold cross-validation tests and independent tests, are 
performed in this study. We also adopt four common performance measures including accuracy, 
precision, recall, and F1-score [24,55,56], which are defined as follows: 

TP TN
Accuracy

TP TN FP FN




  
 (10) 

TP
Precision

TP FP



 (11) 

TP
Recall

TP FN



 (12) 

2
1

Precision Recall
F score

Precision Recall

 
 


 (13) 

where TP, FP, TN, and FN indicate the number of true positives, false positives, true negatives and 
false negatives, respectively. In addition, we plot the receiver operating characteristic (ROC) curves 
and calculate the area under curve (AUC) values to further assess the performance of our model. The 
higher the AUC value is, the better the model performs. 

3. Results and discussion 

3.1. Selection of the classification algorithm 

To find the most suitable algorithm for distinguishing ubiquitination sites in plant, we firstly try 
four traditional algorithms, namely support vector machine (SVM), k-nearest neighbor (KNN), naive 
Bayes (NB), and random forest (RF). For each machine-learning algorithm, we perform 10-fold cross 
validation to search for optimal model parameters. The detailed performance results of each parameter 
combination are provided in supplementary Tables S1, S2 and S3. 



784 

Mathematical Biosciences and Engineering  Volume 19, Issue 1, 775–791. 

When training the RF model, we set the number of decision trees as 50, 100, 150, 200, 250 and 
300, separately, to screen the optimal number of decision trees. Table S1 demonstrates that the optimal 
accuracy achieves the best at 0.811 with tree number of 200. Moreover, other measurement precision, 
such as recall and F1-score, also reach the best values simultaneously. 

During the process of SVM algorithm optimization, the penalty parameter C is selected from 
the set  2 3 4 52 ,2 ,2 ,2 and the kernel parameter   is selected from the set 0.01,0.1,1 . Table S2 

shows that the maximum accuracy achieves 0.747 by the parameter combinations C = 2^2,   = 
0.1 or C = 2^3,   = 0.1.  

For k-nearest neighbor algorithm, the parameter k is set as 3, 5, 7, 9, 11, 13 and 15 orderly. For 
each neighbor number k, the 10-fold cross-validation results are shown in Supplementary Table S3, 
where the k value of 11 achieves the best accuracy of 0.676. 

We report the best performance for each classifier with the measures of accuracy, precision, recall, 
and F1-score in Table 2 and Figure 2. Moreover, we also plot their ROC curves and provide the 
corresponding AUC values, respectively, as shown in Figure 3. It is noted that the RF classification 
algorithm demonstrates its superiority to other classifiers on all of these measures. Specifically, the 
optimal model RF on 10-fold cross validation achieves an accuracy of 81.1%, precision of 81.0%, 
recall of 81.2%, F1-score of 0.811, and AUC of 0.888.  

Table 2. Performance comparison of six different classifiers on 10-fold cross-validation test. 

Algorithm Accuracy Precision Recall F1-score 

NB 0.700 0.707 0.684 0.695 

KNN 0.676 0.645 0.781 0.707 

SVM 0.747 0.748 0.745 0.746 

DNN 0.743 0.747 0.735 0.741 

CNN 0.698 0.701 0.691 0.696 

RF 0.811 0.810 0.812 0.811 

Due to their outperforming learning ability, deep learning algorithms have also been 
extensively applied in prediction realms [23,56–59]. We test two deep neural network architectures, 
deep neural network (DNN) and convolutional neural network (CNN) on our training data as well. 
The 10-fold cross-validation prediction results show that RF is superior to CNN and DNN once 
again, with accuracy of 0.811 versus 0.698 of CNN and 0.743 of DNN. As far as we know, deep 
learning frameworks tend to show good performance on large-scale data. The plant data size we 
used is not large enough for deep neural networks, but suitable for traditional machine learning 
algorithms. If enough ubiquitination sites are discovered, deep learning framework will still be the 
first choice in the future. 

3.2. Comparison of UPFPSR with existing method CNN+word2vec on the independent test set 

As far as we know, the most up-to-date ubiquitylation prediction tool CNN+word2vec [24] 
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demonstrated the best performance compared to other state-of-the art methods [8,12,18,21,23]. 
Therefore, we only compare the predictive performance of UPFPSR with CNN+word2vec on the 
independent test dataset including 750 positive samples and 750 negative samples. The specific 
performance comparison results are shown in Figure 4 and Table S4. The results illustrate that between 
these two predictors, UPFPSR achieves a better predictive performance than CNN+word2vec on each 
measurement index. In particular, UPFPSR achieves the recall value of 81.7%, while the recall value 
of CNN+word2vec is 76.7%. In addition, UPFPSR improves the accuracy by 1.7% over 
CNN+word2vec. What is more, UPFPSR gives the AUC of 0.84 versus 0.81 of CNN+word2vec. In 
conclusion, all results demonstrate that our proposed model has high confidence on plant 
ubiquitylation site prediction and is more appropriate for recognizing the plant ubiquitylation site. 

3.3. Amino acid preferences of ubiquitylation sites 

We analyze the amino acid preferences around ubiquitylation sites as compared with non- 
ubiquitylation sites using the Two Sample Logo [60] web server and show the statistical results in 
Figure 5. The larger font indicates that this kind of amino acid is enriched in this position, which is 
statistically significant. It is clearly shown that arginine (R) and glutamic acid (E) are more likely to 
appear around ubiquitylated lysine than non-ubiquitylated lysine in plant, especially on the -11th to -
1th and 1th to 10th positions. By contrast, serine (S) and lysine (K) are less likely to appear in 
ubiquitylated peptides than in non-ubiquitylated peptides. This analysis indicates that there is no 
obvious motif for ubiquitylated sites. Therefore, it is significant to build a model for the prediction of 
plant ubiquitylation sites. 

 

Figure 2. Performance comparison of six classification algorithms on 10-fold cross-validation test. 
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Figure 3. ROC curves of six different classifiers on 10-fold cross-validation test. 

 

Figure 4. Performance comparison results between UPFPSR and CNN+word2vec on the 
independent test dataset for plant. 
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Figure 5. Two-sample Logo (http://www.twosamplelogo.org/) of the amino acid preferences 
around ubiquitylation sites as compared with non-ubiquitylation sites (P < 0.05; t-test). 

4. Results 

In this study, a novel model named UPFPSR is developed to identify lysine ubiquitylation sites 
for plant. UPFPSR incorporates various sequence-based information including DBPB, EGAAC, Pse-
AAC and PWAA. Rigorous benchmarking tests based on 10-fold cross validation and an independent 
test set have illustrated that this novel method is efficient and promising for improving the prediction 
of lysine ubiquitylation sites. But the overall prediction performance is less than 90%, the model still 
needs to be further improved. Besides the types of features adopted, more secondary and tertiary 
structure information of proteins should be considered in the future. In addition, more up-to-date deep 
learning neural networks ensemble with traditional algorithms can be employed for further researches. 
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