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Abstract: Early researches have revealed that circular RNA (circRNA) had the potential of biomarkers 
and could affect tumor progression through regulatory networks. However, few research focused on 
the function of circRNA in lung adenocarcinoma and the regulation mechanism of competitive 
endogenous RNA. In present study, through differential expression analysis, 10 circRNAs, 98 
miRNAs(microRNA) and 2497 mRNAs were screened. Based on the 10 circRNAs and related 
databases, a competitive endogenous RNA regulatory network (ceRNA network) containing 7 
circRNAs, 13 miRNAs and 147 mRNAs was constructed. KEGG and GO analysis suggested that 147 
mRNAs were obviously enriched in biological pathway related to LUAD. By constructing a PPI 
network, 12 hub genes were identified by MCODE. The result of survival analysis showed that 10 hub 
genes (BIRC5, MKI67, CENPF, RRM2, BUB1, MELK, CEP55, CDK1, NEK2, TOP2A) were 
significantly related to the survival of LUAD. We randomly divided 483 clinical data into two parts: 
train set and validation set. The train set was used for Cox regression analysis, 3 prognostic factors 
(stage, T, CDK1) were screened. The nomogram model was constructed based on stage, T and CDK1. 
The model was evaluated by ROC curve, calibration chart, Kaplan-Meier (KM) curve and validation 
set data. The results indicated that the model has good accuracy. Our study elucidated the regulatory 
mechanism of circRNA in lung adenocarcinoma, and the nomogram model also provided insight for 
the clinical analysis of lung adenocarcinoma. 

Keywords: lung adenocarcinoma; circular RNA; competitive endogenous network; nomogram model; 
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1. Introduction 

There are many kinds of malignant tumors, but lung cancer is the most common one. It mainly 
causes cancer morbidity and death, causing 18.4% of the cancer deaths [1]. There are many types of 
lung cancer, of which lung adenocarcinoma (LUAD) is the most common, which is often caused by 
tumor cell driven oncogene aberrations [2]. Notably, the incidence rate of LUAD significantly raised 
and it constituted nearly 40% of the incidence of all lung malignancies [3]. Although experts have 
made headway in therapy and diagnosis, the survival rate in 5 years of patients with LUAD is less 
than 20% due to its complex mechanism [4]. Therefore, understanding the potential regulatory 
mechanism of LUAD, looking for new biomarkers and establishing an effective prognostic nomogram 
model are essential for the prognosis and treatment of LUAD. 

In 2011, Salmmena et al. put forward the hypothesis of competitive endogenous RNA (ceRNA), 
believing that noncoding RNA could indirectly regulate mRNA expression by competitively binding 
miRNA [5]. CircRNA is a new noncoding RNA molecule with complete closed-cycle structure [6]. 
Unlike linear RNAs that are terminated with 5’ caps and 3’ tails, circRNA is not affected by RNA 
exonuclease and its expression is more stable [7]. Studies have shown that circRNA could affect the 
generation and evolution of tumors. For example, studies have reported that circRNA plays a pivotal 
role in the pathogenesis of lung cancer and hold important clinical relevance [8]. CircRNA can 
participate in the proliferation, invasion, metastasis and apoptosis of gastric cancer [9]. CircRNA 
expression has an extensive effect on the biological behavior of hepatocellular carcinoma [10]. 
Numerous researches have indicated that circRNA is enriched and stable in exosomes and can be taken 
as biomarkers of cancer [11–13]. Recently, it has been found that circRNA is abundant in miRNA 
connection sites and can play the part of miRNA sponges, which makes circRNA become hot point in 
research of ceRNA family. CircRNA can indirectly influence the steadiness or translation of targeted 
mRNA by the way of competing with miRNA, thereby regulating gene expression [14]. For example, 
CiRS-7 could promote the metastasis and development of oral squamous cell carcinoma through the 
RAF-1/PIK3CD pathway [15]; circRNA hsa_circ_0012673 promoted the proliferation of lung 
adenocarcinoma by interacting with miR-22 [16]. Circ_0001588 promoted the malignant progression 
of lung adenocarcinoma by binding miR-524-3p to /NACC1 signaling [17]. Previous studies have 
reported the possible existence of ceRNA network in LUAD. For example, Liang et al. constructed 
ceRNA network associated with hsa_circ_0072088 and has_circ_0008274 [18]; Liu et al. suggested 
that hsa_circ_0005962 and hsa_circ_0086414 might be biomarkers of LUAD [19]. However, the 
research on circRNA and its ceRNA network in lung adenocarcinoma is still insufficient. Many 
circRNAs and related ceRNA network still need to be discovered. 

In present study, circRNAs, miRNAs and mRNAs with abnormally expression in cancer and 
normal samples were extracted by differential analysis. Then, by pairwise predicting, a circRNA-
miRNA-mRNA network was structured. The GO and KEGG enrichment analysis were carried out to 
understand the latent biological functions of mRNAs. Hub gene was screened by MCODE from PPI 
network. Verified by survival analysis, circRNA-miRNA-hub gene subnetwork was structured. Cox 
regression analysis was used to filter factors related to survival rate of LUAD. With the prognostic 
factors, a prognostic nomogram model for patients with LUAD was constructed and verified.  



9808 

Mathematical Biosciences and Engineering  Volume 18, Issue 6, 9806-9821. 
 

2. Materials and methods 

2.1. Data collection 

CircRNA data of LUAD were acquired from the Gene Expression Omnibus (GEO, 
https://www.ncbi.nlm.nih.gov/geo/), and two datasets GSE101586 (5 cancerous samples, 5 normal 
samples) and GSE101684 (4 cancerous samples, 4 normal samples) were selected. The expression 
matrices of the two datasets were combined by taking the intersection with respect to the name of 
circRNAs. The Combat function in the sva package was used to eliminate the batch effects according 
to the number of samples in the control group and the experimental group in the two datasets. The 
Cancer Genome Atlas (TCGA) database (https://xenabrowser.net, updated by the end of April, 2020) 
is a database for acquiring gene expression data where we obtained miRNA expression data (518 
cancerous samples, 46 normal samples) and mRNA expression data (526 cancerous samples, 59 
normal samples). Clinical data (age, gender, stage, T, N, OS time and OS) were also download from 
TCGA database (513 patient samples). A total of 483 patient samples were retained after deleting the 
samples with missing clinical characteristics. 

2.2. Differential expression analysis of three kinds of RNA  

Based on the combined dataset after batch effect normalization, the expression file of circRNA 
were further analyzed to obtain differentially expressed circRNA (DEcircRNA) by using the limma 
package. The screening thresholds were P < 0.01 and |log2FC| > 2. The differentially expressed 
miRNAs (DEmiRNAs) and differentially expressed mRNAs (DEmRNAs) were screened through the 
edgeR package. The screening thresholds were False-Discovery Rate < 0.05 and |log2(FC)| > 2.  

2.3. Construction of circRNA-associated ceRNA network 

Cancer-Specific CircRNA Database (CSCD) [20] (http://gb.whu.edu.cn/CSCD/) is a database for 
studying of tumor specific circRNA, from which we can predict the target miRNA of circRNA. The 
predicted miRNA and DEmiRNA were crossed, and the ceRNA network was constructed using the 
miRNA shared by the two datasets. 

Using miRTarbase [21] (http://mirtarbase.mbc.nctu.edu.tw/) and Targetscan [22] 
(http://www.targetscan.org/) to collect the target mRNA of miRNA. Only mRNAs that existed in two 
databases were finally selected. The predicted mRNA and DEmRNA were crossed, and the ceRNA 
network was constructed using the mRNA shared by the two datasets. 

Finally, the ceRNA network associated with circRNA was identified through the miRNA-
circRNA and miRNA-mRNA relationship pairs. The ceRNA regulatory network was visualized by 
Cytoscape 3.7.0 software (http://www.cytoscape.org/) [23]. 

2.4. Functional enrichment analysis of mRNAs 

For exploring the latent biological mechanism and functions of mRNAs in the ceRNA network, 
the DAVID database [24,25] (https://david.ncifcrf.gov/)was used to perform GO function enrichment 
analysis and KEGG pathway enrichment analysis. The results of enrichment analysis were visualized 
by ggpolt2 R package. 
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2.5. Construction of PPI network and screening of hub genes 

To further study the interaction among mRNAs in the ceRNA network, PPI network was analyzed 
by Search Tool for the Retrieval of Interacting Genes [26] (STRING, version 11, https://string-db.org/) 
database. The STRING database has a combined score for each PPI relationship pair that is distributed 
between 0 and 1. The higher the total score, the more reliable the PPI relationship. In current study, we 
chose combined score greater than 0.9 as the threshold. Then, the Molecular Complex Detection 
(MCODE), a clustering algorithm identifying densely connected regions of a molecular interaction 
network [27], was used to screen modules of hub genes from the PPI network. 

2.6. Survival analysis of hub genes 

GEPIA [28] (http://gepia.cancer-pku.cn/) integrated gene expression data from GTEX and TCGA 
projects which can be used for multiple data analysis and visualization. The prognostic value of hub 
genes in LUAD were analyzed by survival analysis tool in GEPIA. UALCAN 
(http://ualcan.path.uab.edu/index.html ) [29] is a web resource for analyzing cancer transcriptome data 
based on TCGA database, which can perform biomarker identification, expression spectrum analysis, 
survival analysis and so on. To ensure the accuracy of the results, we further verified the prognostic 
value of hub gene in TCGA (through the survival analysis package in R software) and the UALCAN 
database. Then, based on the hub genes with prognostic value, circRNA-miRNA-hub gene subnetwork 
was identified to explore important regulatory module in the ceRNA network. 

2.7. Screening of prognostic factors by Cox regression analysis 

According to the proportion of 7:3, all LUAD samples were randomly chopped into train set and 
validation set. Fisher exact test and wilcox test were used to test whether there was significant 
difference between two datasets. Univariate Cox regression analysis of the train set was performed 
using Survival package of R software to identify the factors significantly associated with the survival 
of LUAD. In the univariate Cox analysis, the factors with p value < 0.05 were further included in 
multivariate Cox regression analysis. Multivariate Cox regression analysis was used to screen 
independent prognostic factors, and hazard ratio (HRS) and regression coefficient were calculated. 

2.8. Construction and validation of nomogram model 

Based on the prognostic factors, the nomogram model was established by rms package of R 
software. In the nomogram model, we first set the scoring standard according to the regression 
coefficient of each influence factor, and then give the score value of each influence factor, thereby 
calculating the total score of each patient [30]. Finally, the conversion between the probability of 
occurrence and the total score is calculated by a function to evaluate the 1-year, 3-year and 5-year OS 
of LUAD patients. The ROC curves of train set and validation set were drawn by survivalROC package, 
and the differentiation of the model was assessed by calculating the area under ROC curve (AUC). 
Calibration chart of train set and validation set was used to evaluate the calibration degree of the model 
by comparing the difference between prediction probability and survival probability of nomogram 
model. Considering the median of the total scores as the cut-off value, the LUAD samples were divided 
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into high risk group and low risk group. Then, we analyzed the evaluation ability of the model for high 
risk and low risk populations through survival analysis. 

3. Results 

3.1. Differential expression analysis of three kinds of RNA 

A total of 10 DEcircRNAs were obtained in the merged dataset (4 up-regulated, 6 down-
regulated). From the TCGA database, 98 DEmiRNAs (79 up-regulated, 19 down-regulated) and 2497 
DEmRNAs (1983 up-regulated, 514 down-regulated) were screened. 

3.2. Construction of circRNA-associated ceRNA network 

The CSCD database was utilized to find targeted miRNAs of 10 DEcircRNAs. 466 circRNA-
miRNA relationship pairs (9 circRNAs, 423 miRNAs) were acquired. After crossing with 98 
DEmiRNAs, 19 circRNA-miRNA relationship pairs (7 circRNAs, 13 miRNAs) were identified. 13 
miRNA-related mRNAs were collected by miRTabase and Targetscan. The results of the two databases 
were intersected, 2532 miRNA-mRNA relationship pairs were obtained. After crossing with 2497 
DEmRNAs, 177 miRNA-mRNA relationship pairs (13 miRNAs, 147 mRNAs) were acquired. 
Through the final circRNA-miRNA and miRNA-mRNA relationship pairs, the circRNA-miRNA-
mRNA regulatory network was determined，including 7 circRNAs, 13 miRNAs and 147 mRNAs 
(Supplementary Table 1). Ultimately, the ceRNA regulatory network was drew by Cytoscape software 
(Figure 1). 

 

Figure 1. The ceRNA network of 7 circRNAs, 13miRNAs and 147 mRNAs. The red 
represents circRNA, yellow represents miRNAs, and purple represents mRNAs. 
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Figure 2. KEGG and GO enrichment analysis of 147 mRNAs. 

3.3. Enrichment analysis of mRNAs 

GO and KEGG analysis were applied to explore the functions of the 147 mRNAs. KEGG 
enrichment analysis identified 4 KEGG pathways and GO enrichment analysis identified 58 GO Terms. 
The results of 4 KEGG pathways and top 15 Go terms (5 biological processes, 5 cell components and 5 
molecular functions) were shown in Figure 2. As can be known from Figure 2 that the most enriched 
KEGG pathway terms were correlated with ECM-receptor interaction, cell cycle, protein digestion and 
absorption and p53 signaling pathway. The most enriched GO terms were correlated with single-
stranded DNA binding, ATP binding, sequence-specific DNA binding, protein kinase activity, 
extracellular matrix structural constituent, caveola, apical plasma membrane, collagen trimer, midbody, 
chromosome and centromeric region, cartilage development involved in endochondral bone 
morphogenesis, cholesterol homeostasis, cell division, mitotic nuclear division and skeletal system 
development. 

3.4. Construction of PPI network and screening of hub genes 

To further explore the relationship among mRNAs, PPI network was constructed by Cytoscape 
software which contained 39 nodes and 230 edges. A total of 12 hub genes (BIRC5, MKI67, CENPF, 
AURKA, KIF23, RRM2, BUB1, MELK, CEP55, CDK1, NEK2 and TOP2A) were screened by 
MCODE plugin from the PPI network (Figure 3). 
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Figure 3. PPI network diagram of 147 mRNA. 

 

Figure 4. Survival analysis of 12 hub genes.  

3.5. Survival analysis of 10 hub genes 

GEPIA analysis results showed that 12 hub genes were closely related with the survival of lung 
adenocarcinoma (Figure 4). The survival analysis result of R based on TCGA dataset indicated that 11 
genes were significantly correlated with the survival of LUAD, except for AURKA (Supplementary 
Figure 1). The result of survival analysis in UACLAN database indicated that 11 genes were 
significantly associated with the survival of LUAD, except for KIF23 (Supplementary Figure 2). 
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Therefore, 10 genes (BIRC5, MKI67, CENPF, RRM2, BUB1, MELK, CEP55, CDK1, NEK2 and 
TOP2A) in the intersection of the three methods were considered as important prognostic genes for 
the survival of the patients with LUAD. Based on the 10 hub genes, we built circRNA-miRNA-hub 
gene regulation subnetwork (Figure 5). 

 

Figure 5. CircRNA-miRNA-hub gene regulation network. 

3.6. Screening of prognostic factors by Cox regression analysis 

The clinical characteristics and test result of LUAD samples were shown in Table1.The two 
datasets were not obviously different because all P values were greater than 0.05. The Cox regression 
analysis results of train set were shown in Table 2. Univariate analysis showed that the P values of 
stage, T and 9 hub genes（except for AURKA） were all less than 0.05, indicating that these variables 
were connected with the survival of LUAD patients. Then, we incorporated these variables into the 
multivariate Cox analysis and the result suggested that stage, T and CDK1 were statistically significant 
(P < 0.05), which implied these variables were independent prognostic factors. 

Table 1. Clinical characteristics and test results of LUAD included in this study 

Variables Level 
Patients 
(N = 483) 

Train set 
(N = 338) 

Validation set 
(N = 145) 

P 

Age (%) <= 65 236 (48.9) 168 (49.7) 68(46.9) 0.62 
 > 65 247 (51.1) 170 (50.3) 77 (53.1)  
Sex (%) female 225 (46.6) 159 (47.0) 72(49.5) 0.426 
 male 258 (53.4) 179 (53.0) 73 (50.3)  
Stage (%) Stage i 265 (54.9) 185 (54.7) 67(53.7) 0.124 
 Stage ii 118 (24.4) 187 (55.3) 41 (28.3)  
 Stage iii 79 (16.4) 77 (22.8) 24 (16.6)  
 Stage iv 21 (4.3) 55 (16.3) 2 (1.4)  
T (%) T1 164 (34.0) 19 (5.6) 50(34.4) 0.142 
 T2 257 (53.2) 114 (33.7) 81 (55.9)  
 T3 45 (9.3) 176 (52.1) 13 (9.0)  
 T4 17 (3.5) 32 (9.5) 1 (0.7)  
N (%) N0 323 (66.9) 16 (4.7) 92(63.4) 0.56 
 N1 90 (18.6) 231 (68.3) 30 (20.7)  
 N2 + N3 70 (14.5) 60 (17.8) 23 (15.9)  
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Table 2. Univariate and multivariate Cox regression analysis results of train set. 

Variables 
Univariate Multivariate 

HR (95%CI) P HR (95%CI) P 

Age (<= 65/> 65) 1.010 (0.708–1.441) 0.956   
Sex(male/female) 0.819 (0.574–1.168) 0.27   
Stage i 1  1  
Stage ii 2.195 (1.399–3.445) 0.001 1.675 (0.800–3.508) 0.172 
Stage iii 3.380 (2.149–5.317) < 0.001 2.934 (0.949–9.065) 0.061 
Stage iv 3.417 (1.765–6.618) < 0.001 2.844 (1.221–6.621) 0.015 
T1 1  1  
T2 4.379 (2.179–8.801） 0.098 1.107 (0.694–1.766) 0.669 
T3 2.263 (1.485–3.448) < 0.001 2.215 (1.030–4.765) 0.042 
T4 2.474 (1.564–3.914) < 0.001 1.512 (0.659–3.469) 0.330 
N0 1  1  
N1 2.263 (1.485–3.448) < 0.001 1.506 (0.746–3.043) 0.254 
N2 + N3 2.474 (1.564–3.914) < 0.001 0.941 (0.335–2.640) 0.907 
BIRC5 1.146 (1.019–1.289) 0.022 0.724 (0.501–1.045) 0.084 
MKI67 1.200 (1.051–1.371) 0.007 1.155 (0.719–1.854) 0.552 
CENPF 1.167 (1.025–1.329) 0.019 1.140 (0.767–1.696) 0.517 
RRM2 1.23 (1.079–1.403) 0.002 0.763 (0.462–1.260) 0.290 
BUB1 1.182 (1.035–1.350) 0.013 0.963 (0.675–1.373) 0.834 
MELK 1.168 (1.039–1.313) 0.009 0.804 (0.504–1.284) 0.361 
CEP55 1.198 (1.053–1.363) 0.006 1.786 (1.088–2.930) 0.022 
CDK1 1.246 (1.078–1.439) 0.003 1.218 (0.793–1.871) 0.368 
NEK2 1.193 (1.055–1.348) 0.005 1.060 (0.685–1.642) 0.794 

TOP2A 1.12 (0.993–1.263) 0.065   

3.7. Establishment and verification of nomogram model 

On the basis of 3 prognostic factors (stage, T and CDK1), a prognostic nomogram model (Figure 6) 
was constructed to study the 1-year, 3-year and 5-year survival rates of LUAD. In the ROC curve of 
the train set (Figure 7A), the AUC value of the 1-year, 3-year and 5-year were 0.739, 0.727 and 0.665, 
respectively. While in that of validation set (Figure 7B), the AUC value of the 1 year, 3 year and 5 year 
were 0.693, 0.625 and 0.677, respectively. The results showed that the model had good discrimination. 
The calibration charts in train set and validation set (Figure 8) did not deviate from the ideal line. The 
KM survival curves (Figure 7C,D) in train set and validation set showed that the survival rate of the 
high risk group is obviously lower than that of the low risk group, which further verified the validity 
and applicability of the model. 
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Figure 6. Nomogram models for predicting 1-year, 3-year, and 5-year overall survival 
rates with LUAD. 

 

Figure 7. ROC curve (A)train set (B) validation set. The survival analysis curve of the 
high risk group and the low risk group (C) train set (D) validation set. 
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Figure 8. (A, B, C) calibration charts of 1-year, 3-year and 5-year survival rates in train 
set, (D, E, F) calibration charts of 1-year, 3-year and 5-year survival rates in validation set. 

4. Discussion 

Previous studies have shown that circular RNA could be used as biomarker of cancer, and could 
promote the invasion, immigration and propagation of tumor cells through regulatory mechanisms. In 
the current study, 10 circRNAs were extracted by differential analysis. Through the mutual analysis of 
various databases, a ceRNA regulatory network containing 7 circRNAs, 13 miRNAs, and 147 mRNAs 
was finally constructed. The 7 circRNAs were hsa_circ_0043278, hsa_circ_0043256, 
hsa_circ_0000026, hsa_circ_0082950, hsa_circ_0004592, hsa_circ_0020390, hsa_circ_0019390. 
Studies have confirmed that hsa_circ_0043278 (alias circTADA2A) could promote the proliferation 
and migration of non-small cell lung cancer cells by regulating the miR 638/KIAA0101 signaling 
pathway [31]; propofol could inhibit canceration of lung cancer cells through 
hsa_circ_0043278/miR-455-3p/FOXM1 axis [32]. Meanwhile, hsa_circ_0043278 has also been 
confirmed by experiments to play a key role in breast cancer and glioma. [33,34]. In addition, studies 
have reported that hsa_circ_0043256/miR-1252/ITCH axis might suppress Wnt /b-catenin pathway 
activities, resulting in apoptosis of non-small cell lung cancer [35]; hsa_circ_0000026(alias circ-
EIF4G3) could promoted the proliferation and migration of gastric cancer via sponging miR-335[36]. 
Studies have also shown that hsa_circ_0020390 (alias Circ_DOCK1) could inhibit the growth and 
metastasis of colorectal cancer cells and increase cell apoptosis by regulating the miR-132-3p/USP11 
axis [37]. However, hsa_circ_0004592, hsa_circ_0082950 and hsa_circ_0019390 have not been 
reported yet. Therefore, these identified circRNAs may be important circRNAs for lung adenocarcinoma. 
Hopefully these circRNAs could be further verified by biological experiments in future. 

MiRNA is a type of single-stranded RNA molecule encoded by endogenous genes. It is known 
that miRNA could regulate the expression of target genes by interacting with them [38]. In this study, 
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we found 13 miRNAs through the ceRNA network. Most of these miRNAs have been shown to be 
involved in the progression of lung adenocarcinoma, non-small cell lung cancer or lung cancer. For 
example, overexpression of miR-183-5p might play an oncogenic role in LUAD through involvement 
in the regulatory networks of its target genes [39]；miR-3607 promoted LUAD proliferation by 
inhibiting APC expression [40]; miR-767-3p could inhibit growth and migration of LUAD cells by 
regulating CLDN18 [41]; miR-708 participated in tumor growth and disease progression as a tumor 
gene by directly down regulating Wnt signaling pathway in lung cancer [42]; miR-605 inhibited the 
oncogenicity of non-small-cell lung cancer by directly targeting Forkhead Box P1 [43]; miR-503 
inhibited non-small-cell lung cancer by targeting PDK1/PI3K/AKT pathway [44]; LncRNA HCG11 
inhibited cell viability, migration and invasion in non-small-cell lung cancer by functioning as a 
ceRNA of miR-522-3p to upregulate SOCS5 [45]; Circular RNA circ-RAD23B promoted cell growth 
and invasion by miR-653-5p/TIAM1 pathways in non-small-cell lung cancer [46]; miR-205 could act 
as a promising biomarker in the diagnosis and prognosis of lung cancer [47]; miR-1911-3p could 
interact with the targeted mEAK-7 to inhibit mTOR signal transduction in human lung cancer cells [48]. 

The GO and KEGG analysis results suggested that these selected mRNAs in the ceRNA network 
were significantly enriched in biological functions and pathways related to LUAD. For example, 
Chromatin patterns were associated with lung adenocarcinoma progression [49]; the score of cell cycle 
progression could be used as a marker of specific death risk in patients with LUAD [50]; UBE2T could 
promote autophagy via the p53/AMPK/mTOR signaling pathway in lung adenocarcinoma [51]; ATP 
binding cassette E1 could enhance viability and invasiveness of lung adenocarcinoma cells in vitro [52]; 
inhibitor of DNA-binding protein 4 could suppress LUAD metastasis through the regulation of 
epithelial mesenchymal transition [53]. 

5. Conclusions 

In this study, we found the important circRNAs in LUAD, constructed the ceRNA regulatory 
network and discovered important regulatory modules, which provided potential curative targets and 
molecular mechanisms for LUAD. Meanwhile, a nomogram model was established to forecast the 
survival of LUAD, which will be helpful to the prognosis and therapy of LUAD patients. 
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