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Abstract: By February 2021, the overall impact of the COVID-19 pandemic in India had been 

relatively mild in terms of total reported cases and deaths. Surprisingly, the second wave in early 

April becomes devastating and attracts worldwide attention. Multiple factors (e.g., Delta variants 

with increased transmissibility) could have driven the rapid growth of the epidemic in India and led 

to a large number of deaths within a short period. We aim to reconstruct the transmission rate, 

estimate the infection fatality rate and forecast the epidemic size. We download the reported 

COVID-19 mortality data in India and formulate a simple mathematical model with a flexible 

transmission rate. We use iterated filtering to fit our model to deaths data. We forecast the infection 

attack rate in a month ahead. Our model simulation matched the reported deaths well and is 

reasonably close to the results of the serological study. We forecast that the infection attack rate (IAR) 

could have reached 43% by July 24, 2021, under the current trend. Our estimated infection fatality 

rate is about 0.07%. Under the current trend, the IAR will likely reach a level of 43% by July 24, 

2021. Our estimated infection fatality rate appears unusually low, which could be due to a low case 

to infection ratio reported in previous study. Our approach is readily applicable in other countries and 

with other types of data (e.g., excess deaths). 
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1. Introduction  

The COVID-19 pandemic has lasted for more than 1.5 years now. The severity of the impact of 

COVID-19 varied wildly across nations [1]. While the pandemic started to slow down in most 

developed countries due to the combined effects of high infection attack rate and high vaccination 

coverage, the impact in India had been mild in terms of the total number of deaths and cases per 

capita, until April 2021. An ongoing second wave of the COVID-19 devastates India ‘unexpectedly’ 

since early April 2021. 

The unfold of the COVID-19 in India is as follows. On January 30, 2020, the first case of 

COVID-19 was reported in Thrissur, India [2]. On March 12, 2020, the first COVID-19 fatality in 

India was reported [3]. On March 31, 2020, a Tablighi Jamaat religious congregation event in Delhi 

resulted in a quarantine of 22,000 people. In March 2020, the cluster-containment campaign was 

carried out. However, by March 15, 2020, only 10% of the testing capacity had been used per day in 

India. By early July 2020 [4], the seroprevalence reached 57% or 16% among inhabitants in three 

slums or other areas of Mumbai, which is the commercial capital of India. These high infection 

attack rates (IAR, the proportion of the population got infected) caught wide media attention. A 

supermodel for COVID-19 progression developed by a government-appointed committee [5] 

estimated that the COVID-19 (first wave) peaked in October 2020 and it would be under control by 

February 2021. Unexpectedly, a new variant, named Lineage B.1.617 (later as Delta variant for 

sub-lineage B.1.617.2), was detected in India in October 2020 [6,7] and is blamed as one of the 

factors for the second wave. In October 2020, B.1.617.3 (the first subline-age of this variant) was 

first detected in India. Subsequently, B.1.617.1 and B.1.617.2 were detected in December 2020 [8]. 

From February 2021, new cases of B.1.617 increase rapidly in India [6]. From the global initiative on 

sharing all influenza databases [9], B.1.617 contributed to 63.6% infections of COVID-19 in India in 

April 2021. 

The early stage of COVID-19 epidemic mitigation in India was promising. As reported in [10], 

it had the highest number of daily tests in the world by the third quarter of the year 2020, although 

the cases and deaths per capita are not particularly high. The vaccination program was also initiated 

on 16 January 2021. By February 2021, the confirmed cases of COVID-19 had dropped to 9,000 

people per day. However, the pandemic changed dramatically thereafter. A major second wave of the 

COVID-19 emerged in India in early April 2021. By the end of April, an average of 300,000 daily 

new cases and 2000 daily deaths were reported. Multiple factors (e.g., Delta variant) could have 

caused the rapid expansion of the epidemic in India and caused a large number of deaths [11,12]. As 

of May 3, 2021, nearly 20 million confirmed cases and 218,959 deaths were reported in total. During 

the period of the second wave in India, test positivity has increased dramatically from 2% on March 

1 to 22% on May 1. 

Through serological surveys, the sero-prevalence among people ten years or older was 

estimated at 6.6% and a cumulative 74.3 million people had been infected with COVID-19 by August 

2020 [13]. However, only 3,621,245 cases and 64,469 deaths were reported by August 2020 [10]. A 

survey [14] conducted by the Indian Council of Medical Research (ICMR) found that 21.4% of 

28,589 surveyed people above 18 years old had been infected by Feb. 4, 2021. These serological 

studies found a much higher IAR than reported cases, namely a very low ascertainment rate or 

infection to case ratio. Therefore, one needs to take into account these serological studies into 

modelling to yield reasonable IAR estimation and useful forecast for pandemic mitigation. 

Mathematical modelling can be successfully used to explain and predict the spread of infectious 
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diseases [15,16]. In this work, we adopt a simple compartmental epidemic model. The model 

assumes a time-dependent transmission rate due to the changes in human behavior and the 

implementation of control measures. Thus, models for forecast need to incorporate time-varying 

transmission rates. Other epidemic parameters, including the generation interval, the reporting rate, 

and the infection fatality rate may vary as well. But for the sake of simplicity of the model and 

identification issues (the change might not be identified via such model fitting), we focus on the 

time-varying transmission rate and assume other parameters to be constant. 

2. Materials and methods 

We download daily reported COVID-19 cases and deaths from [10]. To have a better 

understanding of the historical seasonality of respiratory diseases, we also download weekly reported 

influenza cases from [17]. We adopt a susceptible-exposed-infectious-hospitalized-death-recovered 

(SEIHDR) model with a time-varying transmission rate:  

�̇� = −
𝛽𝑆𝐼

𝑁
, 

�̇� =
𝛽𝑆𝐼

𝑁
− 𝜎𝐸, 

𝐼̇ = 𝜎𝐸 − 𝛾𝐼, 

�̇� = 𝜃𝛾𝐼 − 𝜅𝐻, 

�̇� = 𝜋𝜅𝐻, 

�̇� = (1 − 𝜃)𝛾𝐼 + (1 − 𝜋)𝜅𝐻. 

Here, the compartments S, E, I, H, D, and R denote susceptible, exposed, infectious, hospitalized 

(including severe case but not hospitalized), total death, and recovered individuals, respectively. Here 

we used ‘hospitalized’ to denote a medium class (e.g., severe cases) that has a probability to die. This 

medium class serves as a delay class to account for the delay from loss of infection to death. 

Parameter 𝛽(𝑡) is the transmission rate, 𝜎  is the infectiousness emergence rate, 𝛾  is the 

infectiousness disappearance rate,κ is the removed rate. We set 𝜎, 𝛾 and 𝜅 at 0.5 per day, 1/3 per 

day and 1/14 per day, respectively, such that the mean latent period, infectious period, and mean 

delay from loss of infection to death are 2 days, 3 days, 14 days (i.e., reciprocal of the rate, these are 

theoretical values when the time step size is infinitely small. In practice when the time step in 

integration is 1 day, the three durations are slightly longer than 2 days, 3 days, and 14 days). These 

are in line with observations [18–21]. The choice of 𝜎 and 𝛾 are due to the restriction that the sum 

of the mean latent period and the mean infection period equals the mean generation time, which is about 

5 days [22]. 𝜃 is the ratio of H cases out of all infected cases and 𝜋 is the proportion of deaths out 

of H cases. All parameters are constant except 𝛽(𝑡) being time-varying. Since we did not fit the 

model to the daily hospitalized cases, the exact definition of H class is not relevant (which is a 

medium class to take into account the delay between loss of infectiousness to death). We consider 

that 𝜃 ≪ 1 and 𝜋 ≪ 1. The product 𝜋𝜃 equals the infection fatality rate. These two cannot be 

disentangled with purely death data and without additional reliable data (e.g., hospitalization). Thus, 

we fix 𝜋 at 0.01 and estimate 𝜃. The result is insensitive to the value choice of 𝜋. Our main model 

includes a latent period. However, for the sensitivity analysis, we also test a model with a longer 
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infectious period at 5 days but no latent period, thus the generation time is still 5 days. 

Based on previous works [23–25], we set 𝛽(𝑡) = exp(cubic spline with 𝑛𝑚 nodes), i.e., an 

exponential cubic spline with nm nodes evenly distributed over the study period. Using standard 

model selection technique, we found 𝑛𝑚=9 attains the smallest the second-order Akaike Information 

Criterion (AICc). Thus 𝑛𝑚=9 is used in this work. The time step size is one day and 𝐷𝑡 is the daily 

number of deaths. The reported deaths were defined as 𝐶𝑡 
with 

𝐶𝑡~NegativeBinomial(mean = 𝐷𝑡 , variance = 𝐷𝑡( 1 + 𝜏 𝐷𝑡)). 

Here, the parameter 𝜏 denotes the overdispersion and accounts for the measurement noise due to 

surveillance and heterogeneity among individuals. 

The basic reproductive number ℛ0(𝑡) = 𝛽(𝑡)/𝛾 is a function of time. We fit the model to 

reported deaths with state-of-the-art iterated filtering [26,27], and assume that death report is 

relatively insensitive to testing policy, testing effort, and testing availability. Although an even better way 

would be to use the excess deaths [28], our modelling approach is readily applicable to excess deaths. 

We download daily death data in India from the World Health Organization website for the 

period from March 12, 2020, to July 24, 2021. We divide the time interval of data into two parts: the 

part before May 15, 2021 is called the training part, and the pat after May 15, 2021 is called the 

testing part. We fit our model to the whole time series (including both training and testing parts), but 

we set the testing part to be N.A. (not applicable). This operation will force the log-likelihood 

contribution from the testing part to be zero. Namely, the testing part data play no role in the fitting. 

For sensitivity analysis, we test the cut-off date at May 25, 2021, instead of May 15, 2021. 

Our cubic spline spans over whole time interval of data (both training part and forecast part). 

Thus, the transmission rate over the training part is estimated from the data, the transmission rate 

over the forecast part is a natural extension of that over the training part. We can simulate our model 

and yield both the training part and the testing part (ie, the forecast part), since we have the initial 

state (end state of the training part) and transmission rate (natural extension) for the forecast part. 

Occasionally, there are abrupt data points that may be due to retrospective checking of late 

reported deaths in previous days. Denote xi as the reported deaths on days 𝑖. If 𝑥𝑖 > 1.5(𝑥𝑖−1 +

50), we call 𝑥𝑖 abnormal data. We replace 𝑥𝑖 with 0.25(𝑥𝑖−3 + 𝑥𝑖−2 + 𝑥𝑖−1 + 𝑥𝑖), and allocate the 

extra deaths to all days proportional to their current value. This smoothing only affects five data 

points, therefore will not affect our fitting and forecast.  

3. Results 

Figure 1 plots daily reported COVID-19 cases and deaths in India, compared with reported daily 

(converted from weekly by simply divided by 7) influenza laboratory confirmation (mean level) in 

the previous five years and the current year. Influenza persisted yearly in the previous five years with 

peaks in March and April, which could be associated with religious holidays and/or large gatherings 

(e.g., elections). For instance, Holi (a popular ancient Hindu festival, also known as the Festival of 

Love) is on March 29, and Haridwar Kunbh Mela is celebrated in April 2021. At the same time, the 

elections in India in 2021 were held in April 2021. The cohort of these large gatherings and 

celebrations is a driving factor of the spread of COVID-19 and causes a dramatic increase of new 

cases and deaths in India. We show the raw case-fatality-ratio using the brown dashed curve. The raw 

case-fatality-ratio is defined as the ratio of cumulative COVID-19 deaths divided by the cumulative 

cases, where we ignore the delay between deaths reports and cases reports. The impact of vaccination 
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on the raw case-fatality-ratio at the population level is not yet evident. 

 

Figure 1. Reported daily Covid-19 cases and deaths in India, compared with reported 

mean daily (converted from weekly by simply divided by 7) influenza laboratory 

confirmations in the previous five years (green thin curve) and the current year (blue bold 

curve). Influenza persists through a year in the previous five years with a peaking in 

March-April, which could be associated with religious holidays and/or large gatherings 

(e.g., elections). The brown dashed curve indicates the raw case-fatality-ratio, i.e., 

cumulative deaths divided by cumulative cases (where we omitted the time delay 

between deaths and case reporting). 

In Figure 2, we compare the population standardized report of COVID-19 deaths in four 

countries. The daily death per capita in India is still at a relatively low level compared to the other 

three countries (Figure 2). However, from the beginning of April 2021, the rapid elevation of the 

second wave of COVID-19 in India is devastating with 300,000 daily new cases for 14 consecutive 

days and 3,000 daily deaths for 5 consecutive days. Such a dramatic increase in daily cases attracted 

worldwide attention and global concern. 

Figure 2 also shows that the vaccination coverage rate is low in India. The vaccination program 

was launched on January 16, 2021 in India, and 4 million doses per day were administered by April 

2021. However, the overall coverage of vaccines at the population level is still low. Thus, we omit 
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the effect of vaccination in our model. The effect of vaccination is to decrease the effective 

reproductive number by reducing the susceptible pool. Some states in India were unable to begin 

vaccination due to the shortage of vaccination supplies. The shortage of vaccination supplies could 

make the epidemic of COVID-19 in India even worse. 

 

Figure 2. Comparison of the population standardized report of Covid-19 deaths (black 

curve) in four countries and vaccination coverage, fully vaccination (i.e., two-doses for 

most vaccines or one-dose for Johnson and Johnson’s Janssen Vaccine, or one-dose after 

confirmed infection) per capita as blue circle, and vaccinated (both one dose and two 

dose) per capita as red circles. The vaccinated population (both partly and fully) in India 

reached 50% in September, 2021. But in our study period (see later), a training period 

before May 15, 2021, the vaccinated population on y reached 10.13%, thus we omit the 

vaccination impact in our model for simplicity. 

d
a

ily
 d

e
a

th
s
 p

e
r 

1
m

a United States

0

1

2

3

4

5

May Sep Jan May Sep
2021

0

0.2

0.4

0.6

0.8

1

v
a

c
c
in

e
 c

o
v
e

ra
g

e
 (

tw
o
 d

o
s
e

)

d
a

ily
 d

e
a

th
s
 p

e
r 

1
m

b India

0

1

2

3

4

5

May Sep Jan May Sep
2021

0

0.2

0.4

0.6

0.8

1

v
a

c
c
in

e
 c

o
v
e

ra
g

e
 (

tw
o
 d

o
s
e

)

reported COVID−19 deaths

partly+fully vaccinated

fully vaccinated

d
a

ily
 d

e
a
th

s
 p

e
r 

1
m

c Brazil

0

1

2

3

4

5

May Sep Jan May Sep
2021

0

0.2

0.4

0.6

0.8

1

v
a

c
c
in

e
 c

o
v
e

ra
g

e
 (

tw
o
 d

o
s
e

)

d
a

ily
 d

e
a
th

s
 p

e
r 

1
m

d Peru

0

1

2

3

4

5

May Sep Jan May Sep
2021

0

0.2

0.4

0.6

0.8

1

v
a

c
c
in

e
 c

o
v
e

ra
g

e
 (

tw
o
 d

o
s
e

)



9781 

Mathematical Biosciences and Engineering  Volume 18, Issue 6, 9775–9786. 

Figure 3 shows the fitting and forecast results in four scenarios: with a latent period (a,b) or 

without a latent period (c,d), cut-off at May 15, 2021 (a,c) vs cut-off at May 25, 2021. Our model 

simulation well matched the reported deaths in each scenario, although the later the cut-off, the better 

the forecast. We call the scenario in panel (b) our focal scenario. The reconstructed transmission rate 

(in the unit of ℛ0(t) = β(t)/γ, blue dashed curve) showed a decreasing trend in March-April 2020 

and a wave pattern in March-April 2021 with a peak on April 1, 2021. The daily reported deaths will 

peak around May 15, 2021. The infection attack rate reached43% by Jul 24, 2021, under the current 

trend. We showed the infection attack rate and the effective reproductive number over time in Figure 

4. The effective reproductive number is ℛ𝑒(𝑡) = ℛ0(𝑡)𝑆(𝑡). Our estimated IAR is about 10% by 

Feb 2021, which is lower than the estimates of the serological study of ICMR 21.4% [14]. However, 

our estimated IAR is about 5.4% by August 2020, which is close to the serological study of 6.6% [13]. 

 

Figure 3. Best fitting results with the maximum log-likelihood in four scenarios. Fitting 

an SEIHDR model in panels (a,b) or a reduced SIHDR without the latent period in panels 

(c,d) to the reported death in India with a flexible transmission rate. In panels (a,c), the 

cut-off date for training and testing parts is May 15, 2021. In panels (b,d), the cut-off date 

is May 25, 2021. The red circles (/blue diamonds) denote the training part (/ the testing 

part) of daily reported COVID-19 deaths. The black curve (/shaded region) denotes the 

median (/ the 95% range) of 1000 model simulations. The blue dashed curve denotes the 

reconstructed transmission rate in the unit of ℛ0(𝑡), which is different from the effective 

reproductive number ℛ𝑒(𝑡) , and the relationship between the two is ℛ𝑒(𝑡) =

ℛ𝑒(𝑡)𝑆(𝑡). The inset panel of (b) showed the profile of log-likelihood as a function of 

the infection fatality rate (including ratio due to under-reporting of deaths). 
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We note that the transmission rate (in terms of ℛ0(𝑡)) never reach 0.5 or below during the 

whole time before the second wave (most time around 1). In our fitting in Figure 3, we assume the 

lower bound of ℛ0(𝑡)) after May 2021, in the short term of the future, it is bounded by the lower 

bound before May 2021. The fact that before the second wave, the lower bound of ℛ0(t) was around 

1, reflected the stringent level (or compliance level) of control in India. Thus, it is probably 

unrealistic to expect ℛ0(t) may go to much lower than that in the short term of the future. 

The testing data (blue diamond in Figure 3) largely fall in the 95% CI of the simulation in all 

four scenarios, although the result in the focal scenario in Figure 3b is slightly better than the 

other three scenarios. 

We performed the sensitive analysis in Figures 3 and 4 by considering multiple scenarios. Our 

method is insensitive to the inclusion of a latent class. And slightly extending the training period 

improves the forecast performance. We provide more sensitive analysis (e.g., Partial rank correlation 

coefficients, PRCC, test in supplementary.). 

 

Figure 4. The reconstructed effective reproductive number (blue dashed curve) and 

infection attack rate (dark green solid curve) as functions of time. The shaded regions 

showed a 95% range of 1000 model simulations. These are the best results as in the four 

scenarios in Figure 3. 
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We proposed a simple model approach for modelling and forecasting the COVID-19 epidemic in 

India. The method can be readily applied to other countries. When the forecast part is relatively short, 

this method should work well. Hence, the reconstructed transmission rate naturally contains a part 

over the forecast period, which shows a decreasing trend in India. This decreasing trend mimics the 

Apr Jun Aug Oct Dec Feb Apr Jun

( a ) SEIHDR

effective reproductive number

infection attack rate

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
e
(t

)

0.0

0.2

0.4

0.6

IA
R

Apr Jun Aug Oct Dec Feb Apr Jun

( b ) SEIHDR

0.0

0.5

1.0

1.5

2.0

2.5

3.0
R

e
(t

)

0.0

0.2

0.4

0.6

IA
R

Apr Jun Aug Oct Dec Feb Apr Jun

( d ) SIHDR

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
e
(t

)

0.0

0.2

0.4

0.6

IA
R

Apr Jun Aug Oct Dec Feb Apr Jun

( c ) SIHDR

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
e
(t

)

0.0

0.2

0.4

0.6

IA
R



9783 

Mathematical Biosciences and Engineering  Volume 18, Issue 6, 9775–9786. 

decreasing trend in April 2020. This decreasing trend means that the current spreading of COVID-19 

in India has already started to slow down (e.g., on the second-order derivative). 

The objective of this study is to model and forecast the transmission of COVID-19 in India. The 

estimated infection attack rate (IAR) could reach 43% by July 24, 2021. Huang et al. [29] predicted 

that 33,470,999 (upper bound) confirmed cases would be reported by May 31, 2021, which means a 

2.4% infection attack rate (case/population). This is obviously low. If a 1/10 (or 1/20) reporting rate 

is considered, then the IAR becomes 24% (or 48%). This is largely reasonable. Namely, a reporting 

rate needs to be assumed. In our case, we explicitly modeled infection fatality rate (IFR) and 

assumed that the death data is relatively reliable. The estimated infection fatality rate is about 0.07%, 

which is significantly lower than a biologically reasonable level of 0.6%. For instance, Russell et al. [30] 

estimated an IFR of 0.6% in China. This implies that the COVID-19 death could be under-reported 

by a factor of 1/10 [31]. Thus, these estimates of IFR relied on the confidence of the COVID-19 death data. 

If death data are under-reported by a factor, then the IFR could be underestimated by the same factor. 

The long-term prediction is difficult, due to the ever-changing reality like human behavioral 

change and governmental action. Here we proposed a simple modeling approach. We assumed that 

the transmission rate in the forecast part is a natural extension of the training part. Both parts 

constitute a whole (exp-) cubic spline function. Ranjan et al. [32] estimated the peak for the second 

wave to occur in mid-May 2021 with a daily count exceeding 0.35 million. However, on April 30, 

2021, a total of 400,000 daily new cases and 3,500 daily deaths were reported, and there are 300,000 

daily new cases for 14 consecutive days and 3,000 daily deaths for 5 consecutive days. The 

prediction in [32] is apparently lower than reality. According to the seroprevalence results [6], 

Murhekar et al. [33] estimated a cumulative 74.3 million infections while 3,621,245 cases were 

reported in India by August 2020, i.e., a factor 1 to 20. Thus, under-reporting of COVID-19 death 

could have caused a low IFR estimate here. 

The strength of this work includes that we fit a simple model to the reported death which is 

believed insensitive to COVID-19 testing efforts compared to reported cases. Mild cases will less 

likely to be tested. Thus, fluctuation in the reported cases likely contains variation in testing efforts. 

We assume the transmission rate in the forecast period is a natural extension of that over the training 

part. Both the first and second derivatives are continuous in the transition point between training and 

forecast. This approach is novel. We compared our estimated IAR to the reported serological studies. 

To our knowledge, very few studies have done such a comparison. We argue that it is important that 

the model output is largely in line with the serological study at different time points. 

The limitation of this work includes: we assume all parameters are constant except for the 

transmission rate; the model is for the whole country while we ignore the heterogeneity across 

regions. We only relied on the reported data and adopted a non-mechanistic cubic spline function 

type of transmission rate. Alternatively, one could consider explicitly incorporating all kinds of 

control measures (e.g., google mobility matrix, etc.) We ignored the effects of vaccination since the 

coverage was low (by May 15, 2021, 10.13% was vaccinated at least one dose) in India by far. Our 

model can be extended to cover a longer period and a vaccination component can be added (see [34]). 

We argue that multiple factors drove the rapid growth of the second wave and caused a large 

number of deaths within a very short period in India. We found that the reproductive number has 

never been significantly lower than 1 in India which reflected that the stringent level (or compliance 

level) of control in India is less ideal. The fitting procedure is explained in method and more detail 

(with code) can be found in previous works [25,35]. In Figures 2 and 3, we showed the square root of 
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deaths (or deaths per million), thus one can see more clearly the detail in the troughs (i.e., small 

numbers) of the waves as well as the peaks (i.e., large numbers). 

Many serological studies found that a very large proportion of the population has been infected 

by early 2021, while the reported death per capita is low due to under-reporting, or other unknown 

mechanisms. One can easily see that the IFR is very low in India using the deaths toll divided by the 

estimates IAR through serological study. Banaji [36] found a lower bound IFR in Mumbai at 0.1% 

with consideration of excess deaths (additional to reported COVID-deaths), which is not very far 

from our estimates here. Here we lack excess death data. Actually, one does not need a model to 

reach this conclusion. Given the total deaths 428309, and the infection attack rate of 43% (which is 

in line or even lower than many serological studies), 428309/(1.4×109×0.43) = 0.071%. This means 

our estimate is consistent. Either other unknown mechanisms or severe under-reporting is responsible 

for this low IFR.  
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