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Abstract: A large number of epidemiological studies have confirmed that arteriosclerosis (AS) is 
a risk factor for abdominal aortic aneurysm (AAA). However, the relationship between AS and 
AAA remains controversial. The objective of this work is to better understand the association 
between the two diseases by identifying the co-differentially expressed genes under both 
pathological conditions, so as to identify potential genetic biomarkers and treatment targets for 
atherosclerosis-related aneurysms. Differentially-expressed genes (DEGs) shared by both AS and 
AAA patients were identified by bioinformatics analyses of Gene Expression Omnibus (GEO) 
datasets GSE100927 and GSE7084. These DEGs were then subjected to bioinformatic analyses of 
protein-protein interaction (PPI), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG). Finally, the identified hub genes were further validated by qRT-PCR in AS (n = 4), 
AAA (n = 4), and healthy (n = 4) individuals. Differential expression analysis revealed a total of 169 
and 37 genes that had increased and decreased expression levels, respectively, in both AS and AAA 
patients compared with healthy controls. The construction of a PPI network and key modules 
resulted in the identification of five hub genes (SPI1, TYROBP, TLR2, FCER1G, and MMP9) as 
candidate diagnostic biomarkers and treatment targets for patients with AS-related AAA. AS and 
AAA are indeed correlated; SPI1, TYROBP, TLR2, FCER1G and MMP9 genes are potential new 



9762 

Mathematical Biosciences and Engineering  Volume 18, Issue 6, 9761–9774. 

genetic biomarkers for AS-related AAA. 

Keywords: gene expression analysis; bioinformatics; biomarkers; therapeutic targets; arteriosclerosis-
related abdominal aortic aneurysm 
 

1. Introduction  

Abdominal aortic aneurysm (AAA) has a high prevalence in western countries and leads to a large 
number of cardiovascular deaths [1]. Aneurysm is defined as an increase in artery diameter by no less 
than 1.5 times. Aneurysm can appear in any part of arteries in the human body, with AAA being the 
most common subtype [2]. AAA will cause artery rupture and continuous bleeding, eventually leading 
to deaths. The mortality rate of AAA after artery rupture is 85~90% [3]. If the diameter of artery is 
more than 5.5 cm in AAA, surgery is usually performed to prevent artery rupture. AAA is a disease 
with complex pathological mechanisms, therefore, it is challenging to develop efficient therapeutic 
strategies to prevent or treat AAA [4]. Although several lines of evidence have suggested that AAA is 
a multi-gene and multi-factor disease, its pathogenesis is not completely clear [5].  
    The very association of arteriosclerosis (AS) and AAA may be up for debate. Previous studies 
have also indicated that arteriosclerosis (AS) is likely negatively associated with the growth of AAA 
but positively correlated with its presence [6–8]. It is widely believed that AAA is merely a 
consequence/manifestation of AS, but this notion is yet to be fully substantiated. Although 
revascularization and risk factor control methods are extensively utilized for the treatment of AS-
related AAA clinically, the disease is still the most common cause of death. Therefore, in the era of 
precision medicine, novel strategies are urgently needed to prevent and treat AS-related AAA. 
However, the biomarkers and therapeutic targets for AS and AAA are yet to be sufficiently explored. 
Besides, a comprehensive analysis of the associations between AS and AAA at the transcriptomic level 
is still lacking. 
    Herein, we utilized gene expression profiles retrieved from the Gene Expression Omnibus (GEO) 
database to identify differentially-expressed genes (DEGs) in both AS and AAA patients. The 
physiopathological functions of these DEGs were then characterized bioinformatically to discover 
novel diagnostic biomarkers and treatment targets for AS-related AAA. 

2. Materials and methods 

2.1. Artery specimen acquisition 

This research was supervised and supported by the research ethics committee of the Tianjin 
Medical University General Hospital. Moreover, this study was conducted in accordance with the 
declaration of Helsinki. The participants were granted informed consent prior to their enrollments in 
our study. Artery samples were collected from popliteal arteries of 4 AS and abdominal aortas of 4 
AAA patients treated with lower limb amputation and artificial vessel replacement, respectively. 
Normal artery specimens from visceral arteries of 4 healthy donors were also collected as controls. 
After arterial resection, total RNA was extracted from tissues rapidly frozen in liquid nitrogen. 
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2.2. Data sources 

Two GEO (https://www.ncbi.nlm.nih.gov/geo/) datasets, namely GSE100927 (deposited by 
Marja) and GSE7084 (deposited by Gerard) were employed in this research. The GSE100927 
dataset contains 104 samples, including 69 atherosclerotic peripheral artery samples and 35 control 
samples; while the GSE7084 dataset includes gene expression profiles of 15 abdominal aortas 
samples obtained from 7 AAA patients and 8 healthy controls. 

2.3. Differential expression analysis 

We utilized the “affy”, “affyPLM”, and “limma” packages in R (http://www.bioconduct 
or.org/packages/release/bioc/html/affy.html) [9] to analyze the GSE100927 and GSE7084 datasets. 
The data were background-adjusted, quantile-normalized, subjected to probe summarization, and 
log2 transformed, to generate a robust multi-array average (RMA) and log-transformed perfect 
match (PM) and mismatch (MM) probes. The initial p-values were adjusted by employing the 
Benjamini-Hochberg method, and fold changes (FCs) were computed on the basis of the false 
discovery rate (FDR). A gene was considered as a DEG if it had a |log2 FC| > 1 and an adjusted p 
value < 0.05. Subsequently, DEGs shared by the GSE100927 and GSE7084 datasets were isolated, 
based on which a Venn diagram was established using Venny 2.1 
(http://bioinfogp.cnb.csic.es/tools/venny/index.html). 

2.4. Functional annotations of the DEGs 

To annotate the functions of DEGs shared by the GSE100927 and GSE7084 datasets, we 
performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analyses on them using R. We also used the “clusterProfiler” software in R for gene 
set enrichment analysis (GSEA) [10]. All visualizations were processed by the “ggplot2” package 
in R. 

2.5. Module screening and hub gene identification based on the protein-protein interaction (PPI) network  

The comprehensive information of the hub proteins retrieved from STRING (https://string-
db.org/), an online database for the retrieval of inter-gene and inter-protein interactions, was utilized 
to establish a PPI network, which was visualized using the Cytoscape software (Version 3.7.2) [11]. 
Subsequently, most important modules within the PPI network were identified by the “Molecular 
Complex Detection (MCODE)” function of Cytoscape with the following identification criteria: an 
MCODE score of more than 5, degree and node score cutoff values of 2 and 0.2, respectively, and a 
maximum depth of 100. 
    Based on the cutoff criteria of degree computed by the “cytoHubba” function of Cytoscape, genes 
that played important roles in the PPI network were the hub genes. The DEGs were scored by the 12 
scoring methods of the “cytoHubba” function, and the top ten genes with the highest scores in each 
scoring method were registered. Based on the 12 ranking lists obtained, upset charts were constructed 
and the number of times that a gene was registered was counted. 
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2.6. Quantitative real-time polymerase chain reaction (qRT-PCR) 

We extracted total RNA from the above-mentioned artery samples using the TRIzol reagent 
(TransGen Biotech, China). The total RNA was then reversely transcribed into cDNA using a real-
time PCR mRNA detection kit (TIANGEN Biotech, China) before PCR amplification on a Roche 
Photorecycler 480 Real-time PCR system. The reaction consisted of the following steps: one step 
of 95˚C for 30 sec and 40 rounds of 95˚C for 5 sec and 60˚C for 20 sec. GAPDH was included as 
the internal reference. Relative transcript levels of target genes were determined by the 2-ΔΔCt 
method. The PCR primers were designed and synthesized by AoKe Dingsheng (Beijing, China) 
and their sequences are shown in Table 1. 

Table 1. Primer sequences for qRT-PCR. 

Gene Primer sequence (5′→3′) 

SPI1 F: GTGCCCTATGACACGGATCTA R: AGTCCCAGTAATGGTCGCTAT 

TYROBP F: ACTGAGACCGAGTCGCCTTAT R: ATACGGCCTCTGTGTGTTGAG 

TLR2 F: ATCCTCCAATCAGGCTTCTCT R: GGACAGGTCAAGGCTTTTTACA 

FCER1G F: AGCAGTGGTCTTGCTCTTACT R: TGCCTTTCGCACTTGGATCTT 

MMP9 F: TGTACCGCTATGGTTACACTCG R: GGCAGGGACAGTTGCTTCT 

GAPDH F: ATGGCTACAGCAACAGGGT R: TTATGGGGTCTGGGATGG 

2.7. Statistical analysis 

GraphPad Prism 8 was used to compare data from test and control samples. To analyze the clinical 
characteristics of AS patients, AAA patients and healthy controls, the quantitative data are expressed as 
means ± standard deviations (SDs). The Student’s t-test and Wilcoxon rank sum test were implemented for 
analysis of data as appropriate. P values less than 0.05 were indicative of statistical significance. All 
statistical analyses in this study were conducted with the SPSS 26.0 software (IBM, USA). 

3. Results 

3.1. DEGs identified in both GEO datasets 

Microarray data from both GEO datasets were normalized and subjected to principal 
component analysis (PCA) for evaluating differences in biological characteristics between samples 
(Figure 1A,B), thereby ensuring data accuracy. Genes with a |log2 FC| > 1 and an adjusted p value < 0.05 
were identified using the “Limma” package in R. Compared with controls, 324 and 477 
overexpressed and 113 and 370 underexpressed genes were identified in the peripheral artery samples 
of AS and AAA patients in the GSE100927 and GSE7084 datasets, respectively (Figure 2). The DEGs 
are also presented by volcano plots and heat maps shown in Figure 1C–F. The DEGs shared by the 
GSE100927 and GSE7084 datasets were exhibited by a Venn diagram (Figure 3A), including 169 
upregulated and 37 downregulated DEGs. 
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Figure 1. Identification of differentially expressed mRNAs analysis. Principal component 
analysis (PCA) graph in (A) GSE7084 and (B) GSE100927. Volcano plot of differentially 
expressed mRNAs in (C) GSE7084 and (D) GSE100927. The red dot represents 
upregulated mRNAs and the blue dot represents downregulated mRNAs. A heatmap of 85 
differentially expressed genes between (E) AAA patients and normal individuals, (F) AS 
patients and normal individuals. Red represents upregulated genes, and green represents 
downregulated genes. 
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Figure 2. Flow diagram of the study approach. mRNA microarray analyses were 
performed on aortic specimens obtained from GSE100927 (69 AS patients and 35 control 
group) and GSE7084 (7 AAA patients and 8 control group). From among differentially-
expressed genes (DEGs), network analysis of gene expression both in AAA and AS 
identifies 206 co-DEGs. Afterwards, functional and pathway enrichment analysis were 
performed for the co-DEGs. The top 5 genes with the highest scores in cytoHubba module 
were taken as hub genes. At last, validation quantitative polymerase chain reaction (qRT-
PCR) was performed for the 5 hub genes in samples obtained from our institute, including 
4 organ donors, 4 AAA patients and 4 AS patients. 
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Figure 3. Enrichment analysis of the DEGs. (A) A Venn-diagram of DEGs between 
GSE100927 and GSE7084. (B) GO functional analysis results illustrating the significantly 
enriched terms for the co-DEGs. (C) Results of the KEGG enrichment analysis of the co-
DEGs. DEGs, differentially expressed genes. 

3.2. Functional annotation of the identified DEGs 

The functions of the identified DEGs were explored via GO and KEGG enrichment analyses in R. 
The results suggested that the DEGs shared by the GSE100927 and GSE7084 datasets were 
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significantly enriched with biological processes (BP) terms of “neutrophil activation”, “immune 
response”, and “neutrophil degranulation”, a molecular function (MF) term of “actin binding”, as well 
as a cellular components (CC) term of “secretory granule membrane” in the GO analysis (Figure 3B). 
Our KEGG analysis suggested that these shared DEGs were associated with 10 pathways, such as 
“lipid and atherosclerosis”, “phagosome”, and "osteoclast differentiation” (Figure 3C). 

3.3. PPI network analysis 

To characterize the interactions between proteins encoded by these shared DEGs, a PPI network 
was built by STRING (Version 11.0) and visualized by Cytoscape (Figure 4A). The network consisted 
of 190 nodes (representing 190 proteins) and 1715 edges (representing 1715 interactions between the 
proteins). In addition, 3 essential modules were identified from the network by MCODE in Cytoscape 
(Table 2). According to the upset chart, five genes (namely SPI1, TYROBP, TLR2, FCER1G and 
MMP9) were registered more than 5 times and were regarded as hub genes (Figure 4B). Interestingly, 
these genes were also included in the modules with the highest MCODE scores (Figure 4C).  

Table 2. Module analysis of DEGs using Cytoscape. 

Cluster Score Nodes Edges Node IDs 

1 19.6 21 196 LAPTM5, FCER1G, LY86, CCR1, CD53, FCGR2A, FCGR3A, CSF1R, TYROBP, 

C1QA, SPI1, IL10RA, LILRB2, CYBB, CTSS, LCP2, MNDA, CD74, MPEG1, AIF1, 

ITGAM 

2 8.5 21 85 CCL5, ITGAL, CCL3, PARVG, CCR5, CCR7, IGSF6, BTK, CD83, TLR2, IL1B, 

CSF3R, HLA-DRA, VAV1, CD68, HK3, FGR, CD14, MYO1F, CCL4, NCF2 

3 6.207 30 90 EVI2B, MS4A6A, CCRL2, IL7R, VAMP8, SYK, APOE, LILRB3, STK10, ADAM8, 

HCST, LYN, HMOX1, INPP5D, SLA, ALOX5, CXCR4, CORO1A, MMP9, CXCL16, 

NCF4, PTPN6, TREM1, IL1RN, HCLS1, SLC2A5, AQP9, PLAU, RAC2, VAV3 
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Figure 4. PPI network of co-DEGs constructed by the STRING database. (A) The PPI 
network of co-DEGs was constructed using Cytoscape. (B) Among the 12 scoring methods 
of the cytoHubba module, the intersection of the top ten genes in each group. (C) 
Identification of a sub-network using MCODE in Cytoscape software. Diamond nodes, 
hub genes; Red nodes, up-regulated genes; Blue nodes, down-regulated genes. 

3.4. Verification of the identified DEGs 

Differential expression of the DEGs, as revealed by bioinformatic methods, was further confirmed 
by qRT-PCR using cDNA obtained from artery samples from AS patients (n = 4), AAA patients (n = 4), 
and healthy controls (n = 4). As shown in Figure 5, SPI1, TYROBP, TLR2, FCER1G and MMP9 were 
significantly upregulated both in AS and AAA samples compared with normal controls. 
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Figure 5. Validation of the gene expression levels of hub genes between patients and 
healthy control group. (A–E) The expression of SPI1, TYROBP, TLR2, FCER1G and 
MMP9 in ASO and AAA arteries compared with normal arteries. The data are presented 
as the mean ± SEM, **P < .01 vs control group; ***P < .001 vs control group. 

4. Discussion 

A large number of clinical investigations h.ave comprehensively exhibited an enhanced risk of 
AAA in patients with AS. However, the mechanism underlying the association between AS and AAA 
remains elusive, although it has been speculated to be associated with chronic inflammation, 
degradation of extracellular matrix, apoptosis of vascular smooth muscle cells, and thrombosis [12], 
physiological characteristics that also contribute to the formation of atherosclerotic plaques, suggesting 
that AS, which frequently affects the aneurysm wall, is a crucial risk factor for AAA. We herein 
discovered 5 key genes implicated in AS-related AAA, namely SPI1, TYROBP, TLR2, FCER1G and 
MMP9. These genes have the potential to become novel biomarkers and treatment targets for AS-
related AAA. Our findings not only provide further insights into the pathogenic mechanisms of AS-
related AAA, but also have clinical significance—they suggest several potential early diagnostic 
markers to prevent the progression of AAA. 
    Among the identified hub genes, SPI1 encodes PU.1, an ETS-domain transcription factor that is 
required for the development of myeloid cells and can regulate intercellular communications to 
facilitate immune responses [13]. The role of the SPI1 in AAA progression is unclear. According to 
previous findings, the expression of SPI1 gene is upregulated during the differentiation of myeloid 
cells and remains persistently high in B cells, monocytes, mast cells, circulating neutrophils, and other 
granulocytes in human [14]. Pan et al. found that SPI1 expression was significantly increased in 
Tibetan minipigs subjected to a high-fat/cholesterol diet [15], further implying that the activation of 
myeloid cells is critical for AS development. TYROBP, which has a synonym of DNAX-activating 
protein of 12 kDa (DAP12), encodes a transmembrane receptor ubiquitously expressed in neutrophils, 
natural killer cells, and monocytes/macrophages that transduces immune signals via a tyrosine-based 
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activation motif [16]. DAP12 has been extensively implicated in the survival, reproduction, 
polarization, and differentiation of multiple types of immune cells, particularly the 
monocytes/macrophages [16]. Wang et al. observed that DAP12 was expressed at a high level in APOE 
mice, which facilitated the development of AS plaques via the TREM-1/DAP12 pathway [17]. 
Hinterseher et al. observed that TYROBP was highly expressed in human AAA and was involved in 
the pathogenesis of AAA through the NK cell-mediated cytotoxicity pathway [18]. TLR2 encodes a 
cell membrane protein that identifies microorganism invasions and regulates innate immune 
reactions [19]. Jabłońska et al. found significantly higher levels of TNF-α, IL-4 and TLR2 in AAA 
patients compared with healthy controls, and suggested that TLR2 may be involved in the aortic and 
systemic inflammatory responses in AAA patients [20]. Lee et al. showed that TLR2 could activate 
p38 and ERK1/2 signaling pathways, selectively regulate IL-6–mediated RANKL upregulation 
and OPG downregulation, and induce the differentiation of VSMCs into chondrocytes, thereby resulting 
in vascular calcification during AS development [21]. FCER1G (CD23) encodes a high-affinity cell 
membrane receptor for IgE, which is upregulated during aging [22]. FCER1G was demonstrated to be able 
to regulate hypertension and platelet hyperaggregability during thrombus formation [23–25]. Given that 
AAA is tightly associated with these diseases, it is reasonable that FCER1G may be implicated in 
the development of AAA. MMP9 encodes a matrix metalloproteinase that reorganizes and 
degrades extracellular matrix during collagen catabolic processes, leading to the instability and 
rupture of atherosclerotic plaques [26,27]. This molecule activates the immune responses that lead 
to atherosclerotic plaque destabilization by facilitating the degranulation, transendothelial 
migration, and differentiation of leukocytes, as well as activating interleukin signaling pathways. 
However, its role in AAA progression remains controversial. Hurks et al. found that the MMP9 
levels remained stable in a study of inflammation in AAA artery wall [28]. Another study found 
that MMP9 level in AAA was correlated with intraluminal thrombus amount, implying that 
thrombus activated MMP9 [29]. 
    In this study, we identified DEGs shared by the AS and AAA cohorts and discovered 5 hub genes 
(namely SPI1, TYROBP, TLR2, FCER1G and MMP9) by PPI network construction and identification 
of key modules. The relationship between these genes, AS and AAA needs to be further investigated 
in future studies. 

5. Conclusions 

By analyzing GEO datasets using bioinformatic methods and verifying the results by in vitro 
experiments, we not only identified 206 DEGs shared by both AS and AAA cohorts, but also detected 
5 hub genes (SPI1, TYROBP, TLR2, FCER1G and MMP9) linking AS and AAA, which may be used 
as potential biomarkers for the diseases. More importantly, these hub genes may become potential 
treatment targets for AS-related AAA, which will facilitate the establishment of new therapeutic 
strategies, including early prevention and precision treatment. 

Limitations 

Our study has some limitations. Firstly, our research was based on microarray data retrieved from 
a public database. Secondly, since transcript abundances of genes may not be able to accurately reflect 
the corresponding protein levels, for example, we do not know which type of cells are mainly involved 
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in the expression of these hub genes, and whether the complex in vivo environment will mask some of 
more meaningful genes, additional in vitro and in vivo studies are required to characterize the functions 
of the key genes. Therefore, large-scale prospective clinical investigations can, to some extent, better 
support our findings. 
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