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Abstract: Background: The tumor immune microenvironment of colorectal cancer (CRC) affects 
tumor development, prognosis and immunotherapy strategies. Recently, immune-related lncRNA were 
shown to play vital roles in the tumor immune microenvironment. The objective of this study was to 
identify lncRNAs involved in the immune response, tumorigenesis and progression of CRC and to 
establish an immune-related lncRNA signature for predicting the prognosis of CRC. Methods: We 
used data retrieved from the cancer genome atlas (TCGA) dataset to construct a 10-gene immune-
related lncRNA pair (IRLP) signature model using a method based on the ranking and comparison of 
paired gene expression in CRC. The clinical prognosis, immune checkpoints and lncRNA-protein 
networks were analyzed to evaluate the signature. Results: The signature was closely associated with 
overall survival of CRC patients (p < 0.001 in both of the training and validating cohorts) and the 3-
year AUC values for the training and validating cohorts were 0.884 and 0.739, respectively. And, there 
were positive correlations between the signature and age (p = 0.048), clinical stage (p < 0.01), T stage 
(p < 0.01), N stage (p < 0.001) and M stage (p < 0.01). In addition, the signature model appeared to be 
highly relevant to some checkpoints, including CD160, TNFSF15, HHLA2, IDO2 and KIR3DL1. 
Further, molecular functional analysis and lncRNA-protein networks were applied to understand the 
molecular mechanisms underlying the carcinogenic effect and progression. Conclusion: The 10-gene 
IRLP signature model is an independent prognostic factor for CRC patient and can be utilized for the 
development of immunotherapy. 
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Abbreviations: AJCC: American joint committee on cancer; AUC: Area under the curve; BP: 
Biological process; CC: Cellular component ; COAD: Colon adenocarcinoma; CRC: Colorectal cancer; 
DEirlncRNA: Different expression immune related lncRNA; DEG: Different expression gene; GO: 
Gene ontology; HR: Hazard ratio; IRLP: Immune-related lncrna pair; KEGG: Kyoto encyclopedia of 
genes and genomes; LncRNA: Long non-coding RNA; MF: Molecular function; OS: Overall survival; 
PPI: Protein-protein interaction; READ: Rectum adenocarcinoma; ROC: Receiver operating 
characteristic; TCGA: The cancer genome atlas; TME: Tumor microenvironment 

1. Introduction  

According to the latest GLOBOCAN 2018 data, colorectal cancer (CRC) is the fourth most 
commonly diagnosed cancer worldwide (10.2%) and the fourth cause of malignancy related death in 
the world [1]. Due to a lack of notable symptoms in the early stages, most of patients 
usually diagnosed at an advanced stage with local progression or distant metastasis. Although there 
has been substantial progress in the management of CRC, the five years survival down to 50%70.4% 
once metastasis occurs [2]. Therefore, there is an urgent need for the development of CRC early diagnosis. 

At present, the clinical TNM stage classification is most commonly used to detection of cancer 
stage and estimate prognosis in CRC patients. But, there still exist the problem that TNM stage system 
inconsistent with the five years survival in clinical [3,4]. Therefore, more effective and sensitive 
biomarkers are urgently needed for screening, diagnosis, prognosis in CRC. With the development of 
genetic testing, gene-based biomarkers have become more and more popular and improved the 
standard in the diagnosis and treatment of CRC [5].  

Long-non coding RNAs (lncRNAs) refer to a class of transcripts with over 200 nucleotides in 
length and have no or limited coding protein capacity [6]. LncRNAs are involved in diverse biological 
processes including cell cycle, cell differentiation and myogenesis [7]. Moreover, mounting evidence 
suggests that the tumor microenvironment (TME) serves pivotal roles in determining tumor behavior. 
Recently, tumor immunotherapy using the immune system to anti-tumor response and elimination of 
tumor cells are breakthrough treatments for several malignancies [8]. Therefore, the regulation of 
immune-related gene expression appears especially important in hosting immune responses to combat 
cancer cells. Although a majority of the studies thus far have focused on coding genes, researchers 
have begun to pay more attention to lncRNAs recently [9]. For example, lncRNA MIR17HG can 
directly bound to PD-L1 to regulate tumor-immune microenvironment and plays an oncogenic role in 
CRC [10]. And lncRNAs have also been verified as potential biomarkers for many cancers [11].  

In this study, we analyzed the data set of lncRNA expression in the cancer genome atlas (TCGA), 
and a prognostic model of 10 immune-related lncRNA pair (IRLP) associated with the clinical 
prognosis of CRC was identified according to bioinformatic prediction. The effect of the signature 
model involved in the regulation of tumor immune microenvironment and checkpoints. In addition, 
biological function and lncRNA-protein networks of the signature model were explored as well. 

2. Materials and methods 

2.1. Research roadmap 

The workflow of the analyses carried out in this study is shown in Figure 1 Co-expression module 
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and differential expression analysis were used to identify immune-related lncRNAs from TCGA-
COAD and -READ data. The patients were then divided randomly into the training and validating 
group. Thereafter, prognostic lncRNA pairs were determined using univariate Cox, Lasso, and 
multivariate Cox regression analysis. From these analyses, 10 IRLPs were used to construct a signature 
model. The model was then evaluated using ROC analysis, overall survival (OS), univariate and 
multivariate Cox, immune cell infiltration, immune checkpoints, GO enrichment and KEGG analysis, 
as well as lncRNA-protein interaction network. Lastly, the validating group was also tested against the 
signature model. 

 

Figure 1. The technology roadmap. 
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2.2. CRC patient data  

The COAD-FPKM and READ-FPKM RNA-seq data and their corresponding clinical data were   
retrieved from TCGA database (https://portal.gdc.cancer.gov). This dataset was composed of 488 CRC 
tissues and 42 paired non-cancerous normal tissues. In addition, a list of immune-related genes was 
downloaded from the ImmPort database (https://www.immport.org/). Data containing complete OS 
was used to determine the correlation between immune-related lncRNAs and the corresponding 
prognosis of CRC.  

2.3. Construction of the IRLP signature 

We identified a list of immune-related genes from the ImmPort database and used the list to 
calculate the correlation between immune-related genes and lncRNAs from the TCGA database. 
LncRNAs with a correlation coefficient > 0.7 and p < 0.001 were selected for further analysis. 
Differential lncRNA expression between CRC and non-cancerous normal tissues was determined 
using the ‘limma’ package, and lncRNAs with |log2FC| > 1 and P value < 0.05 were considered as 
statistically significant. The patients were then divided randomly into the training (n = 325) and 
validation group (n = 163) in the ratio of 2:1. A pairwise comparison was performed between each 
lncRNA expression value within each sample of TCGA to obtain a score for IRLP signature. In each 
lncRNA pair, when the first gene exhibited a higher expression relative to the other one, the score was 
set to 1, otherwise was 0. Samples with a ratio of 0 and 1 less than 20% were excluded. We further 
carried out univariate (p < 0.01), LASSO and multivariate Cox regression analyses to select genes that 
were significantly associated with survival and included them in the IRLP signature. Receiver 
operating characteristic (ROC) curve analysis on the training dataset was used to determine the 
threshold risk score to divide the patients into high-risk and low-risk groups. The formula can be 
expressed as follows: RiskScore = ∑Ni = 1Expi*Wi, where exp is the expression value of every 
DEirlncRNA pair, and W is the multivariate cox regression analysis coefficient of each DEirlncRNA 
pair in the signature. 

2.4. Verification of the IRLP signature 

The pairwise comparison analysis was performed in validation group (n = 163), and then the 
‘limma’ package was used to screened out the identified 10 immune-related lncRNA pairs from the 
validating group. Furthermore, multivariate Cox regression analysis and the riskscore formula were 
performed to work out the risk score of each patient in validating group. And the ROC, OS, univariate 
and multivariate cox regression analysis were performed as well. 

2.5. Assessment of the immune-related lncRNA risk score model 

ROC curve analysis was used to evaluate the performance of the IRLPs risk model (short for risk 
model) in predicting 1-, 2- and 3-years OS in the training cohort and validating cohort. Univariate and 
multivariate Cox proportional hazards regression analysis were employed to verify if the risk model 
was independent of age, gender, American Joint Committee on Cancer (AJCC) stage, T stage, N stage, 
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and M stage as a prognostic factor. Afterwards, calibration curves and a nomogram representing the 
clinical parameters and the risk model were established to evaluate the risk model. 

2.6. Immune cell infiltration and immune checkpoints 

CIBERSORT is an algorithm that employs linear support vector regression to characterize the 
cell composition of tissues based on their gene expression profiles [12]. We used CIBERSORT 
(https://cibersortx.stanford.edu/) to determine the degree of infiltration of the tumor microenvironment 
by 22 tumor-infiltrating immune cells. The results of this analysis were used to establish the 
relationship between the risk model and the number of tumor-infiltrating immune cells. We further 
characterized the tumor microenvironment through differential gene expression analysis of immune 
checkpoints between the high- and low-risk groups.  

2.7. Biological function analysis and lncRNA-protein networks of the signature model  

Results of co-expression analysis identified 21 immune-related genes that correlated with 10 
IRLPs. Gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways 
enrichment analysis for the 21 immune-related genes was carried using DAVID Bioinformatics 
Resources (https://david.ncifcrf.gov/).  Enrichment terms with count > 2 and p < 0.05 were selected 
for further analysis. The biological functional enrichments were visualized using the ggplot2 Package 
in R. Furthermore, we constructed and downloaded the protein–protein interaction (PPI) network of 
the 21 immune-related genes using the STRING database (https://string-db.org/) and along with the 
risk model were visualized using Cytoscape software (version 3.6.1). Ten hub genes in the network 
were chosen based on the MCC algorithm using cytoHubba app in Cytoscape. 

2.8. Statistical analysis 

Statistical analysis was carried out using R software (version 3.6.3). The R packages used in this 
study include: ‘Limma’ (version 3.46.0), ‘pheatmap’ (1.0.12 version), ‘Survival’ (3.2-7 version), 
‘survminer’ (0.4.8 version), ‘glmnet’ (version 4.0-2), ‘survivalROC’ (version 1.0.3), ‘ggpubr’ (0.4.0 
version), ‘ComplexHeatmap’ (2.6.2 version) and ‘ggplot2’ (version 3.3.2). Pearson correlation was 
used to determine the linear association between two groups. P < 0.05 was considered to be significant. 
Statistical significance was defined as follows: *P < 0.05, **P < 0.01, ***P < 0.001. 

3. Results 

3.1. Construction of the IRLP signature 

In this study, the TCGA CRC transcriptome data was used as an exploratory dataset (Figure 1). 
We used the immune-related gene list identified from ImmPort to select 1340 immune-related genes 
from the transcriptome data for further study. Co-expression analysis was used to select 302 immune-
related lncRNAs with a Pearson correlation coefficient over 0.7. A total of 118 differentially expressed 
lncRNAs, including 102 up-regulated and 16 down-regulated lncRNAs, were identified from the 
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normal and tumor tissues using edgeR. The heatmap and volcano plot of these differentially expressed 
lncRNAs are shown in Figures 2A,B. 

 

Figure 2. Differential expression (DE) of LncRNAs between normal and CRC tumor 
tissues. (A) Heat maps of DE lncRNAs between normal and tumor tissues. (B) Vocano 
plots of DE lncRNAs between normal and tumor tissues. 
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After the data was randomly divided into two groups, a pairwise comparison analysis was 
performed in the training group. A total of 4073 lncRNA pairs were obtained based on these 
differentially expressed lncRNAs. Univariate Cox regression analysis and Lasso Cox regression were 
used to select 13 IRLPs with prognostic potential in the training group (Figures 3A,B). Finally, 
multivariate Cox proportional hazards modeling was employed to select 10 IRLPs that were used to 
construct the risk model (Figures 3C,D). We also calculated the risk score for each patient in the TCGA 
dataset based on the risk model. ROC curve analysis was performed to determine the threshold value 
(2.199) of the model, that could categorize the patients into a high- or low-risk groups (Figure 3E). 

 

Figure 3. The construction of the prognostic 10-gene immune-related lncRNA pair (IRLP) 
signature. (A,B) The establishment of the prognostic model based on LASSO penalized 
COX analysis. (C,D) The univariate and multivariate Cox analysis of the verified 10 
lncRNAs signature model. (E) A ROC curve for the signature model and the threshold (2.199) 
used to assign patients to the high- or low-risk group. 
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Figure 4. Clinical evaluation of the risk model. (A,B) Overall survival of CRC patients in 
the training and validating cohort using the risk model. (C,D) Time-dependent ROC 
analysis of predicting the overall survival of patients in the training and validating cohort 
using the risk model. (EH) The distribution of the risk score and the survival status of 
CRC patients in the training and validating cohort using the risk model. The red points 
represent deaths, while the green points represent survivors. 
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3.2. Evaluation of 10-gene IRLP risk model as independent prognostic factor for CRC 

 

Figure 5. Assessment of the risk model and the prognostic value of clinical variables. (A, 
C) Univariate and multivariate Cox regression of the risk model and clinical parameters in 
training cohort of CRC. (B, D) Univariate and multivariate Cox regression of the risk 
model and clinical parameters in validating cohort of CRC. (E, F) ROC curves for the risk 
model and clinical parameters in training and validating cohorts of CRC. 

The Kaplan-Meier survival curves were used to compare the OS between the high- and low-risk 
groups in both the training (Figure 4A) and validating cohorts (Figure 4B). The OS of the low-risk 
group was significantly higher than that of the high-risk group in both cohorts. As shown in Figures 4C,D, 
the AUC values for the training cohort (0.842, 0.869 and 0.884 for the 1-, 2- and 3-year OS, 
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respectively) and validating cohort (0.738, 0.690 and 0.739) showed that the risk model was able to 
discriminate between the high- and low-risk groups. In addition, the risk curves and scatterplots 
illustrated that the patients with higher risk scores had a higher risk of mortality in the training 
(Figures 4E,G) and validating cohorts (Figures 4G,H). 

Univariate and multivariate Cox analyses were used to investigate if the 10-gene IRLPs risk 
model was independent of age, gender, AJCC stage, T stage, N stage, and M stage as a prognostic 
factor. The results showed that the risk model of univariate Cox analysis was 1.023 (Hazard Ratio 
(HR): 1.0171.029, p < 0.001) and the multivariate Cox was 1.028 (HR: 1.0191.037, p < 0.001) in 
the training cohort (Figures 5A,C), while the risk model of univariate and multivariate Cox analysis 
was 1.485 (HR: 1.2101.822, p < 0.001) and 1.815 (HR: 1.3802.387, p < 0.001) in the validating 
cohort, respectively (Figure 5B, D). On the other hand, the AUC values for the training cohort (0.842) 
and validating cohort (0.738) showed that the model had good discriminative ability when compared 
with clinical features (Figures E,F). As a result, the 10-gene IRLPs risk model can serve as an 
independent prognosis factor in CRC. 

 

Figure 6. The correlation between the risk model and clinical parameters. (AF) The 
correlation between the risk model and sex, age, AJCC stage, T, N, M stage. (G) Heat maps 
of clinical parameters between low-risk and high-risk groups. 
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The correlation between the risk model and various clinical parameters was then assessed. The 
results showed that there were positive correlations between the risk score and age, clinical stage, T 
stage, N stage and M stage, while there was no relation between the risk score and patient gender 
(Figures 6AF). A heatmap showing various clinical parameters differentially distributed in different 
cohorts is depicted in Figure 6G. 

3.3. Immune cell infiltration and immune checkpoints assessment of the risk model 

 

Figure 7. The correlation between the risk model and immune cell infiltration and immune 
checkpoints. (A) Relationship between the risk model and 22 kinds of tumor-infiltrating 
immune cells. (B) Relationship between the risk model and immune checkpoints. 
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To further explore the ability of the risk model to predict the infiltration of immune cells in CRC, 
CIBERSORT was used to analyze the relationship between the risk score and 22 immune cells. Only 
Macrophages M0 infiltration was correlated with the risk model. High levels of Macrophages M0 were 
detected in the low-risk group (Figure 7A).  

Immune checkpoints are molecules that modulate signaling pathways in the regulation of immune 
response and have an important role in the field of anti-cancer immunotherapy. According to the results 
shown in Figure 7, the expression levels of CD160, TNFSF15, HHLA2 and IDO2 were significantly 
higher in the low-risk group, while the levels of KIR3DL1 and PD-1 were higher in the high-risk group, 
although the latter had no significant difference (Figure 7B).  

3.4. Functional enrichment analysis and lncRNA-protein networks of the risk model 

The GO annotation system includes three major branches: cellular component (CC), biological 
process (BP) and molecular function (MF). GO and KEGG enrichment analysis were performed to 
predict the function of the 21 immune-related genes that correlated with the 10 IRLPs. The first three 
of these enrichments were as follows (Figure 8AC): Neuronal cell body, plasma membrane and 
receptor complex were enriched for CC; while for BP, they were signal transduction by protein 
phosphorylation, activin receptor signaling pathway and signal transduction; and for MF, they include 
growth factor binding, receptor signaling protein serine/threonine kinase activity and transmembrane 
receptor protein serine/threonine kinase activity. Further analysis of KEGG pathways included 31 
pathways, containing Chronic myeloid leukemia, ErbB signaling pathway and Pathways in cancer 
(Figure 8D).  

Using the 21 immune-related genes downloaded from the STRING database and the 10 IRLPs, 
we established a lncRNA-protein network, which consisted of 38 nodes and 102 edges (Figure 8E). 
Ten hub genes, which include three lncRNAs (AL157786.1, LINC01355, AF117829.1) and seven 
protein coding gene (PIK3CA, SOS1, CBLB, CBL, CREB1, ACVR2A and TGFBR1) were identified 
from the lncRNA-protein network using the MCC algorithm (Figure 8F). 

4. Discussion  

CRC is one of the leading causes of cancer-related mortality in the world. Advances in CRC 
research has allowed the characterization of CRC into different molecular subtypes presenting with 
distinct clinical features [13]. On the other hand, LncRNAs have been shown to modulate cancer 
progression by influencing the molecular characteristics of tumors [14,15]. LncRNAs regulate various 
immune-related genes [1618], and have recently been associated with drug resistance and immune 
escape in human cancers [19]. It is therefore important to establish an immune-related lncRNA 
signature for CRC that can be used to develop novel strategies for CRC prevention and treatment. 

We built the signature model using a method based on the ranking and pairing comparison of 
relative gene expression. And we used data retrieved from TCGA to construct a 10-gene IRLPs 
signature for the prognosis of CRC. Using the model, we divided the patients into two groups with 
different immune microenvironment for evaluating clinical features, immune cell infiltration, immune 
check-point, GO enrichment, KEGG analysis and the interaction network between lncRNAs and 
immune-related protein coding genes.  
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Figure 8. Biological function analysis and lncRNA-protein networks of the risk model. 
(AD) GO enrichment analysis (CC, BP and MF) and KEGG pathway analysis according 
to the risk model. (E) The lncRNA-protein networks based on the risk model. (F) 10 hub 
genes in the network were chosen based on the MCC algorithm. 

We performed LASSO, univariate and multivariate Cox regression to select immune-related 
lncRNA pairs for establishing the IRLPs signature model. The model was composed of 10 immune-
related lncRNA pairs containing 17 unique immune-related lncRNAs, which were overexpressed in 
cancer tissues compared to normal tissues. Each of the IRLPs was an independent prognostic factor 
for CRC patients. The model was able to categorize the CRC patients into low-risk and high-risk 
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groups in the training and the validating cohorts and acted as an independent prognostic factor for CRC. 
Furthermore, ROC analysis revealed that the AUCs of the model (0.842 and 0.738 in training and 
validating cohorts, respectively) were higher than those of other clinical features. Although, there have 
been a series of methods for immune related lncRNA signature establishment, but the prognostic power 
of each study was different (Table 1) [2023]. Firstly, the AUC value of our model was higher than 
that of models proposed in other studies. Secondly, we used a method based on the ranking and pairing 
comparison of relative gene expression, and this approach for constructing the model eliminates the 
need for data scaling and normalization when using different platforms [24,25]. Thirdly, our model 
contains relatively fewer lncRNAs, while maintaining a high AUC value. Therefore, considering 
clinical application value, the 10-gene IRLP risk signature is a reliable prognostic model with potential 
clinical significance.  

The CIBERSORT algorithm has high specificity and sensitivity [12], and is able to evaluate the 
gene expression data of 22 different types of immune cells. A recent study showed that the infiltration 
of tumors by M0 macrophages was associated with favorable prognosis [26], a finding that is consistent 
with the results from our study. And macrophages are indispensable in immunotherapy of tumor. It 
can remove anti-PD1 antibodies from T cells to weaken their response, when the antibodies target the 
PD1-PDL1 axis [27]. Cancer immunotherapy is a novel anti-cancer approach that targets immune 
checkpoint receptors such as PD1/PDL1 [28]. Therefore, we compared the expression of immune 
checkpoints between the low- and high-risk groups. The analysis showed that there was higher 
expression of inhibitory immune checkpoints (PD1 (no statistical significance) and KIR3DL1), and 
low expression of stimulatory checkpoints (CD160, HHLA2, IDO2 and TNFSF15), in the high-risk 
patients. The upregulation of KIR3DL1 causes a reduction in CD4+ T cell count and is associated with 
rapid disease progression [29]. Reduced CD160 expression impairs the function of NK cells, causes 
immune escape of cancer and is associated with poor outcomes in patients with hepatocellular 
carcinoma [30]. HHLA2 can promote tumor differentiation and increase the levels of CD8+ infiltrating 
lymphocytes. Downregulation of HHLA2 contributes to the immunosuppressive microenvironment 
and progression of ovarian cancer [31]. IDO2 acts as a stimulatory immune checkpoint to enhance the 
efficacy of dendritic cell-based cancer immunotherapy [32]. Finally, TNFSF15 is a member of the 
tumor necrosis factor family, and can influence the proliferation, activation and differentiation of 
immune cells [33]. Down regulation of TNFSF15 is associated with poor prognosis in various cancers 
[3436]. Thus, the risk model might be a promising reference function for cancer immunotherapy. 

KEGG enrichment analysis was carried out to predict the biological pathways involved in the 
regulation of CRC by the 10-gene IRLP signature. The results indicated that the gene signature was 
enriched in pathways such as Chronic myeloid leukemia, ErbB signaling pathway, Pathways in cancer, 
Insulin signaling pathway and Signaling pathways regulating pluripotency of stem cells. These 
pathways play key roles in the progression of CRC. For example, CARF increases the expression of 
MAPK8 and JUN by binding directly to their promoters, which in turn activates the ErbB signaling 
pathway that maintains the stemness of CRC [37]. PIK3CA and BRAF are members of the Insulin 
signaling pathway, and are the most common biomarkers for the genetic testing of CRC. Mutations 
in PIK3CA and/or BRAF in CRC are associated with poor outcome [38], and PIK3CA mutation is 
associated with poor prognosis among patients with curatively resected CRC [39].  

To better understand the correlation between lncRNA and immune-related genes, a lncRNA-
protein network was established. From this network, 10 hub genes were identified including 7 protein 
coding genes: PIK3CA, SOS1, CBLB, CBL, CREB1, ACVR2A and TGFBR1. These genes have been 
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associated with CRC [3945]. For example, SOS1 is a key activator and feedback node of KRAS, 
which is the most frequently mutated driver of CRC [46]. Downregulation of SOS1 expression can 
lead to decreased survival of cancer cells harboring a KRAS mutation [47]. CBL have been reported 
to promote the progression of colon cancer by forming a complex with MUC1 and CIN85, and 
increased level of CBL in the early stage of colon cancer contributes to a poor prognosis [42]. 
ACVR2A acts a protective factor and a decrease in its expression is crucial for cancer progression and 
distant metastasis and may serve as a prognostic biomarker for the patients with colon cancer [44]. 

Table 1. The comparison of studies about immune related lncRNA signature for CRC. 

study database methods lncRNA 
signature

AUC (3 years) 

Feng et al TCGA-
COAD, 
READ 

DElncRNAs, Cox regression analysis 8-immune related lncRNA 0.751 

Meng et al TCGA-
COAD, 
READ 

 univariate analysis, Lasso and Cox regression 16-immune-related lncRNA 
pair (30 lncRNAs)  

0.875 

Yan et al TCGA-
COAD, 
GEO (colon 
cancer) 

CIBERSORT algorithm, Cox regression 
analysis 

four-immune related lncRNA 0.659 

Mei et al TCGA-
COAD 

univariate and multivariate Cox regression 14-immune related lncRNA 0.776 

this study TCGA-
COAD, 
READ 

DElncRNAs, ranking and pairing comparison, 
univariate Cox, Lasso and multivariate Cox 
regression 

10-immune-related lncRNA 
pair (17 lncRNAs) 

0.884 

Here remain several limitations. On the one hand, our study was limited by its retrospective nature. 
Further prospective clinical researches are needed to validate these results. On the other hand, we only 
performed enrichment analysis and made assumptions regarding the function of 17 immune related 
lncRNAs without additional research for further understanding of the underlying mechanism.  

5. Conclusions 

In conclusion, we constructed a 10-gene prognostic IRLPs signature for CRC patients based on 
the immune-related genes in the TCGA database. The signature was associated with immune 
checkpoints that play key roles in immune regulation and immunotherapy of CRC Molecular 
functional and lncRNA-protein network analysis were used to understand the molecular mechanisms 
underlying the carcinogenic effect and progression. Further prospective clinical researches and 
additional vitro experiments are needed to be done in the future study for making the results more 
convincing.  
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