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Abstract: The COVID-19 (novel coronavirus disease 2019) pandemic has tremendously impacted
global health and economics. Early detection of COVID-19 infections is important for patient treat-
ment and for controlling the epidemic. However, many countries/regions suffer from a shortage of
nucleic acid testing (NAT) due to either resource limitations or epidemic control measures. The ex-
act number of infective cases is mostly unknown in counties/regions with insufficient NAT, which has
been a major issue in predicting and controlling the epidemic. In this paper, we propose a mathematical
model to quantitatively identify the influences of insufficient detection on the COVID-19 epidemic. We
extend the classical SEIR (susceptible-exposed-infections-recovered) model to include random detec-
tions which are described by Poisson processes. We apply the model to the epidemic in Guam, Texas,
the Virgin Islands, and Wyoming in the United States and determine the detection probabilities by fit-
ting model simulations with the reported number of infected, recovered, and dead cases. We further
study the effects of varying the detection probabilities and show that low level-detection probabilities
significantly affect the epidemic; increasing the detection probability of asymptomatic infections can
effectively reduce the the scale of the epidemic. This study suggests that early detection is important
for the control of the COVID-19 epidemic.
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1. Introduction

Coronavirus disease 2019 (COVID-19), a pandemic disease caused by the novel severe acute res-
piratory syndrome (SARS)-like coronavirus (SARS-CoV-2), has spread globally since it was first re-
ported in December 2019 in Wuhan, China. As of May 25, 2021, there were more than 166 million
confirmed cases including more than 3 million deaths [1]. Controlling the rapid spread of COVID-19

http://http://www.aimspress.com/journal/MBE
http://dx.doi.org/10.3934/mbe.2021476


9728

has been an emergency global public health issue. Many countries have implemented different types of
nonpharmaceutical interventions (NPIs) to control the COVID-19 epidemic, such as restricting travel,
stopping parties, closing cities, closing schools, and self-protection [2–4]. Furthermore, vaccines have
been widely used in many countries. However, the epidemic situation is far from under control, and
the second wave of COVID-19 erupted in India in April 2021, resulting in more than 300,000 new
cases reported every day. Importantly, the number of reported cases may be much lower than the ex-
act number due to the low coverage rate of nucleic acid testing (NAT). Many countries/regions are
suffering from an NAT shortage due to either resource limitations or control measures. Insufficient de-
tection of COVID-19 may seriously affect the clinical intervention of infected patients and forecasting
of epidemic tends. Nevertheless, the impact of insufficient detection of COVID-19 has not been clearly
quantified.

Many mathematical models have been proposed to investigate the effects of various measures on
controlling the epidemic and forecast the dynamics of the spread of COVID-19. Most models are
formulated as differential equations that originate from the classical compartmental dynamics of SIR
(susceptible-infectious-recovered) or SEIR (susceptible-exposed-infectious-recovered) models [5–9].
Many studies have attempted to forecast of the COVID-19 epidemic based on the established model
formulation and parameters estimated from reported data to forecast the COVID-19 epidemic [10–15].
Alternatively, data-driven studies try to forecast epidemic dynamics directly from statistical analyses
of reported data [16–20]. Other studies have attempted to improve the estimation of COVID-19 mor-
tality by combining historical and current mortality data, statistical test models, and SIR epidemic
models [21, 22]. However, some counties do not perform NAT for light or moderate symptomatic in-
fections, potentially leading to missing data and serious prediction problems. More importantly, some
dead cases are not detected and hence are missing from reported data. Hence, the estimation of real
infected cases from reported dead case numbers can be misleading and modeling and forecasting the
spread of COVID-19 remains a challenge [23].

This study was intended to investigate the impact of insufficient detection on the prediction and
control of COIVD-19 outbreaks. We propose a mathematical model with random (Poisson process)
detections and varying detection probabilities for infection. We use epidemic data from Guam, Texas,
the Virgin Islands, and Wyoming in the United States as examples to estimate the model parameters
and study the potential effects of varying the detection probabilities. Based on the proposed model, we
discuss possible long-term scenarios for COVID-19 by analyzing the role of detection probabilities in
reducing the final scale and duration of COVID-19 outbreaks.

2. Model formulation

We extended the classical SEIR model to the situation of insufficient detections of cases of infec-
tion and death. The model is illustrated in Figure 1. Clinically, COVID-19 infections can be separated
into two subpopulations: asymptomatic infections (I1) and symptomatic infections (I2). The infection
rate of a susceptible person is β (day−1), the transition rate from latent (E) to the asymptomatic in-
fections compartment (I1) is γ1 (day−1), and the transition rate from I1 to the symptomatic infections
compartment (I2) is γ2 (day−1). To compare the model simulation with reported recovered and dead
cases, we distinguished the compartments of recovered (R) and dead and further separated the death
compartment into unreported (D1) and reported (D2) dead cases. The unreported dead cases mainly
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come from undetected infections, with a rate µ1 (day−1). The reported dead cases may come from the
hospitalized compartment with a rate µ2 (day−1) or the infectious compartment with a rate µ3 (day−1).
Here, we omitted death from asymptomatic infections. We assumed that asymptomatic (I1) and symp-
tomatic infected (I2) patients are detected with daily detection probabilities p1 and p2, respectively, and
the confirmed cases are moved to the hospitalized compartment (H). Moreover, we assumed perfect
isolation so confirmed infectious cases are hospitalized or isolated immediately so that they no longer
contribute to infections. We further assumed that patients in the compartments of E, I1, and I2 recover
automatically, with rates αE, α1, and α2 (day−1), respectively, and that hospitalized patients recover
with a rate αH (day−1). The above model assumptions lead to the following differential equations for

Figure 1. Illustration of the model of the COVID-19 epidemic with insufficient detection.
Each individual transitions among states defined as susceptible (S ), latent (E), asymptomatic
infections (I1), symptomatic infections (I2), confirmed (H), recovered (R), unreported death
(D1), and reported death (D2), following the direction of the arrows. The transition rates can
vary with time.

the dynamics of different compartmental populations

dS
dt

= −βS
kI1 + I2

N

dE
dt

= βS
kI1 + I2

N
− γ1E − αE E

dI1

dt
= γ1E − γ2I1 − α1I1 − Ψ1(I1, p1)

dI2

dt
= γ2I1 − α2I2 − µ1I2 − Ψ2(I2, p2) − µ3I2

dH
dt

= Ψ1(I1, p1) + Ψ2(I2, p2) − αH H − µ2H

dR
dt

= αE E + α1I1 + α2I2 + αH H

dD1

dt
= µ1I2

dD2

dt
= µ2H + µ3I2

(2.1)
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Here, N = S + E + I1 + I2 + H + R + D1 + D2 represents the total population number, and is assumed
to be a constant. We introduced a factor k to represent the relative infection rate of asymptomatic
infections (I1) to symptomatic infections (I2). The termsΨ1(I1, p1) andΨ2(I2, p2) are nonhomogeneous
Poisson processes with varying arrival rates λ1(t) = p1I1(t) and λ2(t) = p2I2(t), respectively, which
represent the number of infections patients testing positive per unit time. Thus, our model is implicitly
stochastic since increments of infected individuals are randomly subtracted from I1 and I2 and added
to the confirmed compartment H. The detection probabilities p1 and p2 are explicitly included in the
model and are dependent on the epidemic control policy and NAT resources. The parameters associated
with the infection rate (β), detection probabilities (p1 and p2), and death rates (µ2 and µ3) may vary
with time, especially during the early stages of the outbreak of a novel epidemic disease, and hence are
piecewise functions of time.

Model parameters and the range of parameter values are listed in Table 1.
The implicit stochastic model (2.1) can be solved numerically through a modified Euler method.

Consider a differential equation of the form

dx⃗
dt
= F⃗(x⃗, t) + AΨ⃗,

where x⃗ ∈ Rn, F⃗ : Rn ×R 7→ Rn, A ∈ Rn×n, and Ψ⃗ = (Ψ1, · · · ,Ψn)T with Ψi a nonhomogeneous Poisson
process with arrival rate λi(t). The numerical scheme of the modified Euler method is given by

x⃗(t + ∆t) = x⃗(t) + F⃗(x⃗, t)∆t + A


P(λ1(t)∆t)
P(λ2(t)∆t)
...

P(λn(t)∆t)

 ,
where P(λ) represents a Poisson distribution random number with parameter λ.

3. Results

3.1. Data collection

Insufficient detection of COVID-19 is a common issue in many countries/regions for various rea-
sons, such as limited testing resources, a large number of asymptomatic or moderately symptomatic
infections, or government control policies. Here, we used reported epidemic data from Guam, Texas,
the Virgin Islands and Wyoming in the United States from April 12, 2020 to February 28, 2021 accord-
ing to the COVID-19 Map from the John Hopkins Coronavirus Resource Center [24]. The retrieved
data include cumulative numbers of confirmed cases, recovered cases, and dead cases, which are shown
in Figure 2.

3.2. Parameter estimation

To estimate model parameters, we referred to the reported data, and randomly sample the parameter
values for each parameter over the ranges listed in Table 1, and choose a parameter set that minimizes
the mean square error between simulation results and the time series of reported cumulative numbers
of confirmed, recovered, and dead cases. In parameter estimations, we first compared the data for
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Table 1. Model parameters.

Parameter Description Unit Range Resource

β Infection rate day−1 [0.03,1.5] [26–31]
γ1 Transition rate from latent infec-

tions to asymptomatic infections
day−1 [0.2, 0.3] [28–33]

k Relative infection rate of asymp-
tomatic infections

- [0.5, 2] Estimated(a)

γ2 Transition rate from asymptomatic
to symptomatic infections

day−1 [0.1, 0.5] [31–33]]

αE Recovery rate of latent infections day−1 [0, 0.15] Estimated(b)

α1 Recovery rate of asymptomatic in-
fections

day−1 [0, 0.15] [28–32, 34]

α2 Recovery rate of symptomatic in-
fections

day−1 [0, 0.283] [28–32, 34]

αH Recovery rate of confirmed infec-
tions

day−1 [0.008, 0.25] [26, 27, 32]

p1 Detection probability of asymp-
tomatic infections

- [0, 1] Estimated

p2 Detection probability of symp-
tomatic infections

- [0, 1] Estimated

µ1 Death rate of undiagnosed symp-
tomatic cases

day−1 [0.0043, 0.035] [29]

µ2 Death rate of confirmed cases day−1 [0.002, 0.04] [26, 29, 31, 32, 35]
µ3 The rate of confirmed death from

symptomatic infections cases
day−1 [0.0017, 0.04] [29, 31, 32]

(a) There are no reference data for k from the literature. Clinical evidence shows that the infection
rate of COVID-19 reaches a maximum value 1 − 2 days before symptoms arise.

(b) There are no reference data for the recovery rate αE . Here, we use the range for the rate α1.
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Figure 2. Reported COVID-19 epidemic data from (a) Guam, (b) Texas, (c) the Virgin
Islands and (d) Wyoming in the United States from April 12, 2020 to February 28, 2021.
Here, day 0 corresponds to April 12, 2020.

confirmed cases at different stages to obtain the estimated values of most epidemic parameters in the
model; then, we compared the data for recovered cases and dead cases based on known results to obtain
estimations of the other parameters. In sampling the parameters, we assumed that latent infections have
a higher self-recovery rate (αE) than asymptomatic infections (α1) due to innate immune responses at
the early stage after infection. Moreover, the detection probability of symptomatic infection (p2) is
usually higher than that of asymptomatic infection (p1).

For comparisons with the reported data, we also need to estimate the initial values. The initial
values of variables H, R, and D2 were obtained from the reported data (on April 12, 2020). The initial
value of susceptible persons (S ) was retrieved from open sources [36]. The initial values of E, I1, I2,D1

were estimated by minimizing the mean square error. Estimated initial values are shown in Table 2,
and parameter values are shown in Table 3 and Figures 3 and 4. Here, we note that the infection rate
β, detection probabilities p1 and p2, and death rate µ2 and µ3 are piecewise functions, since they may
change with distancing policies and clinical conditions. Based on the parameter values in Table 3, the
estimated initial values in Table 2 and equation (1), we can obtain the simulated value of Figure 2.
Comparisons between simulations and epidemic data are shown in Figure 5.

According to the estimated parameters in Table 3, the infection rate β obviously varies at different
stages, which may reflect the distancing policies of the local government and people’s attitudes towards
the disease. The death rates µ2 and µ3 are lower in the later stage than in the early stage in clinical
strategies in the later stage.

The estimated detection probabilities of the 4 states are shown in Figure 4 as piecewise functions,
and suggest possible changes in NAT. According to our estimation, the detection probability for symp-
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Table 2. Definitions and initial values of model variables. The initial values of model vari-
ables H, R and D2 for Guam, Texas, the Virgin Islands and Wyoming were obtained from
real data, and other values were estimated based on model simulation and minimizing the
mean square error between the simulation and reported data.

Variables Guam Texas Virgin Islands Wyoming Resource
S 149913 28984768 59976 578800 [36]
E 6 5275 4 10 Estimated
I1 8 3860 6 15 Estimated
I2 10 755 8 17 Estimated
H 0 450 0 3 [24]
R 7 120 5 4 [24]
D1 2 35 0 0 Estimated
D2 5 283 1 0 [24]

Table 3. Parameter values for Guam, Texas, the Virgin Islands and Wyoming.

Parameters Guam Texas Virgin Islands Wyoming
β(a) β1(t) β2(t) β3(t) β4(t)
γ1 0.121 0.131 0.101 0.101
k 1.18 1.18 1.18 1.18
γ2 0.06 0.082 0.082 0.082
αE 0.04 0.04 0.04 0.04
α1 0.02 0.02 0.02 0.02
α2 0.02 0.02 0.02 0.005
αH 0.05 0.074 0.074 0.074
p(b)

1 p11(t) p12(t) p13(t) p14(t)
p(b)

2 p21(t) p22(t) p23(t) p24(t)
µ1 0.006 0.012 0.011 0.012
µ(a)

2 µ21(t) µ22(t) µ23(t) µ24(t)
µ(a)

3 µ31(t) µ32(t) µ33(t) µ34(t)

(a) These parameters are defined by the piecewise functions given in Figure 3.
(b) These parameters are defined by the piecewise functions given in Figure 4.
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Figure 3. Estimated piecewise functions of the (a) infection rate β, death rates of (b) uncon-
firmed infections µ2 and (c) confirmed patients µ3 in the four states: Guam, Texas, the Virgin
Islands, and Wyoming.
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tomatic infections (p2) is higher in the later stage than in the early stage in all states, with a maximum
detection probability larger than 0.8 in Guam, Texas, and Wyoming, and larger than 0.5 in the Vir-
gin Islands. The detection probability for asymptomatic infections (p1) also increases in Guam and
Texas, but is much lower than that for symptomatic infections. Moreover, the detection probability for
asymptomatic infections in Virgin Islands and Wyoming are extremely low.
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Figure 5. Model simulation and epidemic data. Data for (a-c) Guam, (d-f) Texas, (g-i) the
Virgin Islands, and (j-l) Wyoming are shown from top to bottom. For each state, the data of
cumulative confirmed cases, recovered cases, and dead cases are shown (from left to right).
Epidemic data from April 12, 2020 to February 28, 2021 are shown with dots, and simulation
results are shown by black solid lines.

3.3. Increasing the detection probability for asymptomatic infections can reduce the epidemic scale

The above simulation shows that the proposed model is capable of reproducing epidemic dynam-
ics. To further quantify the influence of the detection probability p1 on the COVID-19 epidemic,
we took the parameters for Guam as an example in the following study. Based on our parameter
estimation, the probability p1 in Guam increased from 0.045 at the early stage to 0.13 in the later
stage. Here, we took p1 = 0.13 as the default value. First, we varied the detection probability p1

(p1 = 0.07, 0.1, 0.13, 0.16, 0.19) for asymptomatic infections at constant values of the other parame-
ters. Here, we set p1 as a constant in the model simulations.

We note that H(t) in the model equation represents the number of hospitalized patients, which varies
with time due to newly confirmed cases, recovered patients and dead patients. Here, to quantify the
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epidemic dynamics, we are interested in the daily confirmed cases defined as

Hnew(t) = Ψ1(I1(t), p1) + Ψ2(I2(t), p2). (3.1)

Moreover, we also examined the peak value of daily confirmed cases

Hmax
new = max

t≥0
{Hnew(t)}, (3.2)

and the cumulative new confirmed cases

HC(t) =
∫ t

0
Hnew(s)ds. (3.3)

Similarly, we also consider the daily new infected cases

Inew(t) = γ1E(t), (3.4)

the peak value
Imax
new = max

t≥0
{Inew(t)}, (3.5)

and the corresponding cumulative new infected cases

IC(t) =
∫ t

0
Inew(s)ds. (3.6)

Similar to the classical SIR or SEIR models, the daily confirmed case number increases to reach a
peak value and then decreases to 0 as time t approaches infinity. The cumulative confirmed case number
saturates at a final value when t is large enough. The daily new confirmed case number obviously
increases if the detection probability p1 is decreased (Figure 6a). If p1 is reduced by half (p1 = 0.07),
the peak value of daily confirmed cases can be as high as 5000, and the number decreases to 98 if the
detection probability increases to p1 = 0.16, approximately 1% of that with p1 = 0.07. We further
examined the peak value of both daily new confirmed cases and new infections cases; both numbers
exponentially decrease with the detection probability p1, while the daily infection number is more
sensitively dependent on changes in the detection probability (Figure 6b).

We further examined the dependence of cumulative confirmed cases on the detection probability
p1 (Figure 6c). The cumulative confirmed case number obviously increases with the reduction of p1.
Model simulations predict a final epidemic scale of 4 × 104 cases when p1 = 0.07, and the number
decreases to 2.7% (1160 cases) when p1 increases to 0.16. These results suggest that increasing the
detection probability p1 can effectively reduce the epidemic scale.

To quantify the epidemic dynamics with various detection probabilities, we defined a relative in-
crease index of daily new confirmed cases (∆‡H) as the ratio of changes in daily new confirmed cases
to daily new confirmed cases, which is formulated as

∆‡H =
∆∆Hnew

∆Hnew
, (3.7)

where ∆ is a difference operator defined as ∆ f (t) = f (t) − f (t − 1) for any function f (t). Based on our
model simulations, the time evolution of ∆‡H is shown in Figure 6d. Despite the obvious dependence
of epidemic dynamics on the detection probability p1, the relative increase index ∆‡H is insensitive
to p1; however the underlying mechanism is not yet known. Hence, the proposed relative increase
index may be used to quantify epidemic dynamics that are independent of the detection probability for
asymptomatic infections.
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Figure 6. Influence of the detection probability p1 on the COVID-19 epidemic. (a) Daily
new confirmed cases (Hnew(t)) under various probabilities p1. (b) Dependence of the peak
values (log scale) of the daily new confirmed cases (Hmax

new ) and the infected cases (Imax
new ) on

the probability p1. (c) Cumulative confirmed cases (HC(t)) under various probabilities p1.
(d) Time course of the relative increase index (∆‡H) for various probabilities p1. Here, p1

takes values 0.07, 0.1, 0.13, 0.16, 0.19, respectively. In each case, the results were obtained
from 50 independent runs.

3.4. Increasing the detection probability for symptomatic infections reduces the epidemic scale

We further examined the influence of changing the detection probability for symptomatic infections
(p2). Based on our parameter estimation, the detection probability p2 in Guam increased from 0.3 at
the early stage to 0.882 in the later stage. Here, we took p2 = 0.7 as the default value. We varied
the detection probability p2 (p2 = 0.5, 0.6, 0.7, 0.8, 0.9) and fixed other parameters as their default
values. Simulation results are shown in Figure 7. Similar to the results with changes in p1, the daily
new confirmed case number increases with p2 (Figure 7a), and the peak value of daily new confirmed
cases and the peak value of new infections both decrease with increasing detection probability (Figure
7b). Increasing the probability p2 can decrease the number of cumulative confirmed cases (Figure 7c).
We further examined the relative increase index ∆‡H and found that the index is independent of the
detection probability p2 (Figure 7d).

3.5. Prediction of epidemic scales with varying detection probabilities

To examine the impact of the detection probabilities p1 and p2 on epidemic size in the four states
of Guam, Texas, the Virgin Islands, and Wyoming in the US, we performed model simulations with
varying detection probabilities p1 ∈ (0, 0.2) and p2 ∈ (0, 1) and fixed other parameters unchanged as
their estimated values shown in Table 3 and Figure 3. The simulation results for the cumulative new
infected cases IC(t) in Guam, Texas, the Virgin Islands and Wyoming are shown in Figure 8. The model
simulation shows that cumulative infected cases obviously decrease if either the detection probability
p1 or p2 is increased. Specifically, in Guam and Texas, the epidemic size obviously decreases when p1

varies from 0 to 0.1. For the Virgin Islands, the epidemic size obviously decreases when p2 = 0 and p1

increases from 0 to 0.2, and a slight increase in p2 from 0 may significantly reduce the epidemic size.
Similar results are obtained for Wyoming; slight increases in the detection probabilities p1 or p2 from
0 would obviously reduce the epidemic size. These results suggest the importance of performing NAT
detection and isolating of confirmed cases in controlling the COVID-19 epidemic.
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Figure 7. Influence of the detection probability p2 on the COVID-19 epidemic. (a) Daily
new confirmed cases (Hnew(t)) under various probabilities p2. (b) Dependence of the peak
values (log scale) of the daily new confirmed cases (Hmax

new ) and the infected cases (Imax
new ) on

the probability p2. (c) Cumulative confirmed cases (HC(t)) under various probabilities p2.
(d) Time course of the relative increase index (∆‡H) for various probabilities p2. Here, p2

take values 0.5, 0.6, 0.7, 0.8, 0.9, respectively. In each case, the results were obtained from
50 independent runs.
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4. Conclusions

Many counties suffer from insufficient detection of COVID-19 infections, which may result in un-
derestimation of the epidemic size and, in turn, hamper appropriate epidemic control measures. Our
study proposed a mathematical model to investigate how insufficient detection may affect the dynam-
ics of the spread of COVID-19. The model explicitly considers various detection probabilities for
asymptomatic and symptomatic infections. We took the reported data from four states in the US as an
example in our study and tuned the model parameters. We found that detection probabilities may vary
over time with different strategies of control measures.

Model simulations show that both infected and confirmed cases are sensitively dependent on the
detection probability. Insufficient detection for either asymptomatic or symptomatic infections may
worsen the situation of the COVID-19 epidemic, including increasing in the number of daily new
confirmed cases, the peak value of daily new infections, and the cumulative number of confirmed
cases.

We further investigated the influence of varying the detection probabilities for both asymptomatic
and symptomatic infections on the epidemic scale of our model. Simulations show that increasing the
detection probability can significantly reduce the epidemic size. The detection probability for asymp-
tomatic infections is very important for reducing the size of the epidemic. Therefore, early detection
and isolation of COVID-19 infections is important for the control of the epidemic. Nevertheless,
asymptomatic infections often generate false-positive and false-negative results for asymptomatic in-
fections, and there is a tradeoff between test sensitivity and test frequency when there are limitations
in the testing budget. In this case, a multiscale modeling study has recommended that low-sensitivity
tests be employed at high frequency [37].
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