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Abstract: In the literature, several HTLV-I and HIV single infections models with spatial dependence
have been developed and analyzed. However, modeling HTLV/HIV dual infection with diffusion has
not been studied. In this work we derive and investigate a PDE model that describes the dynamics of
HTLV/HIV dual infection taking into account the mobility of viruses and cells. The model includes the
effect of Cytotoxic T lymphocytes (CTLs) immunity. Although HTLV-I and HIV primarily target the
same host, CD4*T cells, via infected-to-cell (ITC) contact, however the HIV can also be transmitted
through free-to-cell (FTC) contact. Moreover, HTLV-I has a vertical transmission through mitosis
of active HTLV-infected cells. The well-posedness of solutions, including the existence of global
solutions and the boundedness, is justified. We derive eight threshold parameters which govern the
existence and stability of the eight steady states of the model. We study the global stability of all
steady states based on the construction of suitable Lyapunov functions and usage of Lyapunov-LaSalle
asymptotic stability theorem. Lastly, numerical simulations are carried out in order to verify the validity
of our theoretical results.
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1. Introduction

Since past decades humanity has been under attack by many viruses such as hepatitis C virus
(HCV), human immunodeficiency virus (HIV), hepatitis B virus (HBV), human T-lymphotropic virus
type I (HTLV-I), dengue virus and lastly coronavirus. Both HTLV-I and HIV have similar ways of
transmission from infected individual to uninfected one. HTLV-I and HIV primarily target the same
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host, CD4*T cells. HTLV-I can lead to adult T-cell leukemia (ATL) and HTLV-I-associated myelopa-
thy/tropical spastic paraparesis (HAM/TSP), while HIV causes acquired immunodeficiency syndrome
(AIDS). Viral infection models have become an indispensable tool to biological researchers, where
they can improve the understanding of a within-host virus dynamics and help in predicting the effect of
antiviral drug efficacy on disease’s progression [1]. In 1996, Nowak and Bangham [2] have presented
an important HIV dynamics model. After that, this model has been extended in many works (see
e.g., [3-17]). All of the above mentioned models are given by ordinary or delay differential equations
under the assumption that the cells and viruses are well mixed. Wang and Wang [18] have extended
the model presented in [2] by incorporating spatial dependence as:

—aséf’l) =p—-aSxt)—xS(x,1)V(x,1),
ULD = 318 (x, )V (x, 1) — al (x, 1), (1.1)

WD — dy AV (x, 1) + bI(x, 1) — £V (x, 1),

where S (x,1), I(x,t) and V(x,t) are the concentrations of uninfected cells, active infected cells and
free virus particles at position x = (xy, X, ..., X,,) and time ¢. The parameter p represents the creation
rate of the uninfected cells. The free virus particles infect the uninfected cells via free-to-cell (FTC)
transmission at rate %S V. The infected cells produce viruses at rate »/. The uninfected cells, active
infected cells and free virus particles are die with rates @S, al and €V , respectively. Here, dy is
the diffusion coeflicient and A is the Laplacian operator. In [19], Kang et al. have studied a four-
dimensional diffusive viral infection model with Crowley-Martin infection rate. Model (1.1) has been
extended by including different factors; (1) time delay [19,20], (i1) different forms of the incidence
rate [19, 20], (iii) Cytotoxic T lymphocytes (CTLs) immune response [19], and (iv) both CTL and
humoral immune responses [21].

In model (1.1), it has been assumed that the virus can only infect the target cell via FTC contact.
In case of HIV, the infected cell can infect the target cell via direct infected-to-cell (ITC) contact [22].
Wang et al. [23] have extended model (1.1) by incorporating ITC transmission as:

BLD = p— @S (x,1) — 1S (x, HV(x, 1) — %28 (x, DI (x, D),

% =x11S(x, )V (x, 1) + 2,8 (x,0)I(x, 1) — al(x,1), (1.2)

P = dyAV(x, 1) + bI(x, 1) — V(x, 1),
where the term x,S I represents the ITC incidence rate. This model has been generalized in [24] by
including time delay and general FTC incidence rate function in the form f(S, V). Model (1.2) assumes
that the virus particles can move based on Fickian diffusion, while the cells can not. In [25-31], it has
been assumed that the viruses, uninfected cells, infected cells and immune cells can diffuse.

Modeling and analysis of HTLV-I single infection have been addressed in several works [32-36].
The effect of CTLs on HTLV-I dynamics has been addressed in many works (see e.g. [37—43]). Lim and
Maini [37] have proposed an HTLV-I dynamics model with mitotic division of active HTLV-infected
cells and CTL immunity. Both mitotic division of active HTLV-infected cells and CTL immune re-
sponse have been included in the HTLV-I dynamics in many papers (see e.g., [37,44,45]). All of these
HTLV dynamics models did not include the diffusion of the viruses and cells. Wang and Ma [46] have
introduced a diffusive HTLV-I infection model with mitotic division of active infected cells and CTL
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immune response:

BED — o AS (x, 1) + p — @S (x, 1) — %38 (x, DY (x, 1),
BECD — 1, AE(x, 1) + @3S (5, DY (x, 1) + Y (x, 1) — (i + w) E(x, D),
WD) = g, AY(x,1) + WE(x, 1) — Y (x, 1) — 1oCY (x, DY (x, 1),

ot
G — Gy ACY (x,1) + 0, Y (x, 1) = 1 CY (x, 1),

where E(x, 1), Y(x,t) and CY(x,t) are the concentrations of latent HTLV-infected cells, active HTLV-
infected cells and HTLV-specific CTLs at position x and time ¢, respectively. The uninfected CD4*T
cells become HTLV-infected cells due to ITC contact at rate %3S Y (horizontal transmission). The
fraction ¢ € (0, 1) represents the probability of new HTLV infections via horizontal transmission
could be enter a latent period. The term r*Y (vertical transmission) represents the rate at which active
HTLV-infected cells become latent. The terms wE and 6*Y denote the death rates of the latent and
active HTLV-infected cells, respectively. The latent HTLV-infected cells are activated with rate Y E.
The active HTLV-infected cells are killed by their specific CTLs at rate u,C*Y. The linear term oY
represents the expansion rate of HTLV-specific CTLs. The HTLV-specific CTLs decay at rate m,C”.

During the last decades HTLV-I and HIV dual infection has been extensively reported. It has been
discovered that the simultaneous infection by the two viruses affects the pathogenic development and
influences the outcomes for associated chronic diseases [47]. In fact, concurrent infections with HTLV-
I 'and HIV have occurred frequently in areas where peoples living at high risk activities such as needle
injection sharing and unprotected sexual relationships. In addition, HTLV/HIV dual infection have
documented in specific geographic regions where both retroviruses become endemic [48], and among
those who belonged to a specific ethnic as well. For instance, the dual infection rates in peoples
living in some parts of Brazil have reached 16% of HIV-infected patients [49]. In a recent work,
it has been estimated that the HIV single infected patients are more exposure to be dually infected
with HTLV-I at a higher rate initiating from 100 to 500 times in comparison to the uninfected peoples
[50]. Moreover, some seroepidemiologic studies have reported that HTLV-infected patients are at
risk to have a concurrent infection with HIV, and vice versa compared to those who are infection-
free from the general population [48]. HTLV-I and HIV are mainly attack the CD4*T cells and lead
to immune dysfunctional as well, however, they also conflict no doubt with respect to the etiology of
their pathogenic and clinical outcomes [51]. HTLV-I and HIV dual infection appears to have an overlap
on the course of associated clinical outcomes with both viruses [48]. Many researchers have reported
that HIV infected individuals who are possibly infected with HTLV-I simultaneously can potentially
associated with clinical progression to AIDS. In contrast, HIV can modify HTLV-I expression in dual
infected patients which leads them to a higher risk of developing HTLV-I related diseases such as
TSP/HAM and ATL [48,50].

While many efforts have been made to investigate mathematical modeling and analysis of both
HTLV-I and HIV single infection, almost none have focused on the modeling of HTLV/HIV dual
infection dynamics. The only exceptions are the very recent works presented in [52, 53], however, in
these papers the diffusion of the viruses and cells has been neglected. Therefore, the contributions of
the present paper can be stated as follows: (i) formulate an HTLV/HIV dual infection model taking into
account the mobility of cells and viruses, (i1) study the basic properties of the proposed model, (iii)
calculate all possible steady states and derive their existence conditions, (iv) study the global stability
of all steady states using Lyapunov-LaSalle asymptotic stability theorem, (v) perform some numerical
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simulations to illustrate the theoretical results.

Since an individual can be infected with two or more viruses in the same time, our model may
be helpful to study different dual infections such as Coronavirus/Influenza, HIV/HCV, HIV/HBV and
HIV/Malaria.

2. Model formulation

We set up a partial differential equation model that describes the change of concentrations of eight
compartments with respect to position x and time #; uninfected CD4"T cells S (x, 7), latent HI V-infected
cells L(x, t), active HIV-infected cells I(x, t), latent HTLV-infected cells E(x, t), active HTLV-infected
cells Y(x, 1), free HIV particles V(x, r), HIV-specific CTLs C’(x, t), and HTLV-specific CTLs C¥(x, 1).
We consider the following factors:

(F1) The uninfected CD4*T cells are the main target of each of HTLV-I and HIV;

(F2) There exist latent HIV-infected and HTLV-infected cells;

(F3) Bilinear specific CTL immune response for both HTLV-I and HIV;

(F4) The HIV can spread when an uninfected CD4*T cell is contacted with free HIV particle (FTC
infection) or active HIV-infected cell (ITC infection);

(F5) HTLV-I can be transmitted via two routes, (i) horizontal transmission via direct ITC touch via
virological synapse, and (ii) vertical transmission by mitotic division of active HTLV-infected cells.

(F6) Spatial diffusion for all compartments.

Taking into account factors (F1)-(F6) we propose the following PDEs model:

BLD = dgAS (x,1) + p — @S (x,1) = 1S (x, YV (x, 1) — 228 (x, DI (x, 1) — %35 (x, )Y (x, 1),
BL;’,‘” diAL(x, 1) + (1 = B) S (x, 1) [, V(x, £) + #21(x, )] — (A + ) L(x, 1),

XD — gy AT(x, ) + BS (x, 1) [y V&, 1) + %21 (6, D] + AL(x, 1) = al(x, 1) = i C'(x, DI (x, 1),
BB gy AE ey 1) + @S (6 DY (5, 1)+ KV (3,1) = (§ + 0) EC, ),

aY(xr) = dyAY(x,0) + YE(x, 1) + (1 — &) r*Y(x,1) = 5*Y(x, 1) — ioCY (x, )Y (x, 1),

aV(xt) =dyAV(x,t) + bl(x,t) — eV(x,1),

aca(txt) deiAC (x, 1) + 01 Cl(x, )I(x, 1) — 1, C(x, 1),

r’)Cy(xt) =dovACY (x, 1) + 02CY(x, )Y (x,1) — mC¥(x, 1),

2.1)

where x € I', t > 0. A fraction 8 € (0, 1) of new HIV-infected cells will be active, and the remaining
part 1 — 8 will be latent. Latent HIV-infected cells are transmitted to be active at rate AL and die at
rate yL. The term u;C’I is the killing rate of active HIV-infected cells due to their specific immunity.
The term «r*Y, k € (0, 1) represents the rate active HTLV-infected cells that transmit to latent HTLV-
infected cells and get-away from the immune system [45]. The expansion rate for HIV-specific CTLs
and HTLV-specific CTLs are represented by o-;C'I and 0,C'Y, respectively. The HIV-specific CTLs
decay at rate 7;C’!. All remaining parameters have the same biological meaning as explained in Section
1. The spatial domain I' ¢ R™, m > 1 is connected and bounded with a smooth boundary dI', while dq,
is the diffusion coefficient where U € {S,L,1,E, Y, V,C’, C'}). The initial conditions are given by

S(x,0)=G1(x), Lx,0)=G(x), I(x0)=G:x), Ex0) =gGix), Yx0) =gsx),
V(x,0) = Go(x), C'(x,0)=G7(x), C'(x,0)=Gs(x), xeT, 2.2)
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where Gi(x), i = 1,..., 8, are non-negative and continuous functions. In addition, we take the following
homogeneous Neumann boundary conditions:

oS oL ol _9E _9Y oV _oC' oo

— =0, t>0, xedl, (2.3)
6(1/ 6(1/ 6(1/ 6(1/ 6W 6W G(V oV

where — is the outward normal derivative on the boundary JI'. These boundary conditions indicate

that cells and viruses cannot cross the isolated boundary [54].
We assume that »* < min {a, w, 6%} [37]. It follows that (1 — k) ¥* < ¢* and then

-1 -x)r">0.
Leto = 6" — (1 — k) r* and r = «r*. Therefore, model (2.1) can be written as:

BED = o AS (x, 1)+ p — @S (x5, 1) = 518 (6, OV (x, 1) = %2 (5, DI(x, 1) = %38 (x, )Y (x, 1),
"L(X D = d, AL(x, 1) + (1 = B) S (x, ) [, V(x, 1) + #1(x, 0] = (A + y) L(x, 1),

al(xt) = d;AI(x,t) + BS (x,1) [, V(x, 1) + 20(x,1)] + AL(x, 1) — al(x, t) — u; C'(x, )I(x, 1),
6E(§f D = dgAE(x, 1) + @3S (x, )Y (x, 1) + rY(x,1) — (¥ + w) E(x, 1),

DD = dyAY (x, 1) + WE(x, 1) = 6Y(x, ) — i1oCY (x, )Y (x, 1),

"V“‘ D = dyAV(x, 1) + bl(x, 1) — eV(x, 1),

Ma(f ) = det AC!(x, 1) + 0, C(x, DI(x, 1) — 1, C' (x, 1),

acY(xt) = der ACY (x, 1) + 02 CY (x, )Y (x, 1) — 1 CY (x, ).

(2.4)

3. Well-posedness of solutions

Proposition 1. Assume that dg = d; = d; = dg = dy = dy = dor = dev = d. Then, model (2.4) with
any initial satisfying (2.2) has a unique, non-negative and bounded solution defined on I" X [0, +00).
Proof. We denote X = BUC (f, RS) the set of all bounded and uniformly continuous functions from

I" to R®, with norm ||6]|x = sup |6(x)|. Define the positive cone X, = BUC (f‘, Ri) cX which induces a
xel’

partial order on X. This shows that the space (X, || - ||x) is a Banach lattice [55,56].

For any initial data g = (gl’QZ’g3’g4’g5’g6’g7’Q8)T € X+, we define H =
(H17H2’ H37H47 H53H67 H77H8)T . X+ - be

H(G)(x) = p — aG1(x) — %1G1(X)G6(x) — #2G1(x)G3(x) — %3G1(X)G5(%),
Hy(G)(x) = (1 = B) G1(x) [%1G6(x) + 22G3(xX)] = (A + ¥) G2(),

H3(G)(x) = BG1(X) [#1G6(x) + %2G3(x)] + 1G2(x) — aG3(x) — 1G7(0)G3(x),
Hy(G)(x) = px3G1(0)G5(x) + rGs(x) — (¥ + w) Ga(x),

Hs(G)(x) = YGa(x) — 6G5(x) — toGs(x)Gs(x),

He(G)(x) = bGs(x) — Gs(x),

H7(G)(x) = 01G7(0)G3(x) — m1G7(x),

Hy(G)(x) = 02G5(0)G5(x) — mGs(x).
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We note that H is locally Lipschitz on X,. System (2.4) with initial conditions (2.2) and boundary
conditions (2.3) can be rewritten as the following abstract functional differential equation

U = @U + H(U), t > 0,
UO0) =G e X.,

where U = (S,L,1,E,Y,V,C',CY)" and OU = (ds AS,d; AL, d,Al, dgAE, dyAY, dy AV, de AC,
dey ACY )T . It is possible to show that

hlg(l)l+ }lldist (GO0)+hH(G),X:) =0, VG € X,.

It follows from [55-57] that for any G € X,, system (2.4) with (2.2)-(2.3) has a unique non-
negative mild solution (S (x,7),L(x,1),1(x,1),E(x,1),Y (x,1),V (x,1),C! (x,1),CY (x,1)) defined on
[ x [0,7,,), where [0,7,,) is the maximal existence time interval on which the solution exists. In
addition, this solution also is a classical solution for the given problem.

To prove the boundedness of solutions, we define

W =S N+ Lin)+ I+ [En+ Y]+ v+ 2o n+ 220" (.
@ 2b o) o,

Sinceds =d;, =d; =dg =dy =dy = dor = dev = d, then using system (2.4) we obtain

a‘P((;tc n dA¥(x,1) = p — aS (x,1) — yL(x,1) — EI(X, /) — gE(x’ 9
— 5;Y(x f) _ _V( ) HiTT IC]( ) M2 TT ZCY( )
¢ 202

We have 6 — r = 6" — r* > 0. Hence,

o¥(x,1)
ot

— AN¥(x,1) = p — aS (x,) — yL(x, 1) - ‘—’I(x, f) — %E(x, 1)

o —r ag M1ty M2t

Y(x,0) = V(% 0) = C'( - CY( )

<p—o|Sn+ LoD+ I0x1+ é {E(x, 1) + Y(x, 1)
+ v+ Bl n + 220V n| = p - ¢%(x0),
2b o) @wo>

where ¢ = min{a, 7y, %, w,0" —r*, e,m,m}. Thus, W(x, 1) satisfies the following system

TD — A (x,1) < p — $¥(x, 1),

‘I’(X 0) = Gi(%) + Go(x) + G3(x) + ; [Ga(x) + G5(N)] + 35G6(x) + E-G7(x) + L2Gs(x) 2 0,
oY
— =0.

oV
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Let ‘T’(t) be a solution of the following ODE

&0 = p - (),
Y(0) = marX‘I’(x, 0).

This gives that ‘T’(t) < max {3, max'¥(x, O)}. On the basis of comparison principle (see [58]), we obtain
xel’
Y(x, 1) < ‘T’(t). Then, we get
Y(x,t) < max {/—), max'¥(x, 0)} ,
¢ xel’
which implies that S (x,1), L(x,1),1(x,1), E(x,1), Y (x,1),V (x,1), C' (x,1), and C¥ (x, t) are bounded
on I x [0,7,). We deduce from the standard theory for semi-linear parabolic systems that 7, = +oco

[59]. This shows that solution (S (6,0, L0, I(x,0),E(x,0),Y(x,0),V(x,0),C' (x,0),CY (x, t)) 18
defined for all x € I', # > 0 and also is unique and non-negative.

4. Steady state analysis

In this section, we calculate the steady states and derive the threshold parameters which guarantee
their existence. The steady states of system (2.4) satisfying the following equations:

O=p—aS —x;SV —x,S1 —x35Y, “4.1)
0=>10-p0uSV+SI)—-(A+y)L, (4.2)
0=80SV +x,8) + AL —al — u,C'I, 4.3)
0=pu3SY+rY - (W +w)E, “4.4)
0=yE -6Y - 1C'Y, (4.5)
0=>bl-¢V, (4.6)
0= (o1l -m)C, 4.7)
0= (oY -m)C". (4.8)

We find that system (2.4) has eight possible steady states.

(i) Infection-free steady state, Dy = (S, 0,0,0,0,0,0,0), where Sy = p/a. In this case the body is
free from HIV and HTLV.

(i1) Persistent HIV single infection steady state with an ineffective immune response, b, =
(Sl,Ll,Il, 0, 0, V1,0, 0), where

So 3 aga (1 - ) _ 3 sa B 3 ab _
%, L= Gy + ) (b + 70) Ri=-1, L = Ri=-1,Vi=—— (R -1).

S = _—
%1b+%28 %1b+%28

The parameter R | represents the basic HIV single infection reproduction number for system (2.4) and

is defined as:
R :So%lb(ﬂ'}/+/l)+50%2(ﬁy+/l)
! ag(y + A) aly+a)

The parameter R decides whether or not a persistent HIV single infection can be established. It is
clear that at the steady state D, the HIV single infection persists with ineffective immune response.
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(ii1) Persistent HTLV single infection steady state with an ineffective immune response, b, =
(‘5‘29 O, 07 E25 Y27 05 07 0)7 Where

So ad a
So=5, Eb=—(R,-1), h=—(R,-1).
z%zz%ﬂp(z)z%(z)
The parameter R, denotes the basic HTLV single infection reproduction number for system (2.4) and

is defined as:
% _ (p%?ﬁwSO
=
O—-nyY+ow
The parameter R, decides whether or not a persistent HTLV single infection can be established. At
the steady state D, the HTLV single infection persists with an ineffective immune response.
(iv) Persistent HIV single infection steady state with only effective HIV-specific CTL, b; =
(S3,L3,15,0,0, V3, Cg, 0), where

S. = g0 1p _ pry (1 =) Ge1b + x58)
3 71 (01b + %58) + agoy’ 3 (y+ ) [m (t1b + n26) + aeo]’
b b
=21 vi=2n="200 ¢l = L(Ry-1),
01 & &0 Hi

and
o1p By + D) (1b + %)

3= a(y + ) [m Geb + x%r8) + ago]’

is the HIV-specific CTL immunity reproduction number in case of HIV single infection. The parameter
R; determines whether or not the HIV-specific CTL immune response is effective in the absence of
HTLV. At the steady state D5 the HIV single infection persists with an effective immune response.

(v) Persistent HTLV single infection steady state with only effective HTLV-specific CTL, b, =
(54,0,0, E4, Y4,0,0,Cy), where

G o TP g Tlr(m +acy) + xsppos]
! Toxs + aoy’ ! 02 (Y + w) (M3 + o)
7T 6 -1+ ow
Y4:—2, Z:—w(%4_l)
o) /.lz(lﬂ + w)

The HTLV-specific CTL immunity reproduction number in case of HTLV single infection is stated as:

_ Yo pens
T = W+ 0] (s + )’

The parameter R, determines whether or not the HTLV-specific CTL immune response is effective in
the absence of HIV. At the steady state D, the HTLV single infection persists with an effective immune
response.

(vi) Persistent HTLV/HIV dual infection steady state with only effective HIV-specific CTL, D5 =
(SS, L5, 15, E5, Y5, V5, Cg, 0), where
:wzgz’ Iszﬂ:I& V5:ﬂ=V3,
PR3y o £

Ss
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L = m (1 =B)Gerb +28) [0 — )y + 5(1)], E. - O[m Ge1b + n26) + aeo ] (Rs— 1),
exzo 1y (y + ) ex3o Y
Y, = (21D + %26) + g0 (Rs—1), Cl= a (Ry/R, - 1).
EX30T| Hi

The HTLV infection reproduction number in the presence of HIV infection is stated as:

Re = PYER3o 1Y
T [(6 = )Y + 6w] 7y (1b + 328) + agor]

It is obvious that the parameter Rs determines whether or not HIV-infected patients could be dually
infected with HTLV. At the steady state D5 the HTLV/HIV dual infection persists with only HIV-
specific CTL immune response.

(vii) Persistent HTLV/HIV dual infection steady state with only effective HTLV-specific CTL, D¢ =
(S6, L6, 16, E6, Y6, V6, 0, Cg), where

3 ag(y+A4) B _ M
S By Dbt 0 T
_ 618(1 —ﬁ)(ﬂ2%3+0’0'2) _ _ 8(7T2%3+Cl’0'2) B
Ls = 02 (By + ) (1b + 226) (Re 1), 15 = 05 (1b + 2,8) (Re = 1),
£ - [r By + ) (e1b + 326) + aspr; (y + )]
T By + )W+ w) (b + xe)
b (s + ao>) y @=ny+oéw
==  ““(R¢-1), Ci=— " (R,/R - 1).
2 Gab 1 ey oY T Tmwra C/Fiml

The HIV infection reproduction number in the presence of HTLV infection is stated as:

_ po2 By + ) Grb + %28)
ag(y + ) (myxns3 + aos)

It is clear that the parameter R¢ determines whether or not HTLV-infected patients could be dually
infected with HIV. At the steady state D the HTLV/HIV dual infection persists with only HTLV-
specific CTL immune response.

(viii) Persistent HTLV/HIV dual infection steady state with effective HIV-specific CTL and HTLV-
specific CTL, B; = (S7, Ly, I3, E7, Y7, V7, Ch, CY), where

E0 1020
Sy = ,
105 (31D + #28) + manzE071 + Q€T 107
L — mo2p (1 = B) (b + x26)
’ (y + ) [m105 (1 b + 328) + myxnze0o) + ago 03]
PP [mr1r0 (1D + %2€) + reoy (Maxs + @) + #38071020¢9]
T 02 (Y + w) [0 (1D + %28) + myxze0) + ago 0]
g b 0) bm,
L=—=hL=1IL Y=—=Y4=Ys, Vi =—=V3=0V5,
o (o) €0
a 0 —nr+dw
Cil=—R;-1), C (Rg— 1),
1 (Y + w)
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and
_ 1020 By + ) (1D + 2%,8)
T (v + A) [0 (t1b + #28) + myn3e0) + ago 03]
_ PHIET102PY
5 [(6 = N + 6w] [m103 (1b + %#28) + myxzeor; + ago0;]

The parameter R; is the competed HIV-specific CTL immunity reproduction number in case of
HTLV/HIV dual infection. The parameter Ry is the competed HTLV-specific CTL immunity repro-
duction number in case of HTLV/HIV dual infection. Clearly, D; exists when R; > 1 and Rg > 1.

5. Global stability analysis

In this section, we analyze the global asymptotic stability of all steady states by Lyapunov method.
For constructing Lyapunov functions we follow the works in [60,61]. To prove Theorems 1-8 we need
the arithmetic-geometric mean inequality

%Zn“x,.z | ﬁx,-, x>0, i=12, ..
i=1 i=1

which yields
S; SIL; LI _
2F +—1>3 j=1,3,5,6,7, (5.1
S S;L LI
5; + 2053 21,3567, (5.2)
S SV LV
S; SVL, LI 1V, .
Ly —2 4+ Ly L4 j=1,3506,7, (5.3)
S S,V,L Li LV
S; SYE; EY, ,
0J : ! >3, j=2,4,5,6,7. (5.4)

+ +—1 >
S "SYE EY
Consider a function ®,(S, L, I, E, Y, V,C',C") and define

éj(r):fcbj(x,z) dx, j=0,1,..,7.
T

Let ‘I"j be the largest invariant subset of
Loy dO; _
T;=3(,LLEYV,C,C): - = 0r, j=0,1,2,...,7.

We define a function
Fvy=v—-1-Inwv.

Numann boundary conditions (2.3) and Divergence Theorem imply that

OzfVﬂ~(17dx:fdiv(V(Ll)dx:fA(lex,
or r r
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1 S o1 AU ||[VU|P?
0= —VU - Vdx= | div(=VU) dx = — — —— | dx,
ﬁrﬂﬂWx ﬁlv(ﬂﬂ)x fr‘((u (le)x

forU € {S,L,1,E,Y,V,C!,C"}. Thus, we obtain

fA(LI dx =
2
fIIVWII . (5.5)

For convenience, we drop the input notation ie., (S,L I, EY,V,C!,CY) =
(S(x,1), L(x, 1), I(x,1), E(x,1), Y(x,1), V(x,1),C!(x,1), CY(x, ).

Theorem 1. If R| < 1 and R, < 1, then Dy is globally asymptotically stable (GAS).

Proof. Define @y(x, t) as:

Y

S A +A4 1 +
Dy(x, 1) = SOF(—) + Ly XA gt
So) By+tad Ppy+a ¢ oy

+%1SOV+ i (y + ) CI+'UZ(¢/+O))CY,
€ o By + ) wpo

Clearly, (S, L, I E,Y,V,C!,CY) >Of0rallS L IE, YVC’,CY > 0, and ®y(S,,0,0,0,0,0,0,0) =

6<DO

o (1——)[d5AS Fp—aS 1SV =281 — 23S Y]

A

By + 4
Lyt
By+ A4
1
+ — [deAE + @3SY + 1Y — (Y + w) E]
@
LYt

+

[dLAL + (1 = B) SV + 3,8 T) — (A + ) L]

| 1AL+ BGerSV + 265D + AL = al — i, C'l |

150

|dyAY + WE - 5Y — i1nC7Y | + (dyAV + bl — V)

‘M |derACT + 0,CTY — 7, |
wpor
a(y+/l)l+£Y_ 6(1//+w)Y
By+Aa ® oy
N %15501_1117T1 ()’+/1)C1_,Uz7f2(lﬂ+w)cy+ds (1 —&)AS
€ o (By+ ) oo N
+ e AL + diy + /l)AI+ @AE + Y+ ) w)AY + %1dvSo
By + 4 By +4 @ oy €
ider (y + /l)ACI N Hodey (Y + w)ACY
o By + ) Yo,
Using S = p/a@, we obtain

oD, (S =80 aly+a)
— = —a +
ot S By + A

N ur(y + 4
o1 By + )

S
(1 - ?0)(;) —aS) + 2SI + 23S0 —

[dCIAc’ +o,ClI - nlCl] +

AV

(%1 - 1)I+

W(%Z_ Y
4

Mathematical Biosciences and Engineering Volume 18, Issue 6, 9430-9473



9441

A S
_m G+ D) Yt ) ds(l——O)AS
o By + ) Yo, S
Ad d; (y + d +
Ay GO ey WO,
By+Aa By+4 ® oy
N %ldeOAV N ider (y + /l)ACI N Hodey ( + w)ACY
e o1 (By + ) Yo,
Consequently, we calculate dq)“ as follows:

d;i)o:_(lf(S—So)2 dx+a(7+/1)(%1—1)fldx+[(5—r)l/’+5w (%2—1)de
r

dt S By + A4
G ED (o, pemW o) [y dx+dgf(1—&)ASd
o1 By +4) Jr o, r r S
P d v+ 1 d
AL fAdeJrM Aldx+d—EfAE+MfAde
By +AJr By+a4 Jr ¢ Jr oy r
d det (v + dor
L VSOfAde+M AC! dx 4 Foder W+ @) () or g (5.6)
& r o By+A) Jr o r

Using equality (5.5), Eq (5.6) is reduced to the following form
d<1>o _ f(s So)z a(ym)(?%l -1) f’ de s [(6 - r)w+6w (R, -1) fY i

By +4
A S 2
MO+ (o dx_um@pw) o drdsso 1S 4,
o By + A Jr o, r r S

Therefore, % < 0 for all S,,Y,Cc/,c¥ > 0 and % = 0 with equality holding when
(S,1,Y,CI,CY) = (S,,0,0,0,0). The solutions of system (2.4) converge to T;). The elements of T;)
satisfy (S, 1, Y,C!,CY) = (S¢,0,0,0,0) and then as t = AS = AY = 0. The first and fifth equations

of system (2.4) reduce to

oS

O—a——p CYS()—%ls()V
Y

0= =yE.

This yields V = E = 0. Further, we have % = Al = 0, then the third equation of system (2.4) becomes

ol

= — = AL,
ot

which provides that L = 0. Hence, ‘Y';) = {Dy} and by applying Lyapunov-LaSalle asymptotic stability
theorem [62—64] we get that D is GAS.

Theorem 2. Let R > 1, R,/R; < 1and R; < 1, then D, is GAS.

Proof. Define a function ®@;(x, ) as:

S A L A 1 1
<D1(x,t)=SlF(—)+—L1F(—) v T IF(—)+—E
S ,B‘y-l-/l L ﬁ)/ + A I ®
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+¢//+0) %1S1V1F(K)+ iy +4) CI+/~12('70+0))CY.

Y +
oy £ Vi] o1 (By+A) Yo,

Calculating a(% as:

oD S
0—; :(1—?1)[0,’SAS +p—aS —x SV —uyS1—n3SY]

A
By + A4

’87+/1(1 - —)[d,AI +BOaSV + 8D + AL - al - 1, C'l]

1
1
+—[dEAE+(p%3SY+rY—(lﬂ+w)E]+w+w
Y

+

(1 - %) [dAL + (1= B)GaSV + 28T — (L + ) L]

+

|dvAY +yE - 6Y - 1,C"y |

S V, +A4
%101 (1 _ —1) [dyAV + b] — V] 4+ O+ |deiAC! + 0, C'T -7, C|
e 174 o By + )
+
LYo |der ACY + 2 CTY — myCY]
Yo,

S A(1 - L
:(1——1)(p—a/S)+%2511+%3S1Y— A=B) sV emsnl
S By + A L
Aly+ A4 +A4 + A I Aly+ ) 1
LA )Ll_a(y ), _Bl )(%ISV+%2SI)_1_ v+, 4L
By + 4 By + 4 By + 1 I By+a 1
1 1 5 bl bIV
LoD O Dy Ty WO, oM s M
By + 4 By + 4 ©® o & eV
ll17T1(7+/1)C1_ﬂ2ﬂ2(l//+w)cy+ds(l_ﬂ)AS
o (By+ ) o S
L I
Ady (1——1)AL+M(1——1 AT+ 2EAE
By+Aa L By+Aa 1 @ 1/
dvx1S, (1 B E)AV L Hde G+ D) o de Yt w) )y
\% o1 (By + ) oo,

+2.85,V, —

+

) dg +dY(w+w)AY

_l_

g

The steady state conditions of P; imply that

A(1 - A A
d=5 (1S 1V + 228 11) = (7—+)L
By +A4 By +4
a(ly+2) bl
—1, 1= —.

By + A4 &

p:aSl+%1S1Vl+%2Slll, 1s

1SV + x5 =

Then, we obtain

A - L
)(aSI_aS)+(%1S1V1+%25111)(1_ﬁ)+%3SIY— ﬁ( ﬁ) SV 1
Y

S +A SlVlL
A1 - SIL A1 - +A4 SVI
- —( :8)%25111 ! + ( ﬁ) (%1S1V1 + %25111) - IB—()/ )% oL
By + A4 SI,L By + A4 By + 4 S il
Bly+4d) S A0 -p)

By+a4 U T Ty

(-5
ot S

LI
(%1S1V1 +%25111)L—II +%151V1 +%2S111 +
1
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_(6—r)zp+6w

oy

S
+dg (1—?1)AS N

pmy+ ) o pm W +w) oy
o1 By + ) wo

Ad L Y. d
L (1——1)AL+M(1——I)AI+—EAE
By+4 By+A4 ¢

1V,
Y—uSVi— +x,5,V, -
LV

L 1

+ dy (Y + w)AY+ dyx1S (1 B E)AV + mider (y + A)ACI + Hoder (Y + w)ACY
oY € o By + ) QYo
(S—Sl)2+/l(1—ﬁ) Sy SvVL, LI, 1V,

= —a

- Svfa-2Lo2P 2 Th
S By+ a4 1 1( S SWiL Li Ilv)
A(1-p)

O I (R AW (2%
By + A S S\LL L) By+a
1 _
By + )%2S111 51 S\ @-ny+iw| exyS 1y
By + 4 S S o O—-nv+ow
iy + ) T\ g MmWt+w) ( Sl)
YA R ALY ol i - AELS decs U N ety VNS
By + 24 (1 01) Yo, s
Ad: (1—E)AL+—dl(y+/D(l Il)Al+d—EAE+—dY(‘/'+“’)AY
By +4 L By +4 @ oy
dyxS | (1 B E)AV 4 mder (y + /I)ACI + Modey (Y + w)ACY. 5.7)
174 o1 (By + ) Yo

+

+

+

—+

&

Therefore, Eq (5.7) becomes

0d; [ Braly (y + )
=—|a+

00, (S—S1)2+/l(1—,6’)
ot By +4

S By + 4

S SVL LI 1V
s, vy (4= SL_SVLL_Lh IV
S S«WwviL LI LV

A(1 - S, SIL, LI +1 S, SvI, IV
+ ( IB)%ZSIII 3—_1——1 -2 +ﬁ(7 )%1S1V1 3——1——1 -t
By +4 S  S«LL LI PBy+a S Sl LV
@-ny+éw p1 (y + D) [ Cab + %26) + aeoy] /
— (R/R - 1)Y R:—1)C
T R R D e Db e O Y
L I
—’Ll—ZKZ(w+w)CY+dS(1—&)AS+ Ads (1——1)AL+—d’(7”)(1——1)A1
ppor N By + A L By + 4 I
Ly p Wt dvS (1 _ E)AV+'“1dCI Y+, oo, odor W +w), oy
@ oY e Vv o By + ) o,

(5.8)

Calculating the time derivative of @, (¢) and using equality (5.5) to get
dd, _ [ Bady (y + 1)
=—|a+

f(S—Sl)Z
—_— dx
S

A(1 - VL LI 1V
L AL ﬂ)%lslvlf(4———L——l——l)dx
By+4 r

a0 - IL, LI
gL ﬁ)xzslllf(3—ﬁ——s ‘ ——‘) dx
By+Aa r

A S SVI 1V
LBOT >%1s1v1f(3__1__1__1) dx
By+4 r
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[((5—r)w+6w (%2/%1 1)de
oy
wy (y + D) [y (1b + 226) + ago ] (Rs — 1) !
- o1 (By + ) (1b + xy¢) fC dx

vs|? Adi Ly (ClIvLIP

+
MWl Fer g ges, [0S0, T ax
ppor r r S By+AJr L
diliy y + ) (VI dvx1S1Vi (CIIVVI?
- dx — dx.
ﬁ'y'i‘ﬂ r 12 E r V2

Since R,/R; < 1 and R; < 1, then utilizing inequalities (5.1)—(5.3) we obtain ‘ﬁ% < 0 for all

S,L,1,Y,V,C',C" > 0. Further, @ = 0 at (S, L, 1, V, Y,C',C") = (Sl,Ll,Il,Vl,O 0, 0). The solutions
of system (2.4) tend to Y} which contains elements with ¥ = 0, and hence = AY = 0. The fifth

equation of system (2.4) reduces to
8Y
0= =yE,
which yields £ = 0. Hence, T = {D;} and D, is GAS by using Lyapunov-LaSalle asymptotic stability

theorem.
Theorem 3. If R, > 1, R;/R, < 1and R, < 1, then D, is GAS.

Proof. Let ®,(x, t) be defined as:

S A A1 E
CI)z(x,t):SZF(—)+ L+ 2T I+—E2F(—)
S,) By+ad Py+a g E,
lﬂ+wY2F(Y) %152V+ i (y + ) ,+,uz(w+w)CY.
oy Y, £ o1 By + ) ooy

We calculate aq>2 as:

s
f)[dSAS L p—aS =SV = ST — 23S Y]

O(Dz
ot (1 B
* A T AL+ (1 =B)GaSV +8 D)~ (A +7) L]
L2 4
By+A4

+l(1 —%)[dEAE+<p%3SY+rY—(¢+w)E]

Y
1//+a)( Yz) Y i
4 1 - 2)[dyAY + yE - 6Y — 1,0 Y| +
o v [Y v Ho ]
A
M1 (7+ ) [chACI+O-1CII_7T1CI]+M[dCYACY+O-2CYY_ﬂ2CY:I
a1 (By+ ) ppo

S +A E
:(1——2)(p—aS)+%gSZI+%3SZY—MZ+£Y—J{3SY—2
By +4 ¢ E
_ryB Yoy dWre), Yreph oW,
¢ E ® oY o Y oY

[d,AI+,B(%lSV+%zSI)+/1L al - 1, C'l|

2 [dyAV + bl — V]
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bl pm (y + /l)C, o (Y + w)Cy

,ng(lﬂ'i'a)) Y
+——2C"Y, + 3,8
oy P e By + ) wpos
S Ad di(y+ 24 d E
+d5(1——2)AS+ LAL+LAI+—E(1——2)AE
S By + A4 By + A4 @ E
N dy (Y + w) (1 B E)AY+ dv%lszAV N ider (y + A)ACI N Hodey (Y + w)ACY.
oY Y & o1 (By + ) oy
Using the steady state conditions for D,:
+ oW+
p = Q’SQ +%352Y2, %352Y2 + IYZ = l// sz = MYZ, (59)
¢ oY
we obtain
0D, S2) ( Sz) a(y+/1) SYE,
—=1-—=|(aS, —aS) + %3S, Y, |1 — —= | +3,S,] — ——T — %35,Y-
or ( S (@S, —alS) +x38,Y, S %202 By + 1 %302 ZSZYZE
r YE r EY. r_FEY r
_;YZFEZV+%3S2Y2+;Y2_%3S2YZE;_;YZE;-F%?’SZYZ_F;YZ
bl A
+,uz(w+w)cyyz+%152__u1ﬂ1(7+ )i _ P W+ ) oy
oY e o (By+A) oo
S Ad d A d E
+a’s(1——2)AS+ Loapy GOt )AI+—E(1——2)AE
S By + 4 By + 4 © E
d + Y. dyx,S d + A d +
N y (Y w)(l——z)AY+ vH 20y 4 M o (y )AC1+'u2 cor (¥ W)ACY
oy Y € o1 By + ) wpor,
S —5,)? S, SYE, EY YE, EY
_ GBS ey (3o SYE: ENY ry(, YE: EV
S S2Y2E EzY @ YzE EZY
+Cl(7+/1) (%1b+%28)(ﬁ7+/l)52_1 I_,U17T1(7+/1)C1
By + 4 ag(y+A4) o By + )
S Ad d A
+”—2(‘”+‘“)(Y2—ﬂ)cy+ds(1——Z)AS+ LaL+ PO
1/ 02 S By +4 By+4
+d—E(1—E)AEJF—‘ZY(‘““’)(l—E)AndV”‘SZAV
¥ oY Y €
mder (y + /I)ACI + Moder (Y + w)ACY
o By + ) oo
S —5,)° YE, - EY,)? S, SYE, EY
:—a( 2) _1( 2 2) +238,Y, g_22_ »21r2 =l
S QD EE2Y S SzYzE EzY
a(y+2) wmm (y+A) (U + w) (@ + %3m3) y
+ ——(R/R, -1 I- C' + Rs-1)C
By+ﬂ( /B2~ 1) o1 (By + ) QP30 (R 1)
S Ad di(y+ A d E
+a’5(1——2)AS+ Lpp 4 40 )AI+—E(1——2)AE
S By + A4 By +A4 ¢ E
dyn1S dei A dpy
VA2 L Hide (y + )AC’+’U2 c (¢+w)ACY. (5.10)

+dY(Z—g;_w)(l—%)AY+

Therefore, we take the time derivative of ®,(7) along the positive solutions of (2.4) and use equality

AV
& o1 (By + ) o,
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(5.5) to find
dd)z S =8, Sz) (YE, - EY,)?
= dx—— | —————~ dx
. EEY
So SYE2 EY,
Y. Lt _ 27 =2
+%3S2 2]1:(3 5 SZYZE E2Y) dx
-1
L+t DRYR 1) D
By + A4 r o By+A) Jr
-1
L W+ w) (@0 +x375) (Rs—1) Y dx
Y30 r
vS|]? dgE VE|? dyY. vY|?
—dgS, (VS]] & LEE2 IVE] g & » (Y +w) (VY]] di.
r S2 "% r E? oY r Y2

Thus, if R|/R, < 1and R, < 1, then from inequality (5.4) we obtain di)z <OforallS,ILE,Y,C!,CY >

0. In addition, d(bz =0at(S,E,Y,I,C',C") = (S z,Ez, Y5,0,0,0). The solutions of model (2.4) tend
to ‘I’ which satlsfy S,Y,1) =(S,,Y,,0) and hence = AS = 0. The first equation of system (2.4)
becomes

oS
= — :p—a/52 —%152V—%352Y2.
ot
From conditions (5.9) we get V = 0. Moreover, we have = Al = 0, then the third equation of system
(2.4) becomes
ol
0=—=AL,
ot

’

which provides L = 0. Thus, T, = {D,} and by applying Lyapunov-LaSalle asymptotic stability
theorem we get that D, is GAS.

Theorem 4. If 'R; > 1 and R5 < 1, then D5 is GAS.

Proof. Define a function ®5(x, ) as:

S 1 L 1 1
<I>3(x,t):S3F(—)+ L3F( ) v IgF( )+—E+‘”+“’Y
S3) py+A4a Ly) pBy+A4 L) ¢ oY

VY wmy+Ad (C’) W+ w)
LT (=) 2T 9
V3) o By +4) ° ¥ U o)

%153

ViF (

€

We calculate % as:

D S
a; (1 - f)[dSAS +p—aS =SV =181 — %3S Y]

% L
+,By+/l(1__3)[dLAL+(l —B) 1SV +2%,8S1) — (1 +y) L]
7+/1

,8)/+/l
1

+ — |deAE + @3SY +rY — (Y + w) E] +
¥

I
(1 ;)[d,AI+ﬁ(%1SV+%zSI)+/1L al - C'l|
v+ w

|dvAY +yE - 6Y - 1,C"y |
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%1S3

oy +2) (1_g§)

o1 (By + Q) C!

+M2(lﬂ+w)
oo

(1 _ E) [dyAV + bl — eV] +
e \%

[dCyACY +0,CYY - nch]

g A1(1=pB) Ly A(y+4)
:(1_?3)(/)_05)+%2S3I+%3S3Y— ,8’)’4'15 (%1SV+%251)I3+—[3;/+/1 L
1 1 L A(y+d). I A
Ly, pOrD o ool A L at D),
By + 1 By + 1 I By+a 1 PBy+a
2 5 S S \%
+ﬂ1(7+ )C113+£Y— W+w)Y+%1 31)1—%l 3bl—3+%1S3V3
By + 1 ¢ oy £ e v
CAmGED G g am D) o)
o1 By + ) By+d o (By+d) Ppo

+dy (1 —&)AS ¢ A (1 —E)AL+—d’(7”) (1 —I—3)AI+ g
S By +A4 By +A4 1

L 4
d C;

N V%'153( Vs padcr (y + ) 1- 53\ act
o1 (By + ) C!

X [dCIAC’ +0,ClI - mc’]

3

4 dy (Y + w)AY
oY €

+ /JZdCY (l/’ + w) ACY
o,

Using the steady state conditions for Ds:

1——)AV+
%

A1 -8) Ay + )
M—+§ (%153V3 + +%2S313) = ﬂ’;)//TL

+A4 +A4 b
aly )13+u1(7 )C%, L=" vt
By + 4 By + A4 o e

p:a/S3+%1S3V3 +%253I3, 3,

11S3V3 + #8315 =

we obtain

00,
ot

S S 0— + 0
= (1 —?3)(0’5‘3—G,’S)+(%IS3V3+%QS3I3)(1 —?3)+ %3S3-w Y

oY

A(1 - SVL A(l - SIL A(l -
—(—'B)%lS3V3 s _ A ﬁ)%25313 SA. d-p (#1S3V3 + %28 315)

By + 4 S3V5L By + 4 S3hL By + 4

A SVI A S A(1 - LI

—M%lsﬂﬁ 2 Bt )%25313——M(%153V3+%25313)—3

ﬂ’)/'i'/l S3V3I ﬁ’}/+/l S3 ﬁ’)/+/l L3I
HaT) (l/""w)cy

wpor
ﬂdL ( L3) d,(y+/l) (1_13 dE

1-23)AL+ —)AI+—AE
By + 4 L By + 4 1 ©

, c!
4 drns (1 - E)Av g Hde D (5 pe
Vv o1 (By+ )

1V
+%1S3V3 +%253I3 —%1S3V3ﬁi +%1S3V3 -
3

s
+dg (1 —f)AS +

+ dy (Y + w)AY
oy £
+.U2dcY ('l""w)ACy
wpor
_ (85-83 a0-B
= — + X
S By + 4

CI

1S3v3(4————‘——‘——
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Al - IL LI A
+ ( ﬁ)%25313 (3 - & - —S S —3) + ﬁ—(y A )%1S3V3

By + A4 S S;LL Lsl By + 4
S SVI +4 S S
(352 SVh _Da) By+d o () Si S
S SV LV ,8)/+/1 S Ss

+(6—r)z,//+6a) oYn3S 3 _I]Y_,uzng(z//+w)cy
oy (6-nyY+oéw pyo
+d5( —ﬁ)AS Ad, (1—5)AL+—d’(7+’l)(1—1—3)A1 denp
N By+4 L By + 4 1 @
+dY(‘/’+CU)AY+dv%1S3 (1_E)AV+#1dc1(’y+/l) |- Cl AC!
oy € o1 By + ) c!
+ IUZdCY (lﬁ + w)ACY
oYo,
a— 2 —
_ a+,3%213()’+/1) (S -83) +/1(1 '8)%1S3V3
By +Aa S By + A

x(4 S SVL; Lk %)4_/1(1—,8)%25313(3_&_S1L3_&)

S SsWL L LV] By+4

Bly+ ) Sy SVL Vs

By +4 S S\l LV
G ONY 0w g 1)Y—“—2”2(w+“’)CY+dS(1 - &)AS

oY QYo S

A (1- 5)AL+ —d’(V”)( - I—3)AI depp, WY *D)

By + A4 L By + A4 1 oY

1 Cl Y
MEALE (1- E)A\/Jr“—ldc SN R | PYCTY-CEA Ul e (5.11)
€ 4 o1 By + ) c! QYo

After taking the derivative of ®5(r) with respect to time ¢ and using equality (5.5), Eq (5.11) will take
dd; [ Bl (y + 1)
—=—|a+

the form
f(S ~83)? d

A1 = S SVL LI 1V
t 'B)%ls3v3f4——3——3——3——3 dx
By + A4 r S SsViL  IsI LV

Al - S SIL LI
+ ( ’8)%253I3f(3 e N —3) dx
By+A4 r

A S SV, 1V
+'[M ISV3f3__3__3__3 dx
By + 1 S SVl LV

[(5—r)l//+5w(%5—1)de potty (Y + w) C dx

Yo, r
vS|? Ad, L vL|? dil; (y+ A vi|]?
— ds S | 2|| gy — 2dils | 2|| d — Iy +4) (| 2|| dac
r S By+AaJr L By+A4 r I
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_dvaSsVs (IVVIP - mda GO+ CIVCIP
& r V2 o1 By + ) r (Ch?
Since Rs < 1, then from inequalities (5.1)—(5.3) we obtain % <Oforall S,L,1,Y,V,C',CY > 0. In
addition d‘% = 0 when (S,L,1,V,C",Y,C") = (S3, L3, 15, V3,C},0,0). The trajectories of system (2.4)
tend to ‘Y’; which has elements satisfying ¥ = 0. Hence, % = AY = 0 and the fifth equation of system

(2.4) becomes
_0Y(x,1)

ot
which yields £ = 0 and hence, T; = {D3}. Applying Lyapunov-LaSalle asymptotic stability theorem
we get D; is GAS.
Theorem 5. If R, > 1 and R¢ < 1, then D, is GAS.
Proof. Define @4(x, t) as:

A A 1 E Y
Dy(x, 1) = S4F(i) + L+ v I+ —EsF (—) + o+ wY4F (—)
S4) By+a Br+a4 ¢ Ey4 oY

+%IS4V+ My + ) C1+ﬂ2(lﬁ+w)CZF(C_Y)_
& o1 By + ) wpo,

0

= wE,

Cy

Calculating a% as:

0D, _( Sa
o

- ?)[dSAS Fp—aS —uSV —1ST - 1S Y]

A

+ [d AL+ (1 =B) (1 SV +2,81) — (1 +7y) L]

By + 4
N v+A4
By + A4
1 E,
+—(1—E)[dEAE+<p%3SY+rY—(¢+w)E]
Y
Y
; w+w(1——4)[dyAY+¢/E—6Y—u2CYY]
oy

|diAT+BGaiSV + 2,8 1) + AL - al — 1, C'1|

Y

%184 1ty + )
dyAV + bl — V] + ————
€ lavAY + 8]+01(,37+/1)

CY
Ll ro) (1 - —4) |derACT +0aCTY —myC” |

Yo cY
Sy a(ly +A4) r E,
= 1——) —aS) + 1Sl +x38 Y — —1— 2T+ —Y — 38V —
( S (0 —aS) + %2841 + 7354 By + 1 » 3 E
g, 0Wrw), Yroph oWtw),
¢ E @ oy ® Y oy
bl P
+uz(w+w)cyy4+%ls4__ﬂm(y+ )i _ MW+ ) oy
oy e o By+A oo

_#2(¢+w)cf #QNZ(w+w)CZ+dS(1—&)AS+
oy wyo, S

+ [dC,AC’ +0,ClI - mc’]

Ad;
By + 4

AL
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d A d Y.
MA] (1——)AE+YW—+CU)(1——4)AY
By +4 ¢ E oY Y
dyr1S d + 1 d + C,
g DSayy  de 3 ) ) o ppdo W) (S o
€ o By + ) ppos cr
Using the steady state conditions for Dy:
p=aSy+x384Yy, Y4:2,
(%)

s/f+wE4: 5(w+w)Y4+uz(w+w)Czy4_
@ 4 4

%3S4Y4 + £Y4 =
Y

We obtain
00,
ot

S4 S4 a(7+/1)
=(1-—)(aS4s—aS SY(]——) Saql — ——=1
( )(CY4 asS) +x384Y, 5 |+ %254 By + 1

SYE4 r YE4 EY4
S4Y. —Yy—— + %354Ys + — Y — 138 4Y4s——
— X394 4S Y4E o ‘V.E %3 4 " 4 — X3 4E4Y
EY. bl +A
—£Y4—4+%3S4Y4+ Y4+%1S4——/MCI
¢ EjY ¢ € (,37+/1)

+dg (1 - —)AS LU /A, ’DAI (1 _ —)AE
S By + A4 By+ A4 ® E
N dy (Y + w) (1 3 E)AY dv%154AV+ mider (y + )
oy Y £ o By + )
v cY
+ /12dC (‘//+U)) 1 ACY
Yo cY

S4

AC!

(S —S,)7° S, SYE, EY,
—g— Sy, 3-—=_--———__—°
g T T T TSV E Y

+£Y4 7 YE, EY4 + Cl(’)/+/1) (%1b+%28)(ﬁ’y+/1)S4 ~1l7
@ Y,E E4Y By +A4 ag(y+A4)
AL (1- S4)AS Mg B0+
o1 (By + )

By + A4 By + 4
dE dy (Y + w) dyx1S 4
90 oy

&
mider (y + /l)ACl N Hader (Y + w) (1 _ C_i) ACY
o (By+ ) Yo, C
(S =S,)* r(YE,-EY,)? S, SYE, EY,
= —a - = +%3S4Y4 3——————
S @ EE4Y S S4Y4E E4Y
+a(y+/1) (Re— 1)1 - mmy (y + ) Ady,
By +4 oy By + ) By + A
Y.
ALV %(i- —)AE y o) (1-<F)ar
By +Aa ® E 1/ Y
L vSa o mde G+ pdo W) (G oy
€ o By + ) o cr

AV

(1—E)AE (1—%)AY+

AL

C’+d5(1 )AS
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Calculating % and using equality (5.5) we to obtain

dq)4 B (S =84 54) (YE, - EY,)’
= dx—-— | ————— ™ dx
. EE,Y
S SYE EY.
+%3SY4\[3——4——4— h dx
S S Y.E  EJY
-1
+a(7+/1)(%6 )fld mm (y + ) C’ d
By+ A o (ﬁy+ A)
IvS|I? deEs (IIVE|?
—dsS dx — d
o r S? g % r E? g
dyYs (Y +w) (VY|P J
Al r Y
zdcYC Y + w) ||VCY||2
o, r (CY)?

Hence, if R¢ < 1, then from inequality (5.4) we obtain dq"‘ <Oforall S,I,E,Y,C',CY > 0. Moreover,
dm“ =0at(S,E, Y,C",1,C") = (S4,E4, Y4,C},0,0). The solutlons of model (2.4) tend to Y, which has

elements satisfying (S, Y,I) = (84, ¥4,0), and then = AS = 0. Further, the first equation of system
(2.4) becomes
oS
0= at =p - Q’S4—%1S4V %3S4Y4,
which yields V = 0. Furthermore, we have = Al = 0 and the third equation of system (2.4) reduces
to ol
=— =1L,
ot

which gives L = 0 and hence, ‘I’A = {D4}. Applying Lyapunov-LaSalle asymptotic stability theorem
we get Dy is GAS.

Theorem 6. If Rs > 1, Rg < 1 and R,/R, > 1, then Ds is GAS.

Proof. Define ®@s(x, t) as:

S P L +1 I\ 1 E
Ds(x, 1) = SSF(—) + L5F( ) Y SF( )+ ESF( )
Ss) py+A4 Ls] pBy+4 Is) ¢ Es

Y+ w Y\ %S5 14 ur(y+4 (CI) (Y +w) gy
YsF VsF | — |+ LD crp (=) WO
oy (Ys) ’ (Vs) o By+A) > " o

+

&

Calculating = a& as:

Pa S
7;:(1—?5)[51@9 Fp—aS =SV = oS8T = 23S Y]
p L
+ (1——5)[dLAL+(l—,8)(%1SV+%2SI)—(/l+y)L]
By + 4
+ A I
[Zy”(1 2)[diAT+BGaSY 48D+ AL~ al - ']
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+l(1 —%)[dEAE+<p%3SY+rY—(w+w)E]

@
l,b+(l)( Y5) Y
1= 2\[dyAY + WE - 6Y — 1,CYY
+ o Y [Y + Y M ]
S V. Pl C!
i 5(1——5)[dVAV+bI—sV]+M - =
& 174 o1 (By + Q) c!
X [dCIAc’ +o,ClT - mc’] LW ro) [dcyACY +0,CYY — nzcy]
o,
A1 -p)

S L
:(1—?5)(/)—0S)+%2551+%3S5Y— GaSV + 525D =

By + 4

Aty + 4 + A4 + 4 Is A(y+4)_ 1
LAV, aG D BORD oy sl o A0, T
By + A By + A By + A I By+a 1
A A E E
ayr ), Doy Ty syE _IyEs Ve
By +4 By +A4 @ E ¢ E @
oW+ + Ys oW+ + bl
Wrw), gropks oWt mWro)oyy g0
2 ¢ Y 2 oY &
bl + 41 + 41 + 4
_%ISSV5_+%ISSV5_/117T1 (y )CI_,UI (y ) é iy (y )Cg
ev o1 (By+4) By +4 o By + )
S Ad L
—“—2”2(‘”+w)cy+ds(1——5)As+ L (1——5)AL
oo, \) By +A4 L
di(y+A4 I d E d + Y.
+L(1__5)AI+_E(1__5)AE+Y(¢/—M)(1__5)AY
By + A4 1 ©® E oY Y
N dyx1S's (1 B E)AV+ pider (y + ) - gé AC! + Mader (f + w)ACY.
& 4 o1 By + ) o Py

Using the steady state conditions for Ds:

p = aSs+x18S5Vs + 2,855 + %355Y5,

A(1-p) Aty + )
P (#1S5Vs + %28 515) = Y—Ls,

By +4 By + 4
+A4 + A
%1S5Vs + #5855 = Cl(')/ )15 + il (7 )
By + 4 By + 4
+ oW+
id CL)Es= W w)Ys, Is=—, Vs=—.

@ oy g} £

CiI,

r
%3S5Y5+—Y5 =
Y

We obtain
9%,
ot

s s
- (1 - ?5)(055 —aS) + (1S sVs + 108 sIs + %3S5Y5)(1 - ?5)

Al - SVLs A(1 - SILs  A(1 -
_AA=p) o SVEs A=) o SILs A0 -p)
By +4 SsVsL By +A4 SsIsL - By+A4

+A4 SVI +A S
By )%155V5 s By )%25515—
ﬁ’y+/1 S5V5[ ﬁ’)/+/l S5

LI SYE;
SsVs+,Ssls) — +2#1S5Vs + 2,85l — %385 5Ys———
(#1S5Vs + 2y 55)L5I 219 5Vs5 T X505 — %35 SS5Y5E

X (%18 5Vs + %38 515) —

_a0-p
By + 4
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r YE5 r EY5 r EY5
- —Ys— +%3SSY5 + —Y; —%3SSY5— ——Y5—+ %3S5Y5
@ Y5E @ E5Y @ E5Y

/Jz(l/""w)(Ys_ﬂ)CY

oY 03
Ady (1 Ls

+d3(1——)AS +,By+/1 ——)AL+M(1—I—5)AI

S L By + 4 i

+d—E(1—§)AE+M(I—E)AY+dv%lSS(l—E)AV
® E oy Y & Vv
uldcz(wﬂ)( Cé) ;o tde W),
- 2| ACT+ = UAC

o By+A) C! wyo;

(S-S5 A(1-p)
- -+

S By + 4

Sils(3-23 2258 25,
ﬁy+/1%255( S T SsLL L) T By+a

S SVI 1V A S S
x(3__5__5__5)+M%255,5(2__5__)

1V.
+ £Y5 —%1S5V5—5 +%1S5V5 +
@ I5V

Ss

Ss  SVLs LI %)

SsVs[a-23 22 5
“ 55( S T SsVsL  Lsl L5V

+ %1S5Vs

S SsVsl IV ,3’)/+/1 S Ss
Ss SYEs EYs r YEs EYs
G R Nl U A [, Wt Rt
S S5Y5E E5Y (% Y5E E5Y

+M(Y5—Q)CY+0,'S (1 —%)AS ¢ (1 —E)AL

oy op) By +4 L
By +4 ! @ E oy Y
CI
+dv%155 (1_E)AV+#161C1(7+/1) 155 AC1+'u2dCY(w+w)ACY.
£ Vv o1 (By + ) C! wpor

Then, Eq (5.12) will be reduced to the form

(S —Ss5)* r(YEs—EYs)?

S ¢ EEsY

oDs [ Bools (y + )
— =—la+
ot By + 4

A(1 - S SVL LI 1V.
LA, v (4 Ss SVEs L IV
,8’)/4‘/1 S S5V5L L5I I5V
A(1 — S SIL LI
+ ( ,3)%25515 3——5——5——5
By +4 S SsIsL LsI
Bly+A) Ss SVIs IV
+ 1SsVs|3—— - —=—-—
By+Aa S  SsVsI IV
Ss SYEs EY;s
+x385Y5|3— — - —— — ——
%30 5( S T SsYsE E5Y)
N o (W + w) [m105 (1D + %28) + maxze0| + a0 107;] (Rg - 1) oY
PYr3e0 107
S Ad L di(y+ A4 I
+ds(1——5)AS+ L (1——5)AL+L(1——5)AI
S By + 4 L By + 4 1
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+@(1 —%)AE+ Y+ ) (1 —%)AY+ dviir 3

¢ 1 &
» (1 B E)AV N pider (y + ) (1 C[)AC’ Hodey (Y + w)ACY
o1 By + ) C Yo,

Calculating % along the solution trajectories of system (2.4) and using equality (5.5) to get

dds _[Mﬁmm» f(S Sy " [((VEs—EYs?
T

By+Aa EEsY

A(1 - SVL Lls 1V
LA ﬁ)%155v5f4——5——5——5——5 "
ﬁ)/+/l r S SsVsL  LsI IV

A1 - IL LI
+M%25515f3—§—¥——5 dx
By + A . S SsIsL  Lsl

A S SVIs 1V
+M%155V5f(3__5__5__5) dx
r

By+Aa S SsVsI IV
S SYE EY
+%355Y5f3——5——5— 5 dx
" TS TSSE EsY
N o (W + w) [0 (1D + %028) + moxzeo + agoo] (Rg — 1)

PYr3ET 107 r

CY dx

IIVSII2 Ad Ls IIVLII2 _dils(y+ ) (VP
- dSS5 dx
,By +A By + 4 r I?
dgEs IIVEII2 d dyYs (!,0 + w) [vY|?
— — dx— > dx
Y r E oY r Y

_dvaSsVs (IVVIP  pdaCsr+ D) IvCIP

€ r V2 o By + ) r (ChH?

Hence, if Ry < 1, then from inequalities (5.1)—(5.4) we obtain % <OforallS,L,I,E,Y,V,C!,CY > 0.
We have also d(DS = 0at (S,L,ILE,Y,V,C',C") = (Ss,Ls,I5,Es, Ys, Vs5,CL,0). The trajectories of
system (2.4) converge to T; and hence, T; = {Ds}. Applying Lyapunov-LaSalle asymptotic stability
theorem we get Ds is GAS.

Theorem 7. If Rg > 1, R; < 1 and R,/R| > 1, then D¢ is GAS.

Proof. Define ®@4(x, t) as:

S A L A 1 E Y
De(x, 1) = S6F(—) + —L6F(—) + s ]6F( ) E6F( ) v+ wY6F (—)
Se¢) By+A4 L) By+aA = \Is Es oY Ys

1
@
4 my+ ;W +w) y( )
Vel C.F
° (V6) o (By+ ) * epo,  ° \C!

%156

Calculating ’9& as:

®
a@; (1 _ %)[dSAS Fp—aS =SV — ST — 1S Y]
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A L
+’87+/1(1——6)[dLAL+(1 —B)(e1SV +%,851) — (A +7y) L]

L
v+ A4

+
By+ A4
1/ E

+;(1 —E)[dEAE+go%3SY+rY—(¢/+w)E]

v+ ow

oY

%186

I
(1 - 76)[d,AI +BCSV +SD) + AL — al — i1, C'l |

Y,
(1 - 76) [dYAY +yE - 8Y - /J2CYY]

i (y + )
o By + )

+ Cs
EACAED) (1 - —6) |[derACT +0aC"Y — o]

pyoy cr
S A1 - Le A(y+4
:(1——6)(/)—(]!S)+%2561+%3S6Y— ( IB)(%15V+%251)—6+(7—)L
S By + A4 L By + A4

A A Is A A 1 A
_aly+d), B+ )(%1SV+%251)—6— o+ Iy aly+
By + 4 By + 4 1 By+a4 I By + 4
A E E 0
+MCII6+£Y—%3SY—6—IY—6+w+wE6—MY
By +4 @ E ¢ E @ oy

+ Y¢ oW+ + bl bl
_W_U)E_6+ (lﬂ w)Y6+/J2(w w)CYY6+%156——%1S6V6—+%1S6V6
¢ Y oy oy € eV
_ﬂ17T1(7+/1)C1_ﬂzﬂz(lﬁ"'w)cy_#z(lﬁ“'w)
o By + ) wpor
S6 /ldL ( L6

+ds(1——)AS + 1——)AL+ 1——)AI
S By+a\ L By + 1 7

; @(1 - &)AE+ M(l - E)AY+ dv¥1S (1 - E)Av
® E oY Y & \%4

pider (y + /I)AC’ N tader (Y + w) (1 3 C_g) ACY.

o1 By + ) wpo, CcY

Using the steady state conditions for Dg:

v,
(1= <5) @AV + b1 - 1+ |deiAC! + 0, C'T -7, C']

&

6

Is

Hamry (Y + w) cY

ClY +
oo,
d1(7+/l)( Is

p = aSe+%18S6Ve + %286l + %35 ¢Y,

A1 -8 Ay + )
P (%156‘/6"'%25616):7—[46’ Yo = —, Ve=—,

ﬁ'}/‘i‘/l ﬁ7+/l ()
a(ly +A4)
— I,
By + A4
0
%356Y6+£Y6: w+wE6: (w+w)y6+,“2(¢’+w)
4 ¢ 2% o

%1S6Ve + %28 6lg =

ClYs.
We obtain
Se

oD S
(9_1‘6 = (1 - ?6)(0’86 —aS) + (186Ve + %28l + %3S6Y6)(1 - ?)
A(1-p) SVLs A(1-p) SILe  A(1-p)
- ———x1156Vs - %28 616 +
By + 4 SeVelL By + A4 Selel. By + A4
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Bly+2d) SVIg By+A4) S
X (%18 6V + %28 1) — ———3,5¢V, - Sels—
(#1S6Ve + %25 616) By + 1 X196 656‘/6[ By + 1 1% 66S6
21 =) Ll SYEq
— ————(31SeVe +3:S6lc) — + #1S Ve + %S 61 — %35 6Y,
Byt (#1S6Ve + 22 66)L6I %1S6Ve + %286l — %356 S Y E
"y YES | S Ye+ Ve —nsSoYedo _ Ly Es oy,
——Y—— +x —Ys—x — — —Ys— +x
906Y6E 396716 "06 366E6Y 906E6Y 396716
1V, +A
+£Y6—%1S6V6—6+%1SGV6+M Ié_ﬂ C[
® IV By + A4 o
S Ad L di(y+ A4 I
+ds(1——6)AS+ L (1——6)AL+L(1——6)AI
S By + 4 L By + 1 i
_,_d_E(l_&)AE_,_M(l_E)AY+dV”1S6(1_E)AV
@ E )/ Y £ \%4
1 Y CY
pdc (7+/1)AC1+,U2dc W+ w) (1——6Y)ACY
o By + ) wpos C
S —-S¢° A(1- Se SVLe Llg 1V,
:—a( 6) N ( ,3)%156‘/6 q_06_SVhe Ll Vs
S ,8’)/ +A S SeVel Lgl IV
A(1 — S SIL Ll +A4
LAU=B) o g (3o Se  Slhe L) B+ o\
,B’)/ +A S Selel Lgl ﬁ’y +A4

S SVI 1V, +4 S S
w[3_26_27"%6 76 +ﬁ(7—)%256]6 h_26_ 2
S SeVel IV ,8’)/+/1
YE EY, YE EY,
335 SYEe EYe) ry () YEs EY
S S@Y(,E E(,Y @

2 2 L
+m(16—ﬂ)c’+ds(1—ﬁ)m L (1——6)AL

By +A4 o S By + A4 L
+—d’(7”)(1—E)AHd—E(l—%)AE+—dY(¢+”)(1—5)AY
By +A4 I ® E Y Y
+dV%156(1_E)AV+,U1dC1 G+ ) o b @) (G, oy
£ |4 o1 By + ) QYo cr

Then, Eq (5.13) will be reduced to the form

(S =S¢ r(YEg— EYy)?

00 _ a+,3%216()’+/1)
S o EEY

o By + A4
Al - S SVL Lls 1V,
LB oy fqSe  SVEs Ll Vs
ﬁ’y + A S SeVeL Lgl IgV
Al - S SIL LI
+M%256]6(3__6__6__6)

By+ A4

BO+D (o Se_ SV 1V,
By+a OIS T SeVel IV
S¢ SYE; EY
b xySeYe[3 - 20 - 2iE6 =76
326 6( S SeYsE E6Y)

(5.13)
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N w (y + ) [0 (Ge1b + 228) + moxzeoy + aeo 0]

_ 1
o102 (By + D) (a1 + %28) (R -1)€

p L 1 I
+ds(1—&)AS t (1——6)AL m(1——6)A1
S By+A\ L By + 1 1
L9 (1 _ %)AE dry +w) (1 - E)AY dvxiS (1 - E)Av
go E oY Y e V
CY
mder (y + /l)ACI n todey (Y + w) (1 Y)ACY
o By + ) oo, C

We calculate d;—i;" along the solution trajectories of system (2.4) and then we use equality (5.5) to obtain

dds Borals (y + A) f(S Se)’ (YEs — EYs)’
Lo _ o+ de— L [ YEe 2T 4,
di By + 1 " EEeY

A1 - SVL Ll 1V,
+M%1s6vﬁf4__6__6__6__6 "
ﬁ’}/ +A4 r S SGVGL L6I I6V

A0 - S SIL LI
+(—IB)%2S616f3——6——6——6 dx
Y r S SGI6L LGI

Bly+ 1) f Se  SVI, 1V
PO seve [ [3-28 2206 7o)y
Ty e TS Tsvd 1v)

S¢ SYE;, EYs
+x3S6Ys | 320 - 2228 d
36 6fr( S SJYE E6Y) o
N w1 (y + ) [0 Ge1b + #28) + moxnzeo; + agoo3] (R — 1) fCI d
o102 (By + ) (e1b + %#8)

vS|)? Ad, L vL|J? dilg (y + A vi||?
deS, VS| dy - AdiLs [IvL| dr — e (y + ) (V] dx
r S?2 By+AJr L? By + 4 r I?
dpEs (" IIVE|? J dyYs (W +w) (VY|P
- 3 X — > dx
¢ Jr E oY r Y
_ dV%IS6V6 ||VV||2 dx — l‘zdcyCY (lﬂ + (,U) ||VCY||2
&€ r V2 ooy r (CY)?

Hence, if R, < 1, then using inequalities (5.1)—(5.4) we get ‘% <Oforall S,L,I,E,Y,V,C.,CY >0,
where dq)ﬁ = 0 when (S,L,ILE,Y,V,C",C") = (S¢,Le, I, Es, Y, Vs, C},0). The solutions of model
(2.4) tend to T’6 and hence T’6 = {D¢}. Applying Lyapunov-LaSalle asymptotic stability theorem we
get Dg 1s GAS.

Theorem 8. If ‘R, > 1 and Rg > 1, then D; is GAS.

Proof. Define ®,(x, 1) as:

<I>7<x,t):S7F(i)+ A L7F(L) 7”17F(’)+1E7F(£)+‘““’w(ﬁ)

S7) PBy+4a L;) By+aAa I;) ¢ E; oY Y;
S \% A cr
%1 7V7F( ) iy + ) CF( )+ﬂ2(w+w)C§F( Y)
Vi) o By + ) Yo C
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Calculating aﬂ% as:

oD S
a—;:(1—?7)[415&+p—a5—%1SV—x251—x3SY]
+ 2 (1—ﬁ)[dAL+(1—ﬁ)(%SV+%51)—(1+ VL]
By + 1 2 L 1 2 Y
AR (1—1—7)[a’A1+,B(% SV + %81 + AL —al - 1 C'l]
By + 4 7 1 1 2 Hi
+l(l—%)[dEAE+¢%3SY+rY—(¢+w)E]
¢
1,//+a)( Y7) y
1= 2)[dyAY + E - 6Y = 1nC'Y
+ " Y [Y +y¥ m2C ]
%1S7

v
(1 _ —7) [dyAV + bl — £V]
& \%

+A4 C;
ACECAS0N (1 - _7) |[desAC! + 0y C'T = m C'

o (By + Q) C!
CY
Jrro & |der ACY + 2 CTY — myC”]
Yo, cr
S A(1-P) L
:(1—?7)@—&5)+%2S7I+%3S7Y— ﬂ7+§ GaSV + 55D =
Aly+ A4 + A +A4 I Aly+ ) 1
LA )L7_a(y ), Bl )(%1SV+%ZSI)—7— 0+, L
By +4 By +4 By + 4 I By+a I
1 Pl E E
LoD Oy Ty eyE _IyE e
By +4 By +4 ® E ¢ E @
oW+ + Y- oW+ + bl
- (l// w)Y—l// wE—7+ (w CU)Y7+/12(w w)CYY7+%1S7—
oY ¢ Y oy oY £
bl +A4 +A4
eV o1 (By+ ) By+A4
iy (y + /l)cé Mm@t y W+ w)C7yY L Hem Yt w)C7y
o By + ) oo oy Yo
Ad L d 1 I
+d5(1—ﬁ)AS+ L (1——7)AL+M(1——7)AI
S By + A L By + A I
+d—E(1—&)AE+—dY(w+w)(1—E)AY+dV%157(1—E)AV
® E oy Y e Vv
, C! v cY
+/11dc (y+4) |- 21 AC1+ﬂ2dC W + w) 1- 271 Ac
o1 By + ) C! oo cY

Using the steady state conditions for D5:

A(1-p) Aly+ )
=aS7+x187V7 + %8717 + %357Y7, S7Vi+x,8,) = —14,
P=ad7 +%107V7 + %0717 + %3717 ,37+/l(%177 %28 717) ,37+/17
+ A + A bl
%1S7V7 +%257I7 = a(y )17 + H (7 )C;I% I = ﬂ, Y, = 2, V, = =
By + A4 By + 4 o o> &
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Vo, 0Wre), mUre).,

4 4

%3S7Y7 + £Y7 =
Y

We obtain
0D,
ot

S
:( ——)((1’57—(1’5)4'(%15 Vi 4+ #8717 + %354 Y7)(1—?7)

(1 - SVL; Al - SIL;  A(1 -
A ’3)%157% 7 A ﬁ)%zsm 7 A=)
By + 4 S;ViL - By + A S:LL - By + 4
+1 SVI +A S
By )%157‘,7 7 Bl )%25717_
,By+/l SVl By+ A S5

X (#1S7V7 + %28 717) —
A0 -5

By+A4
SYE7 r YE7 EY7
S-Y- —Y7—— + 13577+ — Y S7Y;——
TERTITCYE o Y7E Haortr T ST TR T

(%15 Vi + %25717) _I +2187V7 + %871

r EY7 V
— =Y — + 385,V + Y7—%1S V7—+%1S Vs
¢ E7Y ® LV
S
+ds(1—?7)AS

Ady, (I_Q)AL+d1(y+/l)(1 I
By + 4 L By + 1 i
dE(l—&)AE+dY(d/+w)( Y7)AY dV%157(1 V7)AV
® E oY Y e Vv
I Cl Y CY
+,U1dc Y+ 1 ACT + toder (Y + w) 1 - S\ AcY
o By + ) c! wpos CcY
__[a+,3%217(7+/1) (S =87 r(YE;-EYy)’

N By + 1 S ¢ EEY
S, SVL, LL 1V,

S, Vola-=L 2L =7 T

7 7( S S;ViL Lyl I7V)

)AI

+/l(1—,3)
By + 4

L Aa —,8)%25717(3 S, SIL ﬁ)+ﬁ(7+ﬂ)

By + 4 S S,.LL L] By+A

S, SVL, IV S, SYE; EY
x(3-2L - 2L - )8y, (3 - - —L - L
S S,;ViI LV S S,Y;E E;Y
d; ()/+/1)( L

+d5(1——)AS 1——)AL 1——)AI
S By+a\ L By + 1 7

Y
L (1 - —)AE Al (1 - —7)AY y Sy (1 - &)AV
90 E oY Y £ %
pder (y + ) |- C_I ACT + odey (Y + w) - CY ACT

o (By+ ) 1 opo cY

C
Calculatmg - and using equality (5.5) we obtain

@:_Cﬂ_ﬁ%zh()"*‘ﬂ) f(S S7)* PR (YE; - EY;)?
di By + 1 . EEY

A1 - SVL LI 1V
P A ﬁ)x157v7f4——7——7——7——7 "
ﬁ’)/ +A4 r S S7V7L L7I I7V

#187V7

Sq

Ady, ( L,

dx
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A - S SIL LI + 4
+ Ad=p ﬁ)%25717f 3127 7 dx+ Fly+d) )%1S7V7
By + 1 I S 2 S By + 1

s, SVL 1V f S, SYE, EY,
x [(3-22 2277 S0 e qgnsyy, [ (3202287 2070 g
fr( S SVl I7V) r ATt r( S~ S.YE E7Y) *
IvS|P? dr — Ad L, (IVLIP d _dih(y+ ) Iv1|)*

—dsS d
27 .7 s2 By+ilJe 12 T T By+a S B
deE; (IIVE|? dyY, (Y + w) (VY| dv1S,V; (CIIVVI?
- dx — dx — dx
¢ Jr E? 1 r Y? € r V2
_mdaCr O+ ) CIVCP | pedor G Wt @) CIVCTE
o By+Ad  Jr (1) PYo ro(CYy

Inequalities (5.1)~(5.4) imply that %X < 0 for all S,L,1,E,Y,V,C',C" > 0. Moreover, 22 =
when (S,L,1,E,Y,V,C",C") = (S7, Ly, I, E7, Y7, V5, CL, CY). The solutions of model (2.4) converge to
T'7 = {D;}. Applying Lyapunov-LaSalle asymptotic stability theorem we get D7 is GAS.

In Table 1, we summarize the global stability results given in Theorems 1-8.

Table 1. Global stability conditions of the steady states of model (2.4).

Steady state Global stability conditions

Dy Ri<land R, <1

b, ‘R1>1,‘R2/9&1sland‘)§3£1
b, Ry>1, R /Ry <land Ry < 1
b; ‘R3>1and‘R5§1

b, Ry>Tland Rg < 1

D5 %5>1,?’\8S13nd%1/%2>1
b ‘R6>1,9§7sland9§2/‘R1>1
b, R, >1and Rg > 1

6. Numerical simulations

In this section, we numerically show the global stability of steady states using the values of the
parameters given in Table 2. Moreover, we present comparison between single and dual infections. We
choose the spatial domain as I' = [0, 2] with a step size 0.02. The step size for time is given by 0.1.
Further, we choose the following initial conditions for system (2.1):

S (x,0) = 500 [1 +0.2 cosz(ﬂx)] , L(x,00=15 [1 +0.5 cosz(nx)] ,
1(x,0) = 1.5 [1 +0.5 cosz(nx)] . E(x,0)=30 [1 +0.5 Cosz(ﬂx)] ,
Y(x,0) = 0.3 [1 +05 cosz(ﬂx)] . V(x,0)=5 [1 +05 cosz(nx)] ,

Cl(x,0) =1 + 0.5 cos? (%Tx) C'(x,0)=3

1 +0.5cos’ (%’Tx)] , x¢€][0,2]. (6.1)

Mathematical Biosciences and Engineering Volume 18, Issue 6, 9430-9473



9461

In addition, we consider the homogeneous Neumann boundary conditions:

8 _oL_ ol _GE_9¥ v _ac' i _

- - - - - - - - 0’ t>0’ x:0,2. (62)
ov. ov ov oV oV oV oV oV

Table 2. The values of the model’s parameters.

Parameter Value Source Parameter Value  Source Parameter Value  Source
o, 10 [44,65] T 0.1 [67] W 0.003 [44]
a 0.01 [6,44,66] Vi) 0.1 Assumed ds 0.1 [71]
% Varied Ui 0.2 [68] dr 0.1  Assumed
o Varied U 0.2 [46] d; 0.01 Assumed
X3 Varied f> 2 [68] dg 0.01 Assumed
a 0.5 [4] B 0.7 [69] dy 0.2  Assumed
@ 0.2 [35] 0 0.02  Assumed dy 0.01 [72]
K 0.9 [35] o Varied dei 0.2  Assumed
* 0.008  Assumed o) Varied dey 0.2  Assumed
0" 0.2 [46] A 0.2 [70]
b 5 Assumed w 0.01 [44]

6.1. Stability of the steady states

In this subsection, we select different values of x,, x%,, %3, 01, and o under the above initial and
boundary conditions which leads to the following strategies:

Strategy 1 (Stability of Dy): »; = %, = 0.0001, 23 = 0.001, and 0y = 0, = 0.2. For this set of
parameters, we have R; = 0.68 < 1 and R, = 0.23 < 1. Figure 1 shows that the solution of system
(2.1) converges the steady state By = (1000, 0,0, 0, 0,0, 0, 0). This shows that D, is GAS according to
Theorem 1. In this case both HTLV-I and HIV will be cleared.

Strategy 2 (Stability of D,): »; = 0.0005, %, = 0.0003, %3 = 0.0005, o; = 0.003, and 0, = 0.2.
With such choice we get R, = 0.12 < 1 < 3.02 =R, R; =0.49 < 1 and hence R,/R; =0.04 < 1.
Theorem 2 implies that B; = (331.63,9.11,13,0,0,32.51,0,0) is GAS. This will lead to the situation
of persistent HIV single infection but with an ineffective CTL immune response.

Strategy 3 (Stability of D,): »; = 0.0001, %, = 0.0002, ;3 = 0.01, oy = 0.001, and 0, = 0.05.
Then, we calculate R; = 0.88 < 1 < 2.33 = R,, Ry, = 0.78 < 1 and then R;/R, = 0.38 < 1.
The numerical results show that B, = (428,0,0, 88.74,1.34,0,0,0) exists and is GAS according to
Theorem 3. It means that, a persistent HTLV single infection with an ineffective CTL immune response
will be reached.

Strategy 4 (Stability of D;): »; = 0.001, %, = 0.0001, %3 = 0.005, and ooy = o, = 0.01.
Then, we calculate R; = 141 > 1 and Rs = 0.32 < 1. The numerical results show that
b; = (277.78,9.85,10,0,0,25,1.01,0) is GAS based on Theorem 4. Hence, a persistent HIV sin-
gle infection with effective HIV-specific CTL immune response is attained.

Strategy 5 (Stability of D,): %, = 0.0007, 2, = 0.0001, %3 = 0.1, oy = 0.05, and o, = 0.3.
Then, we calculate R4 = 5.38 > 1 and R¢ = 0.83 < 1. According to these data D, exists with
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b, = (230.77,0,0, 118.53,0.33,0, 0,4.34) and it is GAS based on Theorem 5. In this case, a persistent
HTLYV single infection with effective HTLV-specific CTL immunity is reached.

Strategy 6 (Stability of Ds): »; = 0.001, %, = 0.0001, %5 = 0.01, o = 0.05, and o, = 0.08. Then,
we calculate Rs = 1.53 > 1, Rg = 0.84 < 1 and R,/R, = 2.17 > 1. The numerical results show
that Bs = (428,3.03,2,54.21,0.82,5,2.91,0) exists and it is GAS and this supports Theorem 6. This
case leads to a persistent dual infection with HTLV and HIV where the HIV-specific CTL immunity is
effective and the HTLV-specific CTL immunity is ineffective.

Strategy 7 (Stability of Dg): %, = 0.0006, %, = 0.0001, %3 = 0.04, o; = 0.01, and o, = 0.5. We
compute Rg = 1.73 > 1, R; =092 < 1 and R,/R| = 2.99 > 1. The numerical outcomes show that
bg = (321.26,5.75,8.2,39.65,0.2,20.51,0, 1.98) is GAS which support Theorem 7. This situation
leads to a persistent dual infection with HTLV and HIV where the HTLV-specific CTL immunity is
effective and the HIV-specific CTL immunity is not working.

Strategy 8 (Stability of D;): x»;, = 0.0006, x, = 0.0002, »3 = 0.04, oy = 0.05, and
03 = 0.5. These data give R; = 1.55 > 1 and Rg = 4.35 > 1. Figure 2 illustrates that
b; = (467.29,2.17,2,57.62,0.2,5,1.36,3.33) is GAS which confirms Theorem 8. In this case, a
persistent dual infection with HTLV and HIV is reached where both the immune response is well
working.

6.2. Comparison study

In this subsection, we compare between single and dual infections dynamics
Influence of HTLV infection on the dynamics of HIV single infection

To study the effect of HTLV infection on the dynamics of HIV single infection, we make a compar-
ison between model (2.1) and the following HIV single infection model:

% =dsAS(x,t) +p—aS(x,t) — 1S (x,)V(x, 1) — %28 (x, NI (x, 1),

% =d AL(x,t) + (1 = B) S (x, 1) [, V(x, 1) + 220 (x,1)] — (1 +y) L(x, 1),
D) — g, Al(x, 1) + BS (x, 1) 1 V(x, 1) + %21 (x, )] + AL(x, 1) — al(x, 1) — 1, Cl(x, DI(x, 1),  (6.3)

ot

W = gy AV (x, 1) + bI(x, 1) — 8V (x, 1),
6C13(x,t) = dczACI(x, )+ 0'1C1(x, DI(x,1) — 7T1C1(x, 1.

t

We fix the parameters »; = 0.0006, %, = 0.0001, oy = 0.05, and o, = 0.5 and consider initial
conditions (6.1) and boundary conditions (6.2). We choose %3 = 0.04 (HTLV/HIV dual infection).
Figure 3 shows that when an individual who has only HIV infection is dually infected with HTLV then
the numbers of uninfected (and latent) CD4*T cells and HIV-specific CTLs are declined. In contrast,
the numbers of free HIV particles in both HIV single infection and HTLV/HIV dual infection limits to
a same value. In fact, this observation is consistent with the recent study [73], where it has found that
there is no worthy differences in the concentration of HIV particles in comparison between HIV single
infected and HTLV/HIV dual infected patients.

Influence of HIV infection on the dynamics of HTLYV single infection
To see the effect of HIV infection on the dynamics of HTLV single infection, we perform a com-
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parison between model (2.1) and the following HTLV single infection model:

BLD = dgAS (x,1) + p — @S (x, 1) — 138 (x, DY (x, 1),

OEC) — gy NE(x, 1) + ¢3S (x, DY (x, 1) + k1Y (x, 1) — (f + w) E(x, ),
% =dyAY(x,1) + YE(x, 1) + (1 — k) r'Y(x, 1) — 5*Y(x,1) — toCY (x, )Y (x, 1),

acYa(tx,o =dcrACY (x, 1) + 0, CY (x, )Y (x, 1) — mCY (x, 1).

(6.4)

We fix parameters »3 = 0.01; oy = 0.05, and 0, = 0.5 and consider initial conditions (6.1) and
boundary conditions (6.2). We choose »; = 0.001 and %, = 0.0002 (HTLV/HIV dual infection). Figure
4 displays the solutions of two systems (2.1) and (6.4). We observe that the concentrations of uninfected
CD4"T cells, latent HTLV-infected cells and HTLV-specific CTLs are smaller in case of dual infection
than that of HTLV single infection. In contrast, the concentration of active HTLV-infected cells reaches
the same value in both HTLV single and HTLV/HIV dual infections.
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Figure 1. Taking Strategy 1 (R; < 1 and R, < 1), the steady state Dy =
(1000, 0,0,0,0,0,0,0) is asymptotically stable.
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Figure 2. Taking Strategy 8 (R; >
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> 1), the steady state B; =

(467.29,2.17,2,57.62,0.2,5,1.36,3.33) is asymptotically stable.
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infection.

Mathematical Biosciences and Engineering

Volume 18, Issue 6, 9430-9473



9467

Dy, —
Jét%m — 200 .
© 2 Time ©

(g) Free HIV particles for model (6.3)

_—

e
P 600

D . —
s, - 400
étallr}o N — 200

e t

(i) HIV-specific CTLs for model (6.3)

200
Tyme

(h) Free HIV particles for model (2.1)

____—~—" 800
— 600
400

" 200 L
rryme b

(j) HIV-specific CTLs for model (2.1)
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Figure 4. Comparison between the dynamics of HTLV single infection and HTLV/HIV dual
infection.
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7. Conclusions

This work proposes and investigates a within host HTLV/HIV dual infection model taking into
account the mobility of viruses and cells. The model was given by 8-dimentional nonlinear PDEs
which describe the evolution of eight compartments with respect to position and time; uninfected
CD4*T cells, latent HIV-infected cells, active HIV-infected cells, latent HTLV-infected cells, active
HTLV-infected cells, free HIV particles, HIV-specific CTLs, and HTLV-specific CTLs. We considered
two ways of HIV transmission, free-to-cell and infected-to-cell. We also included two directions of
HTLV transmission, horizontal via infected-to-cell contact, and vertical transmission through mitosis
of active HTLV-infected cells. We first showed the existence of global solutions and the boundedness
of the model’s solutions. We showed that the model has eight steady states and their existence and
stability are governed by eight threshold parameters. The global asymptotic stability of all steady
states was investigated by formulating suitable Lyapunov functions and utilizing Lyapunov-LaSalle
asymptotic stability theorem. We conducted some numerical simulations to clearify the theoretical
results. We made a comparison between the dynamical behavior of dual HTLV/HIV infection and
single HTLV (or HIV) infection. We found that HTLV/HIV dual infected patients have less uninfected
CD4*T cells counts in comparison with HTLV or HIV single infected patients.
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