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Abstract: Map-based neuronal models have received much attention due to their high speed, efficiency, 
flexibility, and simplicity. Therefore, they are suitable for investigating different dynamical behaviors 
in neuronal networks, which is one of the recent hottest topics. Recently, the memristive version of the 
Rulkov model, known as the m-Rulkov model, has been introduced. This paper investigates the 
network of the memristive version of the Rulkov neuron map to study the effect of the memristor on 
collective behaviors. Firstly, two m-Rulkov neuronal models are coupled in different cases, through 
electrical synapses, chemical synapses, and both electrical and chemical synapses. The results show 
that two electrically coupled memristive neurons can become synchronous, while the previous studies 
have shown that two non-memristive Rulkov neurons do not synchronize when they are coupled 
electrically. In contrast, chemical coupling does not lead to synchronization; instead, two neurons reach 
the same resting state. However, the presence of both types of couplings results in synchronization. 
The same investigations are carried out for a network of 100 m-Rulkov models locating in a ring 
topology. Different firing patterns, such as synchronization, lagged-phase synchronization, amplitude 
death, non-stationary chimera state, and traveling chimera state, are observed for various electrical and 
chemical coupling strengths. Furthermore, the synchronization of neurons in the electrical coupling 
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relies on the network’s size and disappears with increasing the nodes number. 

Keywords: synchronization; chimera state; memristor; M-Rulkov map; neuronal network 

 

1. Introduction 

The study of neural behaviors has become one of the hottest issues for many years [1]. Neurons 
are the fundamental parts of the brain’s neural system [2]. Therefore, the investigation of these vital 
elements has not been limited to medicine, and many mathematical models have been introduced to 
study neuronal behavior and its structure. Some of these models are flow-based [3,4], and some others 
are map-based [5,6]. Recently, map-based neuronal models have received much attention due to their 
computational efficiency, flexibility, simplicity, and high speed [1,7]. 

A memristor is an electrical component that can describe the impacts of electromagnetic induction 
in neurons by coupling the membrane potential and the magnetic flux [8,9]. Therefore, some 
researchers have tried to present memristive neuronal models based on the original non-memristive 
ones [10,11]. For example, Usha and Subha [12] presented the memristive Hindmarsh-Rose neuronal 
model. Also, they have investigated the behavior of single and two coupled memristive Hindmarsh-
Rose neurons. Hu and Liu [13] presented the memristive version of the well-known Hodgkin-Huxley 
neuronal model. Another example is the memristive map-based neuronal model, which was introduced 
by Li et al. [9]. Employing the Rulkov model, a two-dimensional map-based neuronal model, they 
introduced the m-Rulkov model. Besides, the idea of employing discrete memristors was also used by 
Bao et al. [14] and Li et al. [15]. In these studies, some memristor-based maps were introduced. 

The investigation of the collective behaviors of neurons in a complex network is another exciting 
field of study [16,17]. A complex network of neurons can be constructed by two independent kinds of 
synapses, namely chemical and electrical synapses. In fact, these synapses, which can independently 
exist, are the pathways for transferring information among neurons [18]. Many researchers have 
explored the different behaviors of diverse neuronal models in an interacting network. For example, 
Sun and Cao [19] studied the synchronization states of two electrically coupled Rulkov maps. They 
announced that the Rulkov model cannot get completely synchronized through electrical synaptic 
couplings. However, Hu and Cao [20] revealed that two chemically coupled Rulkov maps can get 
synchronized completely. Moreover, Rakshit et al. [21] investigated the different behaviors of two 
coupled Rulkov neuronal models with both electrical and chemical synapses. They showed that a 
Rulkov map could be synchronized through electrical and chemical synapses, and the increments of 
chemical coupling strength can enhance the synchronization. Rulkov model, a two-dimensional map-
based neuronal model, has been employed in many other studies. For instance, the effect of Gaussian 
noise on the collective behaviors of the Rulkov model in a 128 ൈ 128 grid network was studied by 
Perc [22]. In this study, the second derivative was considered to couple neighboring neurons. Another 
study conducted by Sun et al. [23] elaborated on the impact of noise correlation by adding Gaussian 
noise to the network of electrically coupled Rulkov models. They found a slight impact of noise 
correlation on the mean firing rate changes and a significant influence of noise intensity on population 
coherence. Also, Wang et al. [24] studied delay-induced synchronization to show the critical effect of 
delays in synchronization. This study employed the Rulkov model with additive Gaussian noise in a 
scale-free network of 200 nodes. 
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One of the essential collective behavior of neurons is synchronization [25]. Synchronization is a 
phenomenon or process that occurs in a network consisting of more than one dynamic unit in 
interaction [26,27]. This phenomenon is present everywhere in nature, and its traces can be observed 
in many fields, including biology [26]. For example, Fell and Axmacher [28] approved the leading role 
of synchronization in memory processes in the brain. Their study indicated that phase synchronization 
plays an essential role in both working memory and long-term memory. Also, as declared by Arnulfo 
et al. [29], phase synchronization is present in the human brain's cortex. More specifically, they found 
phase synchronization between the brain's regions in high frequencies by recording and studying local-
field potential signals. Moreover, some other studies have shown the presence of synchronization and 
its prominent role in attention and cognition [30,31]. Also, some other researchers have discussed the 
relation of synchronization and some diseases like epilepsy [32] and Parkinson’s [33]. 

Another important collective behavior in complex networks is the chimera state [34]. Chimera 
refers to the state in which some oscillators of the network are synchronous while others are 
asynchronous [35]. So, chimera can denote partial synchronization in complex networks [36,37]. 
Chimera was first observed in a network of phase oscillators [38]. However, this state has been found 
in chemical [39], electrical [40], neuronal [41–43] systems, etc. Chimeras are highly dependent on 
initial conditions [44] and the network's topology [45]. Moreover, different types of chimera, such as 
amplitude chimera [46], traveling chimera [47], chimera death [46], spiral wave chimera [48], etc., 
have been reported in the literature. For instance, traveling chimera is a phenomenon in which the 
displacement of coherent oscillators with a constant pace over time can be observed [34]. This 
phenomenon which was reported by Simo et al. [49], was observed in a network of Hindmarsh-Rose 
neuronal models. In another study conducted by Simo et al. [50], the emergence of traveling chimera 
was detected in a Hindmarsh-Rose neuron network under the electrical field. 

As mentioned above, the collective behavior of two electrically, chemically, and 
electrochemically coupled non-memristive Rulkov models have been investigated. In this paper, the 
collective behavior of the memristive Rulkov model is investigated by considering two coupled m-
Rulkov models and a network of 100 m-Rulkov models in a ring topology. In both conditions, the 
neurons are connected via electrical synapses, chemical synapses, and both of them. The effects of 
these synapses and their coupling strengths are under consideration. The paper is organized as follows: 
The m-Rulkov model and its network are described and detailed in Section 2. Section 3 presents the 
obtained results for different considered cases. The conclusion of the findings is declared in Section 4. 

2. Memristive Rulkov neuronal network 

Rulkov model is basically a two-dimensional map-based neural model which was theoretically 
designed by Rulkov [5]. In this paper, the memristive version of the Rulkov map, which was presented 
by Li et al. [9], is employed. The m-Rulkov model is able to present different neuronal behaviors like 
spiking, bursting, etc., in different parameters' values and initial conditions. The discrete m-Rulkov 
model is described as follows: 

𝑥ሺ𝑛 ൅ 1ሻ ൌ 𝐹൫𝑥ሺ𝑛ሻ, 𝑦ሺ𝑛ሻ൯ ൅ 𝛾 𝑡𝑎𝑛ℎ൫𝜑ሺ𝑛ሻ൯ 𝑥ሺ𝑛ሻ 

𝑦ሺ𝑛 ൅ 1ሻ ൌ 𝑦ሺ𝑛ሻ െ 𝜇𝑥ሺ𝑛ሻ 

(1)  
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𝜑ሺ𝑛 ൅ 1ሻ ൌ 𝜑ሺ𝑛ሻ ൅ 𝜀𝑥ሺ𝑛ሻ 

where 𝑥ሺ𝑛ሻ, 𝑦ሺ𝑛ሻ, and 𝜑ሺ𝑛ሻ are respectively the excitatory (represents action potential), recovery, 

and flux (represents electromagnetic induction) variables. Moreover, the term 𝛾 𝑡𝑎𝑛ℎ൫𝜑ሺ𝑛ሻ൯ 𝑥ሺ𝑛ሻ 

denotes the electromagnetic induction impact on the excitatory variable with the strength of 𝛾. In 
addition, 𝜀 determines the time scale when electromotive force is generated, and 𝜇 is the control 

parameter. Also, the discontinuous nonlinear 𝐹൫𝑥ሺ𝑛ሻ, 𝑦ሺ𝑛ሻ൯ is defined as below: 

𝐹൫𝑥ሺ𝑛ሻ, 𝑦ሺ𝑛ሻ൯ ൌ ൞

𝛼
1 െ 𝑥

൅ 𝑦 𝑥 ൑ 0       

𝛼 ൅ 𝑦                    0 ൏ 𝑥 ൑ 𝛼 ൅ 𝑦
െ1   𝑥 ൒ 𝛼 ൅ 𝑦     

 
(2)  

 

here, 𝛼 is the control parameter. In fact, the 𝛼 parameter determines the system regime in different 
conditions like resting, spiking or bursting. Considering 𝛼 ൌ 5, 𝜇 ൌ 𝜀 ൌ 0.05,  and 𝛾 ൌ 0.55 , the 
phase diagram and the time series of System (1) are shown in Fig. 1. The parameters are set in a way 
that the system exhibits chaotic bursting, as mentioned in [9]. The initial conditions are randomly 
selected for 𝑥 and 𝑦 variables in the range ሾെ1 1ሿ and the initial value of the 𝜑 variable is set to zero. 

 

Figure 1. a) The phase diagram in the 𝑥 െ 𝜑 plane and b) the time-series of 𝑥 (dark red), 
𝑦 (green), and 𝜑 (cyan) variables of System (1) for 𝛼 ൌ 5, 𝜇 ൌ 𝜀 ൌ 0.05, 𝛾 ൌ 0.55. In 
this set of parameters, the system shows chaotic bursting. 

To investigate the behavior of the neuronal networks, the map-based memristive Rulkov is employed 
as the dynamical behavior of each node of the network. The general form of the neuronal network, 
considering both electrical and chemical synaptic coupling functions, can be formulated as follows: 

𝑥௜ሺ𝑛 ൅ 1ሻ ൌ 𝑓൫𝑥௜ሺ𝑛ሻ, 𝑦௜ሺ𝑛ሻ൯ ൅ 𝜖 ෍ 𝐺௜௝
ଵ

ே

௝ୀଵ

𝑓 ቀ𝑥௝ሺ𝑛ሻ, 𝑦௝ሺ𝑛ሻቁ ൅ 𝑔௖൫𝑣௦ െ 𝑥௜ሺ𝑛ሻ൯ ෍ 𝐺௜௝
ଶ

ே

௝ୀଵ

Γ ቀ𝑥௝ሺ𝑛ሻቁ 

𝑦௜ሺ𝑛 ൅ 1ሻ ൌ 𝑦௜ሺ𝑛 ൅ 1ሻ െ 𝜇𝑥௜ሺ𝑛ሻ 

𝜑௜ሺ𝑛 ൅ 1ሻ ൌ 𝜑௜ሺ𝑛ሻ ൅ 𝜀𝑥௜ሺ𝑛ሻ 

(3)  
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where 𝜖 ∑ 𝐺௜௝
ଵே

௝ୀଵ 𝑓 ቀ𝑥௝ሺ𝑛ሻ, 𝑦௝ሺ𝑛ሻቁ denotes the electrical synaptic coupling with the strength of 𝜖, and 

𝑔௖൫𝑣௦ െ 𝑥௜ሺ𝑛ሻ൯ ∑ 𝐺௜௝
ଶே

௝ୀଵ Γ ቀ𝑥௝ሺ𝑛ሻቁ refers to the chemical synaptic coupling with the strength of 𝑔௖. 

Also, 𝛤൫𝑥௝൯ ൌ ଵ

ଵା௘
൬షഁቀೣೕష೭ೞቁ൰

  and 𝑓൫𝑥௜ሺ𝑛ሻ, 𝑦௜ሺ𝑛ሻ൯ ൌ 𝐹൫𝑥௜ሺ𝑛ሻ, 𝑦௜ሺ𝑛ሻ൯ ൅ 𝛾 𝑡𝑎𝑛ℎሺ𝜑௜ሺ𝑛ሻሻ 𝑥௜ሺ𝑛ሻ . The 

parameter 𝑣௦ is the synaptic reversal potential, 𝛩௦ is the threshold of synaptic firing, and 𝛽 is the 
sigmoid slope. Note that the value of 𝑑 ൌ 𝑣௦ െ 𝑥௜ሺ𝑛ሻ can determine whether the synapse is excitatory 
or inhibitory. If 𝑑 ൐ 0, the synapse is excitatory, otherwise the synapse is inhibitory. In this study, the 
parameter values are set at 𝑣௦ ൌ 𝛩௦ ൌ െ1.4, 𝑎𝑛𝑑 𝛽 ൌ 50 as described in [21].  

3. Results 

To study the synchronized behaviors of m-Rulkov models, we first consider 𝑁 ൌ 2, i.e., two 
coupled m-Rulkov maps. Then, considering 𝑁 ൌ 100, we study the different patterns of the network, 
including synchronization and chimera states. In both cases, the initial conditions are randomly 
selected between െ1 to 1, except the flux variables which are set to zero. In order to determine the 
synchronous state, the averaged synchronization error, as described in Eq (4), is employed as the 
synchronization criterion for the neurons' action potentials. 

𝐸 ൌ
1

𝑛ሺ𝑁 െ 1ሻ
෍ ෍ฮ𝑥ଵሺ𝑘ሻ െ 𝑥௝ሺ𝑘ሻฮ

ே

௝ୀଶ

௡

௞ୀଵ

 (4)

where 𝑁 is the number of network nodes, and 𝑛 is the number of samples for each node. Note that 
all results are obtained for 𝑛 ൌ 1, … ,1000, and the normalized values of error are presented. 

3.1. Two-coupled neurons 

In this subsection, the synchronization of two coupled m-Rulkov models is investigated under 
different couplings with considering 𝛼 ൌ 5, 𝜇 ൌ 𝜀 ൌ 0.05, 𝛾 ൌ 0.55, 𝑣௦ ൌ 𝛩௦ ൌ െ1.4,  and 𝛽 ൌ 50 . 
As declared in [19], two non-memristive Rulkov models cannot get synchronized through the electrical 
synapses. However, using chemical synaptic couplings, they can be fully synchronized [20]. Moreover, 
considering electrochemical synapses, it was proved in [21] that two non-memristive Rulkov models 
could be synchronized. Here, firstly, the synchronization error of the action potential signal is 
calculated by assuming 𝑔௖ ൌ 0 for different electrical synaptic strengths (𝜖). The result is represented 
in Figure 2(a). Similarly, considering 𝜖 ൌ 0, the synchronization error is calculated for different values 
of chemical synaptic strength (𝑔௖), which is shown in Figure 2(b). As represented in Figure 2(a), two 
coupled m-Rulkov models can be synchronized through electrical synapses for 0.3 ൑  𝜖 ൑ 0.5 . 
Similarly, Figure 2(b) indicates that two m-Rulkov models can be synchronized via chemical synapses 
for 0.36 ൑ 𝑔௖ ൑ 1 . However, in this range, the neurons reach an amplitude death state, not a 
synchronous oscillation. Therefore, in contrast to the result of coupled non-memristive Rulkov 
models [19], the network consisting of two memristive Rulkov models can get synchronized even 
without chemical synapses.  

Then, the behavior of two coupled m-Rulkov maps is studied by calculating the normalized 
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synchronization error considering the variation of both electrical (𝜖) and chemical (𝑔௖) strengths, which 
is shown in Figure 3. As demonstrated in Figure 3, two coupled m-Rulkov neurons can be synchronized 
in the presence of both electrical and chemical synapses. The dark blue regions in Figure 3 determine 
the states in which the neurons are synchronized, so the synchronization error is almost zero. 
Furthermore, by varying the electrical and chemical coupling strengths, i.e., 𝜖 and 𝑔௖, different firing 
patterns can be observed, which are shown in Figure 4. As it can be seen in Figure 4, two coupled m-
Rulkov models can be synchronized in different spiking, bursting, and resting states.  

 

Figure 2. Normalized synchronization error of two m-Rulkov models coupled via a) electrical and 

b) chemical synapses. The two coupled m-Rulkov models are able to be synchronized through each 

electrical or chemical synaptic couplings. The parameters are 𝛼 ൌ 5, 𝜇 ൌ 𝜀 ൌ 0.05, 𝛾 ൌ
0.55, 𝑣௦ ൌ 𝛩௦ ൌ െ1.4, 𝑎𝑛𝑑 𝛽 ൌ 50. 

 

Figure 3. Normalized synchronization error of two m-Rulkov models coupled via both electrical 

and chemical synapses. The two coupled m-Rulkov models are able to be synchronized through 

both electrical and chemical synaptic couplings. The parameters are 𝛼 ൌ 5, 𝜇 ൌ 𝜀 ൌ 0.05, 𝛾 ൌ
0.55, 𝑣௦ ൌ 𝛩௦ ൌ െ1.4, and 𝛽 ൌ 50. 
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Figure 4. Different firing patterns of two coupled m-Rulkov neuronal models in synchronization 

state. Two coupled m-Rulkov maps can be synchronized through electrical, chemical, and both 

electrical and chemical couplings. The parameters are 𝛼 ൌ 5, 𝜇 ൌ 𝜀 ൌ 0.05, 𝛾 ൌ 0.55, 𝑣௦ ൌ 𝛩௦ ൌ
െ1.4, 𝛽 ൌ 50 and a) 𝜖 ൌ 0.42 and 𝑔௖ ൌ 0, b) 𝜖 ൌ 0.3 and 𝑔௖ ൌ 0.3, c) 𝜖 ൌ 0.28 and 𝑔௖ ൌ
0.27, d) 𝜖 ൌ 0.22 and 𝑔௖ ൌ 0.3, e) 𝜖 ൌ 0.45 and 𝑔௖ ൌ 0.5, and f) 𝜖 ൌ 0.5 and 𝑔௖ ൌ 1. 

3.2. N-coupled neurons 

For deeper investigation, this section considers a ring network of 100 m-Rulkov models coupled 
via both electrical and chemical synapses to study the different collective behaviors of the memristive 
Rulkov model in a large network. Similar to the previous section, first, the effect of electrical synapses 
(assuming 𝑔௖ ൌ 0), then the effect of chemical synapses (assuming 𝜖 ൌ 0), and finally, the effect of 
both electrical and chemical synapses are investigated. To this purpose, by setting 𝛼 ൌ 5, 𝜇 ൌ 𝜀 ൌ
0.05, 𝛾 ൌ 0.55, 𝑣௦ ൌ 𝛩௦ ൌ െ1.4, 𝑎𝑛𝑑 𝛽 ൌ 50 , the synchronization error is calculated for each 
condition. More specifically, Figure 5(a),(b) respectively show the normalized synchronization error 
for electrical (𝑔௖ ൌ 0) and chemical (𝜖 ൌ 0) synapses.  
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According to Figure 5(a), the neurons cannot get synchronized when the coupling is only via 
electrical synapses. In the previous subsection, it was shown that the two coupled neurons could reach 
synchronization. While, for 𝑁 ൌ 100 , increasing the electrical coupling leads to instability of the 
oscillators. Thus, it can be inferred that the synchronization of electrically coupled neurons depends 
on the number of neurons in the network. To represent this issue, Figure 6 is presented. This figure 
shows the parameter plane of the network corresponding to the variation of the coupling strength 𝜖 
and the network size (𝑁). The yellow, green, dark magenta, and gray colors in this figure represent the 
regions of synchronization, amplitude death, asynchronization, and instability. In order to determine 
different regions, the synchronization error for the N electrically coupled m-Rulkov models is 
calculated. The asynchronous state is determined by non-zero errors, while zero error represents the 
synchronization and amplitude death regions. To distinguish synchronization state from amplitude 
death state, the difference between the mean of some of the last samples is calculated. Besides, in the 
instability region, the error is an undefined value. It is observed that synchronization is only possible 
in small networks. Furthermore, increasing the strength of the couplings in small networks leads to the 
neurons being unstable. As the number of the oscillators increases, by strengthening the electrical 
coupling, the network’s behavior changes from asynchronization to instability.  

When the neurons are coupled with chemical synapses, based on Figure 5(b), the error of synchrony 
becomes zero for 0.187 ൑ 𝑔௖ ൑ 0.712. However, in this case, the pattern is amplitude death state, and 
the neurons reach a common resting state. In other words, after an asynchronous spike, all neurons stay 
in their resting state with no oscillation. Also, For 𝑔௖ ൐ 0.712, the neurons become unstable.  

Figure 7 represents the normalized synchronization error obtained for a specific interval of 𝜖 and 
𝑔௖, with assuming 𝛼 ൌ 5, 𝜇 ൌ 𝜀 ൌ 0.05, 𝛾 ൌ 0.55, 𝑣௦ ൌ 𝛩௦ ൌ െ1.4, 𝑎𝑛𝑑 𝛽 ൌ 50. In this figure, the 
dark blue regions represent the almost zero value of synchronization error. Nevertheless, similar to the 
chemical coupling in all of these conditions, the coupled neurons evolve into amplitude death, not 
synchronous firing. 

 

Figure 5. Normalized synchronization error of a ring of 100 m-Rulkov models coupled via a) 

electrical synapses and b) chemical synapses. The neurons are not able to be synchronized through 

electrical synaptic couplings. Furthermore, the zero error region in the chemical coupling case 

represents the amplitude death condition. The parameters are 𝛼 ൌ 5, 𝜇 ൌ 𝜀 ൌ 0.05, 𝛾 ൌ
0.55, 𝑣௦ ൌ 𝛩௦ ൌ െ1.4, 𝑎𝑛𝑑 𝛽 ൌ 50. 
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Figure 6. The regions of different behaviors of the ring network consisting of electrically coupled 

m-Rulkov neuron models in the parameter plane of the network’s size and electrical coupling 

strength. The yellow, cyan, dark magenta, and gray regions indicate the synchronization state, 

amplitude death, asynchronous state, and neurons instability state, respectively. M-Rulkov neuron 

models cannot get synchronized as the network size increases. 

 

Figure 7. Normalized synchronization error of a ring of 100 coupled m-Rulkov models via both 

electrical and chemical synapses. One hundred coupled m-Rulkov maps cannot get synchronized 

through electrical couplings; however, in some chemical and both electrical and chemical coupling 

strengths, the synchronization error becomes zero since the neurons reach the resting state. The 

parameters are 𝛼 ൌ 5, 𝜇 ൌ 𝜀 ൌ 0.05, 𝛾 ൌ 0.55, 𝑣௦ ൌ 𝛩௦ ൌ െ1.4, and 𝛽 ൌ 50. 
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3.2.1. Chimera patterns 

As mentioned above, assuming 𝑔௖ ൌ 0  or, in other words, with only considering electrical 
synapses, the neurons in large networks cannot get synchronized. However, in the asynchronous region, 
different patterns can be observed, some of which are shown in Figure 8. The figures represent the 
formation of the non-stationary chimera state since the position of asynchronous neurons changes in time. 
It can be seen that the increase in coupling strength 𝜖 from 0.07 (Figure 8(a)) to 0.11 (Figure 8(b)) 
results in more asynchrony in the pattern. But further increments of 𝜖  to 0.22  leads to a more 
synchronous pattern. Although the neurons never get synchronized completely, they represent a sine-
like synchronization state which can be seen in Figure 8(c). Note that for 𝜖 ൐ 0.445, the neuron gets 
unstable, and no complete synchronization can be observed. 

 

Figure 8. Different patterns (the spatiotemporal patterns (top panel) and snapshots (bottom panel)), 

observed in a network of 100 m-Rulkov neuronal models setting in a ring topology connected 

through electrical synapses (𝑔௖ ൌ 0) with the strength of a) 𝜖 ൌ 0.07, b) 𝜖 ൌ 0.11, and c) 𝜖 ൌ
0.22. All snapshots are plotted in the last sample (𝑛 ൌ 1000). Non-stationary chimera and sine-

like synchronization states can be observed for some electrical coupling strengths. 
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To investigate the effect of the chemical synapses, 𝜖 ൌ 0 is considered, and different behavior 
of the network is studied for different values of 𝑔௖. By varying 𝑔௖, two main patterns are observed, 
which are illustrated in Figure 9. For 0187 ൑ 𝑔௖ ൑ 712, the neurons reach the same resting state as 
shown in Figure 9(a). Before this state, in some values of coupling strength 𝑔௖, the chimera patterns 
can be observed, as represented in Figure 9(b). 

 

Figure 9. Different patterns (the spatiotemporal patterns (top panel) and snapshots (bottom panel)), 

observed in a network of 100 m-Rulkov neuronal models setting in a ring topology connected 

through chemical synapses (𝜖 ൌ 0 ) with the strength of a) 𝑔௖ ൌ 0.2 , and b) 𝑔௖ ൌ 0.18 . The 

snapshots are plotted in the last sample (𝑛 ൌ 1000). Amplitude death and chimera states can be 

observed for some chemical coupling strengths. 

In the existence of both electrical and chemical synaptic couplings, more different patterns can 
be noticed. For instance, Figure 10 illustrates four different patterns of the network. Traveling chimera 
in 𝜖 ൌ 0.11  and 𝑔௖ ൌ 0.8 , and lagged-phase synchronization in 𝜖 ൌ 0.1  and 𝑔௖ ൌ 0.5  are 
respectively represented in Figure 10(a),(b). Moreover, other patterns of chimera state are formed, which 
can have a different level of synchrony. More specifically, larger synchronous clusters can be seen in 
Figure 10(c), compared with the synchronous clusters in Figure 10(d). In other words, for 𝜖 ൌ 0.13 and 
𝑔௖ ൌ 0.15 , more local neurons are synchronized in comparison with the number of locally 
synchronized neurons for 𝜖 ൌ 0.08 and 𝑔௖ ൌ 0.16. 
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Figure 10. Different patterns (the spatiotemporal patterns (top panel) and snapshots (bottom panel)), 

observed in a network of 100 m-Rulkov neuron models setting in a ring topology connected through 

electrical and chemical synapses with the strength of a) 𝜖 ൌ 0.11, 𝑔௖ ൌ 0.8, b) 𝜖 ൌ 0.1, 𝑔௖ ൌ 0.5, 

c) 𝜖 ൌ 0.13, 𝑔௖ ൌ 0.15 , and d) 𝜖 ൌ 0.08, 𝑔௖ ൌ 0.16 . The snapshots are respectively plotted in 

𝑛 ൌ 900 , 𝑛 ൌ 850 , 𝑛 ൌ 1000 , and 𝑛 ൌ 1000 . Different chimera patterns and lagged-phase 

synchronization can be observed for some electrochemical coupling strengths. 

4. Conclusions 

In the presented paper, different collective behaviors of the memristive version of the Rulkov map, 
namely, the m-Rulkov map were studied in two main parts. First, the synchronous behavior of two 
coupled m-Rulkov models was on the focus. Then, considering a network of 100 m-Rulkov models in 
the ring topology, different collective behaviors were explored. In both cases, the effects of each 
electrical synapse and chemical synapse, along with the effects of their simultaneous presence, were 
investigated. The results indicated that two coupled m-Rulkov maps could be synchronized through 
electrical synaptic coupling; while, as mentioned in [19], two electrically coupled non-memristive 
Rulkov neurons cannot get synchronized. Besides, similar to [20], two chemically coupled maps could 
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reach the same resting state. In contrast, no other synchronous patterns were recognized through 
chemical synaptic couplings. Compared with the results expressed in [21], two coupled m-Rulkov 
neurons could be synchronized, and different synchronization patterns were noticed through electrical 
and chemical synapses. This synchronization was dependent on the size of the network and was only 
observed in small networks. Investigation on the ring network of 100 m-Rulkov models, by calculating 
the synchronization error, indicated that the neurons could not get synchronized via electrical synapses. 
Nevertheless, non-stationary chimera and sine-like synchronization have been found in electrically 
coupled neurons. Also, the neurons were attracted by the same fixed point when they were coupled 
through chemical synapses. However, some chimera patterns could also be found before reaching the 
resting state. In both cases, the neurons became unstable for high coupling strengths. The presence of 
both electrical and chemical synaptic couplings could lead to different collective behaviors such as 
traveling chimera, non-stationary chimera, lagged-phase synchronization, and amplitude death state.  
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